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Kostant’s formula for a certain class

of'generalized Kac-Moody algebras II
By
Satoshi NAITO
Introduction.

A real nxn matrix A = (a, indexed by a set I = {1, 2,

lj)i,jEI
-, n} is called a GGCH if it satisfies

(Cl) either a,, = 2 or a,, £ 0;
ii ii

: s 0 s _ss 7o = 9.
(c2) aij £ 0 if i#j, and aij € L if a;y 2;

(C3) aij = 0 implies aji = 0. |
Let g(A) be a generalized Kac—-Moody algebra (GKM algebra), over
the complex number field {, associated to a symmetrizable GGCM A
(aij)i,jEI , with Cartan subalgebra b, simple roots Il = {ai}iGI’
and simple coroots nv = {az}iel. And let g(A) = n @ b @ n’ be

. . + ® .
the triangular decomposition with u™ = 2 + Qa’ where ga is the
0EA : v

root space attached to a root o € A#.

In the previous paper [4], we studied the b-module structure
of the homology HJ(n_, L(x)) of n or the cohqmology Hj(n+, L{x))
of n+'with coefficients in the irreducible highest weight g(A)-
module L()x) with highest weight X € b* = Homm(b, ). (Remark that
the cohomology Hj(n+, L(x)) used in [4] is slightly different

from the usual Lie algebra cohomology.) Then, we proved
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"Kostant’s formula” under the following condition (61) on the

GGCM A = (aij)i,JEI:

(61) either asq = 2 or ajq = 0 (i € I).

Namely, we proved

Theorem A ([4]). Let A € P := {1 € b*| <, a¥> >0 (i € 1),
and <x, u;> € EZO if aj; = 2}. Denote by © the set of all sums

of distinct pairwise perpendicular elements from Him:= {ai € Il
a;; < 0}. And we put G(A):= {x € 6] (AIA) = 0}, where (:1+) is a

standard bilinear form on b". Then, as h-modules (j=0),

Bl (L LOA)) = H (7, LOA) = Sgesa) Swew T(w(A+p-8)-p),
{(w)=j-ht(8)

where T(n) (u € b*) is the irreducible (one dimensional) b-module
with weight u. Here, p is a fixed element of b* such that

v
<p, a;>

= (1/2)-aii (i € I), £(w) is the length of an element w
= 7 ‘

of the Weyl group W, and for 8 zieI kiai (ki € &20) € 6, we

put ht(8):= ziel ki'

In the present paper, using the idea of L. Liu [3] for
Kac-Moody algebras, we extend the above result so that the
nilpotent part n’ of the Borel subalgebra b:= h & n" is allowed
to be the nilpotent part of a parabolic subalgebra containing b.

Let us explain in more detail. Let Ire (resp. Ilm) be the

subset {i € I} a;; = 2 (resp. a;; < 0)} of the index set I. And

let J be a subset of 1°®. We define a submatrix AJ of A by AJ:=
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(aij)i,jEJ’ which is a generallzed Cartan matrix (GCM). Note

that there exists a certain subspace bJ of b, such that the
triple (b, {aith}ieJ' {ej},ey) is a minimal realization of the

GCM AJ. Then, we can identify the Kac-Moody algebra g(AJ) with

the subalgebra 95 of g(A) generated by e fi (i € J), and bJ.
® ,
Furthermore, g —»bJ & zaeAJga’ where Ay = AN ziEJ Zai is the

root system of (gJ, h Now, we define the following

J)'
subalgebras of g(A):

o+ @ - @ + &
noei= > g, N i= 2 g, u = 2 8,
J x€A] @ J x€A] “ aea*(J) ¢
- @ - + +
u o= 2 g ., m:=n_@ bh&mn_, p:=meéu,
' oea” (J) « J J

where A(J):i= A \ Ag, AY = At n AL, AY(I) = AY N A(J). We call p

J J’
=m @ u' the parabolic subalgebra of g(A) defined by J. Note

~that since the triple (h, { ) is a realization

’ A\
%tieyr {%5}ieg

(but not a minimal realization) of the GCM A + b can be

J’ m = QJ

regarded as a Kac-Moody algebra associated to A whose Cartan

J!
subalgebra is b.

