Kostant's formula for a certain class of generalized Kac-Moody algebras II

By

Satoshi NAITO

Introduction.

A real n×n matrix A = $(a_{ij})_{i,j\in I}$ indexed by a set I = {1, 2, ..., n} is called a *GGCM* if it satisfies

- (C1) either $a_{ii} = 2$ or $a_{ii} \le 0$;
- (C2) $a_{ij} \leq 0$ if $i \neq j$, and $a_{ij} \in \mathbb{Z}$ if $a_{ii} = 2$;
- (C3) $a_{ij} = 0$ implies $a_{ji} = 0$.

Let g(A) be a generalized Kac-Moody algebra (GKM algebra), over the complex number field \mathbb{C} , associated to a symmetrizable GGCM $A = (a_{ij})_{i,j\in I}$, with Cartan subalgebra h, simple roots $\Pi = \{\alpha_i^{}\}_{i\in I}$, and simple coroots $\Pi^{\vee} = \{\alpha_i^{\vee}\}_{i\in I}$. And let $g(A) = \pi^{-} \oplus h \oplus \pi^{+}$ be the triangular decomposition with $\pi^{\pm} = \sum_{\alpha \in \Delta^{\pm}}^{\oplus} g_{\alpha}$, where g_{α} is the root space attached to a root $\alpha \in \Delta^{\pm}$.

In the previous paper [4], we studied the \mathfrak{h} -module structure of the homology $H_j(\mathfrak{n}^-, L(\lambda))$ of \mathfrak{n}^- or the cohomology $H^j(\mathfrak{n}^+, L(\lambda))$ of \mathfrak{n}^+ with coefficients in the irreducible highest weight $\mathfrak{g}(A)$ -module $L(\lambda)$ with highest weight $\lambda \in \mathfrak{h}^* = \mathrm{Hom}_{\mathbb{C}}(\mathfrak{h}, \mathbb{C})$. (Remark that the cohomology $H^j(\mathfrak{n}^+, L(\lambda))$ used in [4] is slightly different from the usual Lie algebra cohomology.) Then, we proved

"Kostant's formula" under the following condition ($\hat{C}1$) on the GGCM A = $(a_{i,j})_{i,j\in I}$:

(Ĉ1) either $a_{ii} = 2$ or $a_{ii} = 0$ ($i \in I$). Namely, we proved

Theorem A ([4]). Let $\Lambda \in P^+ := \{\lambda \in \mathfrak{h}^* \mid \langle \lambda, \alpha_{\mathbf{i}}^\vee \rangle \geq 0 \ (\mathbf{i} \in \mathbf{I}),$ and $\langle \lambda, \alpha_{\mathbf{i}}^\vee \rangle \in \mathbb{Z}_{\geq 0}$ if $\mathbf{a}_{\mathbf{i}\mathbf{i}} = 2\}$. Denote by G the set of all sums of distinct pairwise perpendicular elements from $\Pi^{\mathbf{i}\mathbf{m}} := \{\alpha_{\mathbf{i}} \in \Pi \mid \mathbf{a}_{\mathbf{i}\mathbf{i}} \leq 0\}$. And we put $\mathbb{G}(\Lambda) := \{\lambda \in \mathbb{G} \mid (\lambda \mid \Lambda) = 0\}$, where $(\cdot \mid \cdot)$ is a standard bilinear form on \mathfrak{h}^* . Then, as \mathfrak{h} -modules $(\mathbf{j} \geq 0)$,

$$\text{H}^{\mathbf{j}}(\mathfrak{n}^+, \ \text{L}(\Lambda)) \ \cong \ \text{H}_{\mathbf{j}}(\mathfrak{n}^-, \ \text{L}(\Lambda)) \ \cong \ \sum_{\beta \in \mathbb{G}(\Lambda)}^{\oplus} \ \sum_{\mathbf{w} \in \mathbb{W}}^{\oplus} \ \mathbb{C}(\mathbf{w}(\Lambda + \rho - \beta) - \rho) \,, \\ \ell(\mathbf{w}) = \mathbf{j} - \text{ht}(\beta)$$

where $\mathbb{C}(\mu)$ ($\mu \in \mathfrak{h}^*$) is the irreducible (one dimensional) \mathfrak{h} -module with weight μ . Here, ρ is a fixed element of \mathfrak{h}^* such that $\langle \rho, \alpha_i^\vee \rangle = (1/2) \cdot a_{ii}$ ($i \in I$), $\ell(w)$ is the length of an element w of the Weyl group W, and for $\beta = \sum_{i \in I} k_i \alpha_i$ ($k_i \in \mathbb{Z}_{\geq 0}$) $\in \mathfrak{G}$, we put $ht(\beta) := \sum_{i \in I} k_i$.

In the present paper, using the idea of L. Liu [3] for Kac-Moody algebras, we extend the above result so that the nilpotent part \mathfrak{n}^+ of the Borel subalgebra b:= $\mathfrak{h} \oplus \mathfrak{n}^+$ is allowed to be the nilpotent part of a parabolic subalgebra containing \mathfrak{h} .

