Toric varieties and smooth convex approximations of a polytope

Victor V. Batyrev

Let V be a projective toric variety, \mathcal{L} an ample T-linearized invertible sheaf on V with T-invariant metric q whose curvature form is positive. If s is a global section of \mathcal{L} which nonvanishes on T, then $f(x) = \log \|s(x)\|^{-1}_q$ can be approximated by a piecewise linear function as x tends to some point in $V \setminus T$. This observation gives an explicit formula for some convex approximation of an arbitrary convex polytope in a finite dimensional real space.

Let $P \subset \mathbb{R}^d$ be a convex d-dimensional polytope defined by inequalities

$$\langle p, \gamma_i \rangle \leq a_i, \ 1 \leq i \leq n,$$

where γ_i are linear functions on \mathbb{R}^d. We assume that the zero $0 \in \mathbb{R}^d$ is in the interior of P, so that all $a_i \neq 0$. After a normalization we get

$$P = \{p \in \mathbb{R}^d | \langle p, \alpha_i \rangle \leq 1, \ 1 \leq i \leq n\},$$

where $\alpha_i = \gamma_i / a_i$. Consider the following two functions on \mathbb{R}^d:

$$F(p) = \frac{1}{2} \log \left(\sum_{1 \leq i \leq n} e^{2 \langle p, \alpha_i \rangle} \right),$$

$$L(p) = \max_{1 \leq i \leq n} (\langle p, \alpha_i \rangle).$$

Proposition 1. $F(p)$ satisfies the following conditions

(i) $F(p)$ is a convex function;

(ii) $F(p) > L(p)$ for all $p \in \mathbb{R}^d$.

For any positive real number t, define the following convex sets:

$$Q_t = \{p \in \mathbb{R}^d | F(tp) \leq t\},$$

$$P_t = \{p \in \mathbb{R}^d | L(tp) \leq t\}.$$

Clearly, for all t, one has $P_t = P$. It follows from the proposition 1 that Q_t is a convex body with a smooth boundary, and $Q_t \subset P$ for all t.

Proposition 2. $\lim_{t \to \infty} Q_t = P$.