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1. Introduction

For a finite dimensional parameter model fitting to a
process, the conditional quasi-likelihood estimator can be used
to estimate the unknown parameter (Huziif2]). The estimator is
usually given by the local maximal point of the likelihood
function in a parameter space. If the fitted model is
correct, statistical properties of the estimator have been
studied in detail. On the other hand if the model is
misspecified, they have not been much studied. Tanaka and
Huziil[4] showed that there exist some misspecified MA(1) models
whose conditional quasi-likelihood function has several local
maximal points in a parameter space when a number of
observations is large. To deal with cases of this kind it is
worth to investigate whether or not its global maximizer is the
best estimator of all the local maximal points.

In this paper, we focus on misspecified ARMA model fittings

to a weakly stationary process, and examine a problem of
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estimating a spectral density of the process by using the
fitting models. It will be shown by some concrete examples that
the global maximal point of the likelihood function is not
always superior to the local one for the estimation of the
spectral density of the process when the number of observations

is large.

2. ARMA model fittings
Let {Zt;t=0,1,2,"~} be a weakly stationary process with

EZt=0. Then {Zt} is said to satisfy an autoregressive-moving

average model of order p and q (or ARMA(p,q) model) if {Zt} is

satisfies
(1+¢ B+---+ ¢ BPrzZ. = (1-0.B-----8 BY)e (1)
1 P t 1 q t’

where {et} consists of independently and identically distributed

random variables with Eet=0, Eet2=02, {¢i} and {Gj} are

constants which are independent of t, and B is the usual

backward shift operator defined by BLthzt_i(i=0'Z,2,-~'). Here

we put
6(B)=1+¢ B+----+¢ BP?, 0(B)=1-6.B------0 BY, (2)
1 P 1 q

and assume that equations ¢(x)=0 and 6(x)=0 have no common zeros
and ¢(x)#0 and 9(x)#0 for |x|<1. In this case (Z,} has a

spectral density



128

9 0(exp(-2mixr)) 2
fZ(A)= g , -0.5<Lx£0.5. (3)
o (exp(-21mir))

Let {Xt} be a real-valued weakly stationary linear process

with EXt=O, rh= Extxt+h and spectral density fx(l), such that

[+ ]
X, = > g.e., ., (4)

where the gj's are constants being independent of t, satisfy

[e o] o

S Igj|<OD and gx(x)=.2

g.x3# 0 on |x]=1, and Eet4<W.
j=0 j=0 3

We here consider the fitting of an ARMA(p,q) model to the

process {Xt}' In this case (Xt} may not satisfy the model. Let
9=(¢1,"',¢p,91, --°,6q) denote the unknown coefficient vector,

and let the residual at and the sequence (che)} be defined by

-1 t+p+q-1 K
a, = 0 (B)$(B)X, = { > FR(G)B X
k=0

t’ (5)
where {Xt;—(p+q)+lstSO} should be replaced by suitable initial
random variables (Huziil[2]). The notion 6f FK(G) in (5) can be
extended for any k, 0<k<(». Then, by assuming Gaussian

properties, the conditional quasi-maximum likelihood estimator



129

~

GT based on observations {x—(p+q)+1’ T, XT-I’ XT} is given by
the value which minimizes

~5 1 T t+p+q-1 K 2

%) = —/— 2 [{ 2 F (B)BHX, (6)

t=1 k=0

with respect to 8 in the parameter space,

Qo= 8erP*Y: 9(2)0(z)= 0 for |zl<1, #(z)#0 on |z]|=1

s

and ¢(-), 8(-) have no common zeros}.

To obtain the estimator we usually search the parameter space

for a local minimal point of 52(6). If there exist several

~

local minimal points in the space, then the global one, 8 will

T’
be selected. It is questionable that this selection is

appropriate for the estimation in the misspecified model fitting.

By the way, for evaluating the asymptotic properties of the

~

conditional quasi-maximum likelihood estimator BT, our attention

should be turned to a function,

2 F (8)F, (8)r, _ (7)

S 8) = 2
q 0 k=0 D

h k

for BEQP a (see Huziil2]). From the definition of Fk(G) in- (5)

’

and using the spectral decomposition of the autocovariance

function r we can obtain another representation of (7)

h,
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0.5 o 2
s (@) = f £ o |—2lexp=2ming) da
P,q X

. 8)
, ~0.5 0 (exp(-2mix))

(see Astrom and Soderstrom[1] and Kabailal31).

When Sp q(8) has at least two local minimal points 8? in

Qp q’ there exist estimators 8% which converge in probability to

these points as the sample size T tends to infinity (see
Huziil2], Theorem 2). In this case we have a question which one
we should use for the estimator of the parameter. To discuss
the problem, we shall examine the statistical properties of
these estimators é} by considering the spectral densities of the
fitting model which are constructed by the estimators.