Let us explain in more detail. Let I^{re} (resp. I^{im}) be the subset {i \in I | a_{ii} = 2 (resp. $a_{ii} \le 0$)} of the index set I. And let J be a subset of I^{re} . We define a submatrix A_{J} of A by A_{J} :=

 $\begin{array}{l} (a_{ij})_{i,j\in J}, \text{ which is a generalized Cartan matrix (GCM). Note }\\ \text{that there exists a certain subspace } \mathfrak{h}_J \text{ of } \mathfrak{h}, \text{ such that the }\\ \text{triple } (\mathfrak{h}_J, \{\alpha_i \big| \mathfrak{h}_J\}_{i\in J}, \{\alpha_i^\vee\}_{i\in J}) \text{ is a } \textit{minimal realization of the }\\ \text{GCM } A_J. \text{ Then, we can identify the Kac-Moody algebra } \mathfrak{g}(A_J) \text{ with }\\ \text{the subalgebra } \mathfrak{g}_J \text{ of } \mathfrak{g}(A) \text{ generated by } e_i, f_i \text{ } (i\in J), \text{ and } \mathfrak{h}_J.\\ \text{Furthermore, } \mathfrak{g}_J = \mathfrak{h}_J \oplus \sum_{\alpha\in\Delta_J} \mathfrak{g}_\alpha, \text{ where } \Delta_J = \Delta \cap \sum_{i\in J} \mathbb{Z}\alpha_i \text{ is the }\\ \text{root system of } (\mathfrak{g}_J, \mathfrak{h}_J). \text{ Now, we define the following }\\ \text{subalgebras of } \mathfrak{g}(A): \end{array}$

$$\begin{split} \pi_{\mathbf{J}}^{+} &:= \sum_{\alpha \in \Delta_{\mathbf{J}}^{+}}^{\Phi} \mathbf{g}_{\alpha}, \ \pi_{\mathbf{J}}^{-} &:= \sum_{\alpha \in \Delta_{\mathbf{J}}^{+}}^{\Phi} \mathbf{g}_{-\alpha}, \ \mathbf{u}^{+} &:= \sum_{\alpha \in \Delta^{+}(\mathbf{J})}^{\Phi} \mathbf{g}_{\alpha}, \\ \mathbf{u}^{-} &:= \sum_{\alpha \in \Delta^{+}(\mathbf{J})}^{\Phi} \mathbf{g}_{-\alpha}, \ \mathbf{m} &:= \pi_{\mathbf{J}}^{-} \Phi \mathbf{h} \Phi \pi_{\mathbf{J}}^{+}, \ \mathbf{p} &:= \mathbf{m} \Phi \mathbf{u}^{+}, \end{split}$$

where $\Delta(J):=\Delta \times \Delta_J$, $\Delta_J^+=\Delta^+\cap \Delta_J$, $\Delta^+(J)=\Delta^+\cap \Delta(J)$. We call $\mathfrak p=\mathfrak m\oplus\mathfrak u^+$ the parabolic subalgebra of $\mathfrak g(A)$ defined by J. Note that since the triple $(\mathfrak h, \{\alpha_i^-\}_{i\in J}, \{\alpha_i^\vee\}_{i\in J})$ is a realization (but not a minimal realization) of the GCM A_J , $\mathfrak m=\mathfrak g_J^-+\mathfrak h$ can be regarded as a Kac-Moody algebra associated to A_J , whose Cartan subalgebra is $\mathfrak h$.

Recall that the Weyl group W of g(A) is defined to be the subgroup of $GL(\mathfrak{h}^*)$ generated by fundamental reflections r_i (i \in I^{re}). Now, let W_J be the subgroup of W generated by r_i (i \in J), which is the Weyl group of W. And we put $W(J) := \{ w \in W | w(\Delta^-) \cap \Delta^+ \subset \Delta^+(J) \}$ (= $\{ w \in W | w^{-1}(\Delta_J^+) \subset \Delta^+ \}$). Then, we will obtain the following theorem. (Here, as in [4], the cohomology $H^J(\mathfrak{u}^+, L(\Lambda))$ is slightly different from the usual one, whereas the homology $H_i(\mathfrak{u}^-, L(\Lambda))$ is the usual Lie algebra homology. See §3 for the

definition.)

Theorem. Let $\Lambda \in P^+$. Assume that the GGCM $A = (a_{ij})_{i,j \in I}$ is symmetrizable and satisfies the condition (£1). Then,

$$H^{\mathbf{j}}(\mathfrak{u}^+,\ L(\Lambda)) \ \cong \ H_{\mathbf{j}}(\mathfrak{u}^-,\ L(\Lambda)) \ \cong \ \sum_{\beta \in \mathbb{G}(\Lambda)}^{\oplus} \ \sum_{\mathbf{w} \in \mathbb{W}(\mathbf{J})}^{\oplus} \ L_{\mathfrak{m}}(\mathbf{w}(\Lambda + \rho - \beta) - \rho) \,,$$

as m-modules (j≥0). Here, for $\mu \in P_J^+$:= $\{\lambda \in \mathfrak{h}^* \mid \langle \lambda, \alpha_i^\vee \rangle \in \mathbb{Z}_{\geq 0}$ (i \in J) $\}$, $L_{\mathfrak{m}}(\mu)$ is the irreducible highest weight m-module with highest weight μ .