Recall that the Weyl group W of g(A) is defined to be the

subgroup of GL(b*) generated by fundamental reflections r, (i €
i

1¥€). Now, let W

J
which is the Weyl group of m. And we put W(J):= {w € W| w(a™) n a'

be the subgroup of W generated by ry (i € J),

c AT ()Y (= {w € W] w-l(AE) c AY}). Then, we will obtain the
following theorem. (Here, as in [4], the cohomology HJ(u+, L(A))
is slightly different from the usual one, whereas the hOmology

Hj(u—, L(A)) is the usual Lie algebra homology. See 8§3 for the
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definition.)

+
Theorem. Let A € P . Assume that the GGCM A = (aij)i,jEI is
symmetrizable and satisfies the condition (61). Then,
J + | x - x @ @ - -
HY(u”, L(A)) = Hy(u , L(A)) = Zpeoipy Zyew(d) L, (w(A+p-8)-p),

t(w)=j-ht(8)

+ * \2 -
= < y o
3 {x € b | <x w;> € L,

(i € J)}, Lm(u),is the irreducible highest weight w-module with

as w-modules (j=0). Here, for u € P
highest weight u.

Note that when J = ¢, this theorem is nothing but Theorem A,
since in this case, ut = ', u" =n", m="bh, and W(J) = W.

This paper is organized as follows. In 8§81, we review some
basic reéults for GKM algebras, especially the Weyl-Kac-Borcherds
character formula. In §2, we will introduce an algebra ? of
formal w-characters, where we can carry out certain formal
operations. In 83, we rewrite some fesults of‘L. Liu [3] for Kac-
Moody algebras, which can be proved for GKM algebras in just the
same way that they are proved for Kac-Moody algebras. Ih 84, we

prove our main theorem stated above, combining the results of

[3] and [4].
§1. The category ¢ and character formula.

In this section, we prepare fundamental results about GKM
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algebras for later use. For detailed accounts of this section,
see [1] and [2].
We put I:= {1, 2, ---, n}. Let g(A) be the GKM algebra

associated to a GGCM A = ( )

aij i,jeI with the Cartan subalgebra b.

Definition 1.1 ([2]). © is the category of all b-modules V

satisfying the following:

®
XEFP(V) "X’

where ?(V) is the set of all weights of V.‘And each weight space

(1) V admits a weight space decomposition V = 2 v

V. is finite dimensional (x € ?(V));

A
(2) there exist a finite number of elements li € b* (1<i<s)
4 S . - =
such that ?(V) c V7., D(x;), where D(x;):= {1 Bl B € Q,
ziEI izoai} (1<i<s).

Note that the category ¢ is closed under the opérations ofr
- taking submodules, quotients, finite direct sums, and finite
tensor products.
Now,‘let & be the algebra over T consisting of all series of

the form 2 . cle(l), where CA € £ and CA = 0 for X outside a
X€ED

finite union of the sets of the form D(u) (u € b"). Here, the
elements e(x) are called formal exponentials. They are linearly
independent and are in one-one correspondence with the élements
A € b*. And the multiplication of é is defined by e(x)-e(u):=

e(r+u) (X, w € b"). Then, for V = s® V. in 0, we define the
rep* A

Exeh*(dim{ Vx)e(l) € &. Then, we

formal character of V by ch V :

know the following character formula.
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Theorem 1.1 ([1] and [2]). Assume that A is a symmetrizable
GGCM. Let (*]1+) be a fixed standard bilinear form on h*. For A €

P+, we put

ht(8) mult (o)

Sp:= e(A+p)-EB€6(A)(—1) e(-8), R:=1 L(1 - e(-a))

0EA

where mult(o) := dimr ga (x € A+). Then,

e(p)R:ch L(A) = Ewew(det w)w(SA),
with w(e(u)):= e(w(n)) (u € b*).

Remark 1.1, The set {0} v ﬂim is contained in 6 by
definition. And, especially when A is a GCM, G consists of only

one element 0 € b*.
§2. The category @J and the algebra 7.

In this section, we explain the notion of the category @J of
m-modules. And then, we introduce the algebra # of "formal
n-characters"” of m-modules from the category @J. Note that when
J = ¢, these are nothing but the category ¢ and the algebra ¢.

From now on, we always assume that the GGCM A is symme-
trizable, and that J is a subset of I'€ = {i € I| a;; = 2}. We

i
use notations in the Introduction.
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Definition 2.1 ([31]). @J is the‘category of all m-modules M
satisfying the following:

(1) Viewed as an bh-module, M is an object of the category 0;

(2) Viewed as an m-module, M is a direct sum of irreducible
highest weight m-modules Lm(x) with highest weight X € P; =

» \% - .

{n € b | <u, o> € I, (i € J)}.