Let the estimator of the spectral density of the ARMA(p,q)

model whose parameter 8 is estimated by the GT be defined as

. 2
£ (A58 = oz(gT) OCexp(-2min)) | (9)
P,q ¢ (exp(-2miAr))

~

We assume that the estimator GT converges in probability to 9*,

which is a local minimal point of S q(8) in Q , as T tends to

’ ’

infinity. Then it follows from the definition of {Xt} that
2

~

o (8T) converges in probability to Sp q(B*), and in addition

fp’q(l;QT) convefges in probability to
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2

* 9*(exn(—2nix))

" (10)
p.q ¢ (exp(-2mix))

at each x. Therefore we have that

A

E[(f (:8.) - £ (x;8%123
P,q T P,q

and

*
E[L f x;0 - f x;08
[ p,q( T) p,q( )]

converges to 0 as T tends to infinity, Thus it follows that

~ - i 9
E[{fp q(A,GT) fX(A)} ] (11)

converges to

* 2
f x;8 H)- b 12
{ p,q( ) .fx( )} (12)

at each A, as T tends to infinity. Consequently the

~ ~

integrated mean squared error of f (x;08

p.q T)’ i.e
0.5 ~ ~ 9
j—0.5E[{fp’q(l’eT)_ fX(A)} 1dx, (13)

converges to
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. 0.5 « 2
G _(87) = f (£ (X;87)-f_()} dA (14)
P.q _0.5 P.d x"

as T tends to infinity. Thus the goodness of the local minimal

points 9* of Sp q(9) can be evaluated by using the function (14).

»

Since it is very hard to derive general results in the ARMA(p,q)
model fitting, the following concrete examples of MA(1l) and

ARMA(1,1) model fittings are considered.

Example 1 (MA(1) model fitting).

In this case S0 1(9) is expressed as follows:

_ os h, . o2.-1
S 1(9)-{;0 + 22 rhG y(1-0°) -+, (15)

0, h=1

where r =EX X, ., for |o]<1. If (X,} is an MA(1) process with

true parameter value 60 in Q then the minimal point of

0,1’
SO 1(6) is uniquely determined by 90. On the other hand if the

model is not correct, S 1(9) may have more than one local

0,

minimal points in QO 1= {0;101<1} (see Tanaka and Huziil4]). We

consider the following example. Let (Xt} be an MA(4) process

such that

3 2

X.= (1+0.1B-0.7B%+0.5B +O.SB4)et, %= 1,

t
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where {et} is defined in (1). Then if an MA(l) model is fitted

to this process, it is seen that S0 1(9) has two local minimal

points, namely 91=—O.85 and 92= 0.19, such that SO 1(61)=1.87 <

SO 1(92)=1.98 (see Figure 1). This implies that the 91 is a

global miminal point of the function in a parameter space. In
this case, our interest is to see whether or not the grobal

minimal point 91 is superior to the local one 62. Calculating

the values of G (0.) for i=17,2, we can see that G 0,y >
0,1 i 0,1 !

G0 1(92) (see Figure 1). This shows that the global mnimal

point 61 is not superior to the local one 92 concerning the

estimation of the spectral density in terms of G0 1(8). Their

spectral densities are shown in Figure 2.

Example 2 (ARMA(1,1) model fittings).

Let {Xt} be an AR(2) process with parameters ¢1, ¢2 and

o°=1. It follows from (8) that, for each 8=(¢,9)€Q1 1’

_ 2 a2 2. -1
S; 1(8)= r (A 07 +BO +C)[(1+4,)(1-07)(1+4,6+4,87)1 ",

(16)

_ 2_
where A= ¢2[(1+¢2)¢ 2¢1¢+(1+¢2)],
Bz -[6.(1-¢.)-2(1~6.2)6+6. (1-6_)621
1 2 2 1 2 ’

Cc= (1+¢2)—2¢1¢+<1+¢2)¢2,

and r0= Var(Xt). In addition, from (14), we can obtain
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G, 1(8)={(1+462+e4>+89(1+92)¢+(1+1092+94)¢2—292¢4}(1—¢2)'3

*S 1(9)}2 -2S

1 ,1(—9’_¢)Sl,1(¢’9) a7

1

0.5 2
+ j fx(l)dl,
~0.5

where fx(k) is the spectral density of the process Xt.
We know that if an MA(1) model is fitted to some AR(2)

process, there exists two local minimal points of S 1((-)) in the

0,
parameter space (Tanaka and Huziil41). If we extend the MA(1)
model to an ARMA(1,1) model, how the properties 81’1(8) has. The
following two examples of an ARMA(1,1) model fitting are

considered here, and the properties of the function S 1(9) are

1

investigated.
(a) Let {Xt} be an AR(2) process with_¢1=0 and ¢2=0.7 such

that Xt+ 0.7Xt_2 = e, Then 81’1(8) has two ]opal minimal

points, namely 81=(0.5, -0.85) and 82=(-0.5, 0.85), such that

81’1(81)= (8,). In this case we have G 1(91)= G

1,19 1, ¢85

1,

(b) Let {Xt} be an AR(2) process with the parameters ¢1=0.1

and ¢2=0.7. Then S1 1(8) has also two local minimal points,

i.e., 91=(O.41, -0.76) and 92=(-0.27, 0.73), such that S1 1(81)

> S1 1(82) (see Figure 3). In addition, it can be seen that
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G 1(91) > G

1 1(82). This shows that the global minimal point

1,

is superior to the local one in terms of the criterion G1 1(8).
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Figure 1. S 1(9) and G

0 1(9) when MA(1) model is fitted to

0,

an MA(4) process (Example 1).
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Figure 2. Spectral densities of the MA(L) models

and MA(4) process in Example 1.
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S

Figure 3

an AR(2) process (Example 2(b)).