Note that when $J=\phi$, this theorem is nothing but Theorem A, since in this case, $u^+=\pi^+$, $u^-=\pi^-$, m=h, and W(J)=W.

This paper is organized as follows. In §1, we review some basic results for GKM algebras, especially the Weyl-Kac-Borcherds character formula. In §2, we will introduce an algebra \mathcal{F} of formal m-characters, where we can carry out certain formal operations. In §3, we rewrite some results of L. Liu [3] for Kac-Moody algebras, which can be proved for GKM algebras in just the same way that they are proved for Kac-Moody algebras. In §4, we prove our main theorem stated above, combining the results of [3] and [4].

§1. The category 0 and character formula.

In this section, we prepare fundamental results about GKM

algebras for later use. For detailed accounts of this section, see [1] and [2].

We put I:= $\{1, 2, \dots, n\}$. Let g(A) be the GKM algebra associated to a GGCM $A = (a_{i,j})_{i,j \in I}$ with the Cartan subalgebra h.

Definition 1.1 ([2]). 0 is the category of all h-modules V satisfying the following:

- (1) V admits a weight space decomposition $V = \sum_{\lambda \in \mathcal{P}(V)}^{\oplus} V_{\lambda}$, where $\mathcal{P}(V)$ is the set of all weights of V. And each weight space V, is finite dimensional $(\lambda \in \mathcal{P}(V))$;
- (2) there exist a finite number of elements $\lambda_i \in \mathfrak{h}^*$ (1 $\leq i \leq s$) such that $\mathcal{P}(V) \subset \bigcup_{i=1}^s D(\lambda_i)$, where $D(\lambda_i) := \{\lambda_i \beta \mid \beta \in Q_+ = \sum_{i \in I} \mathbb{Z}_{\geq 0} \alpha_i \}$ (1 $\leq i \leq s$).

Note that the category 0 is closed under the operations of taking submodules, quotients, finite direct sums, and finite tensor products.

Now, let $\mathscr E$ be the algebra over $\mathbb C$ consisting of all series of the form $\sum_{\lambda \in \mathfrak h^*} c_{\lambda} e(\lambda)$, where $c_{\lambda} \in \mathbb C$ and $c_{\lambda} = 0$ for λ outside a finite union of the sets of the form $D(\mu)$ ($\mu \in \mathfrak h^*$). Here, the elements $e(\lambda)$ are called formal exponentials. They are linearly independent and are in one-one correspondence with the elements $\lambda \in \mathfrak h^*$. And the multiplication of $\mathscr E$ is defined by $e(\lambda) \cdot e(\mu) := e(\lambda + \mu)$ (λ , $\mu \in \mathfrak h^*$). Then, for $V = \sum_{\lambda \in \mathfrak h^*}^{\mathfrak h} V_{\lambda}$ in $\mathfrak O$, we define the formal character of V by $ch \ V := \sum_{\lambda \in \mathfrak h^*} (\dim_{\mathbb C} V_{\lambda}) e(\lambda) \in \mathscr E$. Then, we know the following character formula.

Theorem 1.1 ([1] and [2]). Assume that A is a symmetrizable GGCM. Let (\cdot | \cdot) be a fixed standard bilinear form on h^* . For $\Lambda \in P^+$, we put

$$S_{\Lambda} := e(\Lambda + \rho) \cdot \sum_{\beta \in \mathfrak{S}(\Lambda)} (-1)^{\operatorname{ht}(\beta)} e(-\beta), \ R := \prod_{\alpha \in \Delta^{+}} (1 - e(-\alpha))^{\operatorname{mult}(\alpha)},$$

where $\operatorname{mult}(\alpha) := \dim_{\mathbb{C}} \mathfrak{g}_{\alpha} (\alpha \in \Delta^{+})$. Then,

$$e(\rho) \cdot R \cdot ch L(\Lambda) = \sum_{w \in W} (\det w) w(S_{\Lambda}),$$

with $w(e(\mu)) := e(w(\mu)) (\mu \in h^*)$.

Remark 1.1. The set $\{0\} \cup \Pi^{\text{im}}$ is contained in 6 by definition. And, especially when A is a GCM, 6 consists of only one element $0 \in \mathfrak{h}^*$.

§2. The category $\mathcal{O}_{\mathbf{J}}$ and the algebra $\mathcal{F}.$

In this section, we explain the notion of the category \mathcal{O}_J of m-modules. And then, we introduce the algebra \mathcal{F} of "formal m-characters" of m-modules from the category \mathcal{O}_J . Note that when $J=\phi$, these are nothing but the category \mathcal{O} and the algebra \mathcal{E} .

From now on, we always assume that the GGCM A is symmetrizable, and that J is a subset of I^{re} = {i \in I | a_{ii} = 2}. We use notations in the Introduction.

Definition 2.1 ([3]). ${\tt O}_J$ is the category of all m-modules M satisfying the following:

- 1) Viewed as an h-module, M is an object of the category 0;
- (2) Viewed as an m-module, M is a direct sum of irreducible highest weight m-modules $L_{\mathfrak{m}}(\lambda)$ with highest weight $\lambda \in P_J^+ = \{\mu \in \mathfrak{h}^* \mid \langle \mu, \alpha_i^\vee \rangle \in \mathbb{Z}_{\geq 0} \ (i \in J)\}.$

Clearly, the category \emptyset_J is closed under the operations of taking submodules, quotients, and finite direct sums. Moreover, a tensor product of two modules from \emptyset_J is again in the category \emptyset_J , because $L_{\mathfrak{M}}(\lambda) \otimes_{\mathbb{C}} L_{\mathfrak{M}}(\mu) \in \emptyset_J$ (λ , $\mu \in P_J^+$) by [2, Theorem 10.7. b)] (note that the modules $L_{\mathfrak{M}}(\tau)$ ($\tau \in P_J^+$) remain irreducible as \mathfrak{g}_J -modules). The main reason of our requirement that J is a subset of I^{re} comes from the fact that this theorem holds only for Kac-Moody algebras.

The following proposition plays a fundamental role in this paper.

Proposition 2.1 ([3]). For $\Lambda \in P^+$, $L(\Lambda)$ and $(\Lambda^j u^-) \otimes_{\mathbb{C}} L(\Lambda)$ ($j \ge 0$) are in the category 0_J , where $\Lambda^j u^-$ is the exterior algebra of degree j over u^- , and is an \mathfrak{m} -module by the adjoint action since $[\mathfrak{m}, u^-] \subset u^-$ ($j \ge 0$).

Now, we define a certain algebra $\mathcal F$ over $\mathbb C$. The elements of $\mathcal F$ are series of the form $\sum_{\lambda\in P_J^+} c_\lambda m(\lambda)$, where $c_\lambda\in \mathbb C$ and $c_\lambda=0$ for

 λ outside a finite union of the sets of the form $D(\mu)$ ($\mu \in \mathfrak{h}^*$). Here, the elements $m(\lambda)$ are called *formal* \mathfrak{m} -exponentials. They are linearly independent and are in one-one correspondence with the elements $\lambda \in P_J^+$.

For a module M in the category \mathfrak{O}_J , we define the formal $\mathfrak{m}\text{-}character$ $\mathrm{ch}_{\mathfrak{M}} \mathbb{M}$ of M by $\mathrm{ch}_{\mathfrak{M}} \mathbb{M} := \sum_{\lambda \in \mathrm{P}_J^+} [\mathbb{M} : \mathrm{L}_{\mathfrak{M}}(\lambda)] \mathrm{m}(\lambda)$, where $\mathbb{M} : \mathrm{L}_{\mathfrak{M}}(\lambda)$ is the "multiplicity" of $\mathrm{L}_{\mathfrak{M}}(\lambda)$ in M (see [2, Ch.9, Lemma 9.6]). Note that $[\mathbb{M} : \mathrm{L}_{\mathfrak{M}}(\lambda)]$ ($\lambda \in \mathrm{P}_J^+$) is finite since M is in the category \mathbb{M} as an h-module. Therefore, $\mathrm{ch}_{\mathfrak{M}} \mathbb{M}$ is an element of the algebra \mathcal{F} for $\mathbb{M} \in \mathbb{O}_J$. Then, the multiplication of \mathcal{F} is defined as follows: for λ , $\mu \in \mathrm{P}_J^+$, $\mathrm{m}(\lambda) \cdot \mathrm{m}(\mu) := \mathrm{ch}_{\mathfrak{M}}(\mathrm{L}_{\mathfrak{M}}(\lambda) \otimes_{\mathbb{C}} \mathrm{L}_{\mathfrak{M}}(\mu))$. Thus, \mathcal{F} becomes a commutative associative algebra over \mathbb{C} .

Following [3], we now define an algebra homomorphism $\Psi(\mathfrak{m}, \mathfrak{h})$: $\mathcal{F} \longrightarrow \mathcal{E}$, by $\Psi(\mathfrak{m}, \mathfrak{h})(\mathfrak{m}(\lambda)) := \mathrm{ch} \ L_{\mathfrak{m}}(\lambda) \in \mathcal{E} \ (\lambda \in \operatorname{P}_{J}^{+})$. Then, we have

Lemma 2.1. The mapping $\Psi(\mathfrak{m}, \mathfrak{h}): \mathcal{F} \longrightarrow \mathcal{E}$ is injective.

Proof (cf. [3]). Let $\sum_{\lambda \in P_J^+} c_{\lambda} m(\lambda)$ be a non-zero element of $\lambda \in P_J^+$ characteristic $\mu_i \in \mathbb{N}^*$ (1 $\leq i \leq s$), such that $\{\lambda \in P_J^+ \mid c_{\lambda} \neq 0\}$ consider the set $\{\mu_i\}_{i=1}^S$ by a suitable finite subset $\{\mu_i'\}_{i=1}^t$ of \mathbb{N}^* if necessary, we can assume that $\mu_k' - \mu_l' \notin \mathbb{Q}$ $= \sum_{i \in I} \mathbb{Z} \alpha_i$ (1 $\leq k \neq l \leq t$). Consider the subset $\{ht(\mu_i' - \lambda) \mid \lambda \in P_J^+$ ($c_{\lambda} \neq 0$) and $\lambda \in D(\mu_i')$ (1 $\leq i \leq t$) of $\mathbb{Z}_{\geq 0}$, and take $\lambda_0 \in P_J^+$ which attains the minimum of this subset. Then, clearly λ_0 is not a weight of $L_{\mathbb{M}}(\lambda)$ ($\lambda \in P_J^+ \setminus \{\lambda_0\}$). Hence, $\Psi(\mathfrak{M}, \mathfrak{h})(\sum_{\lambda \in P_J^+} c_{\lambda} m(\lambda)) \neq 0$

 \in \mathcal{E} . Thus we have shown the injectivity of $\Psi(\mathfrak{m}, \mathfrak{h})$

§3. Some results of L. Liu.

In this section, we rewrite, in the case of GKM algebras, some of Liu's results on m-modules $H_j(u^-, L(\lambda))$ and $H^j(u^+, L(\lambda))$ ($j \ge 0$) for Kac-Moody algebras. His proofs for these results require no modifications. For details, see [3].

The homology $H_j(u^-, L(\lambda))$ of u^- with coefficients in $L(\lambda)$ $(\lambda \in \mathfrak{h}^*)$ is defined as the homology of the \mathfrak{m} -module complex $\{(\Lambda^j u^-) \otimes_{\mathbb{C}} L(\lambda), d_j\}$, where the action of \mathfrak{m} and the boundary operator d_j are defined in a usual way. The cohomology $H^j(u^+, L(\lambda))$ of u^+ with coefficients in $L(\lambda)$ is defined as the cohomology of the \mathfrak{m} -module complex $\{Hom_{\mathbb{C}}^{\mathbf{C}}(\Lambda^j u^+, L(\lambda)), d^j\}$, where the action of \mathfrak{m} and the coboundary operator d^j are usual ones. Here, for \mathfrak{h} -diagonalizable modules $V = \sum_{\mu \in \mathfrak{h}^*}^{\mathfrak{m}} V_{\mu}$ and W with finite dimensional weight spaces, we put $Hom_{\mathbb{C}}^{\mathbf{C}}(V, W) := \{f \in Hom_{\mathbb{C}}(V, W) | f(V_{\mu}) = 0 \text{ for all but finitely many weights } \mu \in \mathfrak{h}^* \text{ of } V\}$. Note that this cohomology $H^j(u^+, L(\lambda))$ of u^+ is different from the usual one, since we have used $Hom_{\mathbb{C}}^{\mathbf{C}}(\Lambda^j u^+, L(\lambda))$ instead of $Hom_{\mathbb{C}}(\Lambda^j u^+, L(\lambda))$ as the space of \mathfrak{j} cochains $(\mathfrak{j}{\geq}0)$ (see also [3]).

Proposition 3.1 ([3]). For any $\Lambda \in P^+$ and $j \in \mathbb{Z}_{\geq 0}$, $H^j(\mathfrak{u}^+, L(\Lambda))$ is isomorphic to $H_j(\mathfrak{u}^-, L(\Lambda))$ as \mathfrak{m} -modules.

Then, we have the following, due to L. Liu.

So, from now on, we concentrate on M-modules $H_j(u^-, L(\Lambda))$ $(j\geq 0)$. Since $L(\Lambda)$ and $(\Lambda^j u^-) \otimes_{\mathbb{C}} L(\Lambda)$ are in the category \mathcal{O}_J by Proposition 2.1, $H_j(u^-, L(\Lambda))$ is also in \mathcal{O}_J , and so is a direct sum of $L_{\mathfrak{M}}(\mu)$ $(\mu \in P_J^+)$ as M-modules. Furthermore, we have

Proposition 3.2 ([3]). Let $(\cdot|\cdot)$ be a fixed standard bilinear form on \mathfrak{h}^* . Then, for any $\Lambda \in P^+$ and $\mathbf{j} \in \mathbb{Z}_{\geq 0}$, every mirreducible component of $H_{\mathbf{j}}(\mathbf{u}^-, L(\Lambda))$ is of the form $L_{\mathfrak{m}}(\mu)$ $(\mu \in P_{\mathbf{j}}^+)$ with $(\mu + \rho|\mu + \rho) = (\Lambda + \rho|\Lambda + \rho)$.

§4. Kostant's formula for GKM algebras.

In this section, we prove "Kostant's formula" for GKM algebras, which is a generalization of that in my previous paper [4]. Here, we assume that the symmetrizable GGCM $A = (a_{ij})_{i,j \in I}$ satisfies the following condition ($\mathring{C}1$):

- (Ĉ1) either a_{ii} = 2 or a_{ii} = 0 ($i \in I$). And recall that J is a subset of I^{re} .
- 4.1. Necessity condition. Now, we review some results given in [4, Lemma 4.2] and its proof. Let $(\cdot | \cdot)$ be a standard bilinear form on \mathfrak{h}^* . Then, we have

Lemma 4.1 ([4]). Let $\Lambda \in P^+$. If, for some j ($j \ge 0$), μ is a weight of $(\Lambda^j \pi^-) \otimes_{\mathbb{C}} L(\Lambda)$ and satisfies $(\mu + \rho | \mu + \rho) = (\Lambda + \rho | \Lambda + \rho)$, then

- (1) there exist a $\beta_0 \in \mathfrak{S}(\Lambda)$ and a $w_0 \in W$, such that $\ell(w_0) + \operatorname{ht}(\beta_0) = j \text{ and } \mu = w_0(\Lambda + \rho \beta_0) \rho;$
- (2) the multiplicity of μ in $(\Lambda \pi^-) \otimes_{\mathbb{C}} L(\Lambda)$ is equal to one, where $\Lambda \pi^- = \sum_{j \geq 0}^{\Phi} \Lambda^j \pi^-$.

Let us fix $\Lambda \in P^+$. From the above, we can prove the following.

Lemma 4.2. Assume that $\mu \in h^*$ is a weight of $(\Lambda^j u^-) \otimes_{\mathbb{C}} L(\Lambda)$ for some $j \in \mathbb{Z}_{\geq 0}$, and satisfies $(\mu + \rho | \mu + \rho) = (\Lambda + \rho | \Lambda + \rho)$. Then,

- (a) there exist a $\beta \in \mathfrak{G}(\Lambda)$ and a $w \in W(J)$, such that $\ell(w) + ht(\beta) = j \text{ and } \mu = w(\Lambda + \rho \beta) \rho;$
 - (b) the multiplicity of μ in $(\Lambda^{\mbox{\it j}} u^{\mbox{\it l}}) \otimes_{\mathbb C} L(\Lambda)$ is equal to one.

Proof. If $\mu \in \mathfrak{h}^*$ is a weight of $(\Lambda^j \mathfrak{u}^-) \otimes_{\mathbb{C}} L(\Lambda)$, then μ is a weight of $(\Lambda^j \mathfrak{u}^-) \otimes_{\mathbb{C}} L(\Lambda)$, since $(\Lambda^j \mathfrak{u}^-) \otimes_{\mathbb{C}} L(\Lambda)$ can be regarded as a submodule of $(\Lambda^j \mathfrak{u}^-) \otimes_{\mathbb{C}} L(\Lambda)$. Then, by Lemma 4.1, it follows that there exist a $\beta_0 \in \mathfrak{S}(\Lambda)$ and a $w_0 \in W$, such that $\ell(w_0) + \operatorname{ht}(\beta_0) = \mathfrak{f}$ and $\mu = w_0(\Lambda + \rho - \beta_0) - \rho$, and that the multiplicity of μ in $(\Lambda \mathfrak{u}^-) \otimes_{\mathbb{C}} L(\Lambda)$ is equal to one. So, we have only to show that $w_0 \in W(\mathfrak{f}) = \{w \in W \mid w(\Delta^-) \cap \Delta^+ \subset \Delta^+(\mathfrak{f})\}$. Now, recall that $w_0(\rho) - \rho = -\sum_{\alpha \in \Phi_{W_0}} \alpha$, where $\Phi_{W_0} = w_0(\Delta^-) \cap \Delta^+$ (see [4, Proposition 1.2.b)]). Express $\beta_0 = \sum_{k=1}^m \alpha_i$, where $m = \operatorname{ht}(\beta_0)$, $\alpha_i \in \Pi^{im}$ (1 \leq k \leq m), and $i_r \neq i_t$ (1 \leq r \neq t \leq m). And take non-zero root vectors $E_k \in \mathfrak{g}_{-W_0}(\alpha_i)$ (1 \leq k \leq m), $E_\alpha \in \mathfrak{g}_{-\alpha}$ ($\alpha \in \Phi_{W_0}$), and a non-zero weight vector $v \in L(\Lambda)_{W(\Lambda)}$. Then, it is clear that

 $0\neq (E_1\wedge\cdots\wedge E_m)\wedge(\Lambda_{\alpha\in\Phi_{W_0}}E_\alpha)\otimes v\in (\Lambda\ \pi^-)\otimes_{\mathbb{C}}L(\Lambda)\ \text{is a weight}$ vector of weight \$\mu\$ (cf. the proof of [4, Lemma 4.2]). Since the multiplicity of \$\mu\$ in \$(\Lambda\ \pi^-)\otimes_{\mathbb{C}}L(\Lambda)\$ is equal to one, and \$\mu\$ is a weight of \$(\Lambda^ju^-)\otimes_{\mathbb{C}}L(\Lambda)\$ by assumption, it follows that $(E_1\wedge\cdots\wedge E_m)\wedge(\Lambda_{\alpha\in\Phi_{W_0}}E_\alpha)\otimes v\in (\Lambda^ju^-)\otimes_{\mathbb{C}}L(\Lambda).\ \text{Therefore, $\alpha\in\Delta^+(J)$}$ \$(\$\alpha\in\ \Psi_0\$). Hence, \$w_0\in\ W(J)\$ by definition of \$W(J)\$. Thus we have proved Lemma 4.2.

By Proposition 3.2 and Lemma 4.2, we have the following.

Proposition 4.1. Let $j \in \mathbb{Z}_{\geq 0}$. If $L_{\mathfrak{M}}(\mu)$ $(\mu \in P_J^+)$ is an mirreducible component of $H_j(\mathfrak{u}^-, L(\Lambda))$, then

- (a) $\mu = w(\Lambda + \rho \beta) \rho$, for some $\beta \in G(\Lambda)$ and some $w \in W(J)$, such that $\ell(w) + ht(\beta) = j$;
- (b) $L_{\mathfrak{M}}(\mu)$ occurs with multiplicity one as m-irreducible components of $H_{j}(u^{-},\ L(\Lambda))$.
- 4.2. Sufficiency condition. Here, we use the setting in §2. Let $\Lambda \in P^+$. Before carrying out formal operations on formal m-characters in the algebra \mathcal{F} , we note that $w(\Lambda + \rho \beta) \rho$ differs if $w \in W$ or $\beta \in G$ differs (see the proof of [4, Proposition 4.2]).

Lemma 4.3. For $w \in W(J)$ and $\beta \in G$, $w(\Lambda + \rho - \beta) - \rho \in P_J^+$.

Proof. We have to show that $\langle w(\Lambda + \rho - \beta) - \rho, \alpha_i^{\vee} \rangle \in \mathbb{Z}_{\geq 0}$ for $i \in J$. Since $w \in W(J)$ and $i \in J \subset I^{re}$, it follows that $w^{-1}(\alpha_i) \in \Delta^+$ since $W(J) = \{w \in W \mid w^{-1}(\Delta_J^+) \subset \Delta^+\}$. So, we have $w^{-1}(\alpha_i^{\vee}) \in (\Delta^{\vee})^+$, where $\Delta^{\vee} = \Delta({}^tA) \subset \mathfrak{h}$ is the *dual root system* of g(A) (see [2]). Moreover, $w^{-1}(\alpha_i^{\vee}) \in \Sigma_{j \in I}^{re} \mathbb{Z}_j^{\vee}$ since $J \subset I^{re}$. On the other hand, we have

$$< w(\Lambda + \rho - \beta) - \rho, \alpha_{i}^{\vee} > = < \Lambda + \rho - \beta, w^{-1}(\alpha_{i}^{\vee}) > - < \rho, \alpha_{i}^{\vee} >$$

$$= < \Lambda, w^{-1}(\alpha_{i}^{\vee}) > - < \beta, w^{-1}(\alpha_{i}^{\vee}) > + < \rho, w^{-1}(\alpha_{i}^{\vee}) > - 1$$

Since $\Lambda \in P^+$ and β is a sum of elements from Π^{im} , we deduce that $\langle w(\Lambda + \rho - \beta) - \rho, \alpha_i^{\vee} \rangle \in \mathbb{Z}_{\geq 0}$ from the above equality. Thus the assertion has been proved.

Proposition 4.2. For $\Lambda \in P^+$, there holds in the algebra \mathcal{F} ,

$$\begin{split} & \sum_{\mathbf{j} \geq \mathbf{0}} (-1)^{\mathbf{j}} \operatorname{ch}_{\mathfrak{M}}(\mathbf{H}_{\mathbf{j}}(\mathbf{u}^{-}, L(\Lambda))) = \\ & = \sum_{\beta \in \mathfrak{S}(\Lambda)} (-1)^{\operatorname{ht}(\beta)} \sum_{\mathbf{w} \in \mathbf{W}(\mathbf{J})} (\det \mathbf{w}) \mathbf{m}(\mathbf{w}(\Lambda + \rho - \beta) - \rho) \,. \end{split}$$

Proof. Both sides of the above equality are clearly in the algebra \mathcal{F} by Lemma 4.3. So, because $\Psi(\mathfrak{m}, h) \colon \mathcal{F} \longrightarrow \mathcal{E}$ is injective, we have only to show the following in the algebra \mathcal{E} (cf. also Proposition 4.1).

$$(\#) \quad \sum_{j\geq 0} (-1)^{j} \operatorname{ch}(H_{j}(\mathfrak{u}^{-}, L(\Lambda))) =$$

$$= \sum_{\beta \in \mathfrak{S}(\Lambda)} (-1)^{\operatorname{ht}(\beta)} \sum_{w \in W(J)} (\det w) \cdot \operatorname{ch} L_{\mathfrak{m}}(w(\Lambda + \rho - \beta) - \rho).$$

By the well-known Euler-Poincaré principle, the left hand side of (#) is equal to

$$\begin{split} & \sum_{j \geq 0} (-1)^j \operatorname{ch}(H_j(u^-, L(\Lambda))) = \sum_{j \geq 0} (-1)^j \operatorname{ch}((\Lambda^j u^-) \otimes_{\mathbb{C}} L(\Lambda)) = \\ & = (\sum_{j \geq 0} (-1)^j \cdot \operatorname{ch} \Lambda^j u^-) \cdot \operatorname{ch} L(\Lambda) = \prod_{\alpha \in \Delta^+(J)} (1 - \operatorname{e}(-\alpha))^{\operatorname{mult}(\alpha)} \cdot \operatorname{ch} L(\Lambda) = \\ & = \frac{\operatorname{e}(\rho) \cdot \prod_{\alpha \in \Delta^+} (1 - \operatorname{e}(-\alpha))^{\operatorname{mult}(\alpha)}}{\operatorname{e}(\rho) \cdot \prod_{\alpha \in \Delta^+_J} (1 - \operatorname{e}(-\alpha))^{\operatorname{mult}(\alpha)}} \cdot \operatorname{ch} L(\Lambda). \end{split}$$

By Theorem 1.1, this is equal to

$$e(-\rho) \cdot R_J^{-1} \cdot \sum_{w \in W} (\det w) \sum_{\beta \in G(\Lambda)} (-1)^{ht(\beta)} e(w(\Lambda + \rho - \beta)),$$

where
$$R_J := \prod_{\alpha \in \Delta_T^+} (1 - e(-\alpha))^{\text{mult}(\alpha)}$$
.

On the other hand, by Theorem 1.1 applied for an m (= g_J + h) -module $L_m(w(\Lambda+\rho-\beta)-\rho)$, the right hand side of (#) is equal to

$$e(-\rho) \cdot R_{\mathbf{J}}^{-1} \cdot \textstyle \sum_{\beta \in \mathbb{G}(\Lambda)} (-1)^{\operatorname{ht}(\beta)} \; \textstyle \sum_{\mathbf{w} \in \mathbb{W}(\mathbf{J})} (\det \; \mathbf{w}) \; \textstyle \sum_{\mathbf{u} \in \mathbb{W}_{\mathbf{J}}} (\det \; \mathbf{u}) e(\mathbf{u}(\mathbf{w}(\Lambda + \rho - \beta)))$$

$$= \mathrm{e}(-\rho) \cdot \mathrm{R}_{\mathtt{J}}^{-1} \cdot \textstyle \sum_{\beta \in \mathfrak{S}(\Lambda)} (-1)^{\mathrm{ht}(\beta)} \; \textstyle \sum_{\mathrm{w} \in \mathtt{W}(\mathtt{J}), \, \mathrm{u} \in \mathtt{W}_{\mathtt{J}}} (\det \; \mathrm{uw}) \, \mathrm{e}(\mathrm{uw}(\Lambda + \rho - \beta)) \, .$$

Now, we quote the fact that every $w \in W$ can be uniquely expressed in the form $w_J \cdot w(J)$, where $w_J \in W_J$ and $w(J) \in W(J)$. Note that this fact requires J to be a subset of I^{re} . (See [3] for the proof.) Therefore, the above is equal to

$$\begin{split} \mathrm{e}(-\rho) \cdot \mathrm{R}_{\mathbf{J}}^{-1} \cdot \Sigma_{\beta \in \mathbb{G}(\Lambda)} (-1)^{\mathrm{ht}(\beta)} & \Sigma_{\mathbf{w} \in \mathbf{W}} (\det \, \mathbf{w}) \, \mathrm{e}(\mathbf{w}(\Lambda + \rho - \beta)) \\ \\ &= \, \mathrm{e}(-\rho) \cdot \mathrm{R}_{\mathbf{J}}^{-1} \cdot \Sigma_{\mathbf{w} \in \mathbf{W}} (\det \, \mathbf{w}) \, \Sigma_{\beta \in \mathbb{G}(\Lambda)} (-1)^{\mathrm{ht}(\beta)} \, \mathrm{e}(\mathbf{w}(\Lambda + \rho - \beta)) \, . \end{split}$$

Thus, we have proved the equality (#). This completes the proof of Proposition 4.2.

By Propositions 4.1 and 4.2, we have the following.

Proposition 4.3. Fix $j \in \mathbb{Z}_{\geq 0}$. And put $\mu := w(\Lambda + \rho - \beta) - \rho$, where $\beta \in \mathfrak{S}(\Lambda)$ and $w \in W(J)$, such that $\ell(w) + \operatorname{ht}(\beta) = j$. Then, $L_{\mathfrak{m}}(\mu)$ occurs as \mathfrak{m} -irreducible components of $H_{j}(\mathfrak{u}^{-}, L(\Lambda))$.

Summarizing Propositions 3.1, 4.1, and 4.3, we obtain the following theorem.

Theorem 4.1 (Kostant's formula). Let $\Lambda \in P^+$. And let g(A) be the GKM algebra associated to a symmetrizable GGCM $A = (a_{ij})_{i,j\in I}$ satisfying $(\hat{C}1)$. We assume that the subset J of I is

contained in $I^{re} = \{i \in I | a_{ii} = 2\}$. Then, as m-modules $(j \ge 0)$,

$$H^{j}(u^{+}, L(\Lambda)) \cong H_{j}(u^{-}, L(\Lambda))$$

$$\cong \sum_{\beta \in \mathfrak{S}(\Lambda)}^{\oplus} \sum_{\mathbf{w} \in W(\mathbf{J})}^{\oplus} L_{\mathfrak{w}}(\mathbf{w}(\Lambda + \rho - \beta) - \rho).$$

Here, $L_{\mathfrak{M}}(\mu)$ ($\mu\in P_J^+$) is the irreducible highest weight m-module with highest weight μ .

Remark 4.1. In our arguments, the assumption that J is a subset of I^{re} plays an essential role. So, we can not remove it.

Department of Mathematics
Faculty of Science
Kyoto University

References

- [1] R. Borcherds, Generalized Kac-Moody algebras, J. Algebra, 115(1988), 501-512.
- [2] V. G. Kac, Infinite dimensional Lie algebras (3rd edition), Cambridge University Press, Cambridge, 1990.
- [3] L. Liu, Kostant's formula for Kac-Moody Lie algebras, Yale University dissertation, 1990.
- [4] S. Naito, Kostant's formula for a certain class of generalized Kac-Moody algebras, to appear.