Clearly, the category @J is closed under the operations of
taking submodules, QUotients, and finite direct sums. Moreover,
a tensor product of two modules from @J is again in the category

+
0 because Lm(x)em Lm(u) € @J (x, n € PJ) by [2, Theorem 10.7.

K
b)] (note that the modules Lm(t) (t € P}) remain irreducible as
gJ—modules). The main reason of our requirement that J is a -
subset of I'® comes from the fact that this theorem holds only
for Kac-Moody algebras.

The following propoéition plays a fundamental role in this

paper.

Proposition 2.1 ([3]). For A € P, L(A) and (Aju')@€ L(A)
(j=0) are in the category OJ, where AJu_ is the exterior algebra
of degree j over u , and is an m-module by the adjoint action>

since [m, u ] c u (j=0).

Now, we -define a certain algebra # over {. The elements of Z

are series of the form 2 . clm(A), where ¢, € € and ¢, = 0 for

A X
}LEPJ
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X outside a finite union of the sets of the form D(u) (u € b*).
Here, the elements m(x) are called férMaL w-exponentials. They
are linearly independent and are in one-one correspondence‘with
the elements X € P}.

For a module-M in the category @J, we define the formal

w—character ch M of M by ch M:= > [M : L (x)Im(xr), where
" " yept "

J
M : Lm(x)] is the "multiplicity" of Lm(A) in M (see [2, Ch.9,
Lemma 9.6]). Note that [M : Lm(z)] (r € P}) is finite since M is
in the category ¢ as an h-module. Therefore, chmM is an element
of the algebra # for M € @J. Then, the multiplication of 7 is
defined as follows: for i, u € P},‘m(A)-m(u):=chm(Lm(A)®€ Lm(u));
Thus, % becomes a commutativé associative algebra over C.

Following (3], we now define an algebra homomorphism ¥(m, b):

?—%é,‘by Y(m, b)Y(m(x)):= ch Lm(l) € &§ (1 € P;). Then, we have

Lemma 2.1. The mapping ¥(m, b): F—¢ is_iﬁjective.

Proof (cf. [31). Let 2 . ¢,m(1) be a non-zero element of

LEP

J
#. Then, there exist My € b* (1<i<s), such that {x € P}I c, = 0}
C \)?=1 D(ui). By replacing the set {“i}§=1 by a suitable finite

subset {ui}§=1 of b* if necessary, we can assume that uk —‘ué ¢ Q

= 3jep Z®; (1<k#l<t). Consider the subset {ht(uj - 2)| 1 € pt

J
' . 7 : + .
(c,1 # 0) and A € D(gi) (1<i<t)} of Zyos and take AO € PJ which
attains the minimum of this subset. Then, clearly 10 is not a
weight of L (1) (A € PL N\ {x.}). Hence, ¥(m, bh)(S c.m(x)) #0
m J 0 ; AEP+ X

J
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€ &. Thus we have shown the injectivity of ¥(m, b) o
§3. Some results of L. Liu.

In this section, we rewrite, in the case of GKM algebras,
-some of Liu’s results on m-modules Hj(u—, L(x)) and Hj(u+, L(x))
(j=0) for Kac-Moody algebras. His proofs for these results
require no modifications. For details, see [3].
The homology Hj(uf, L(x)) of u with cbefficients in L(x)
(x € b*) is defined as the homology of the #w-module complex
{(Ajuf)®€ L(x), dj}’ where the action of m and the boundary
operator dj ar¢ defined in a usual way. Thé cohomology ’
Hj(u+, L(x)) of u+ with COefficients in L(x) is defined as the
cohomology of the m-module complex {HomE(Aju+, L(x)), dj}, where
the action of m and the coboundary operator dj are usual ones.

Here, for b-diagonalizable modules V = EQ . Vu and W with finite
: MED

dimensional weight spaces, we put HomE(V, W):= {f € Homﬁ(V, W) |
f(V“) = 0 for all but finitely many weights u € b* of V}. Note
that this cohomology HJ(u*, L(1)) of u* is different from the
uéualvone, since we have used HomE(AJu+, L(x)) instead of
HomQ(AJu+, L(x)) as the space‘of j cochains (j=0) (see also [3]).

Then,‘we have the following, due to L. Liu.

Proposition 3.1 ([381). ‘For any A € P' and j € 220,

Hj(u+, L(A)) is isomorphic to Hj(u_, L(A)) as wm-modules.
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So, from now on, we concentrate on wmw-modules Hj(u_, L(A))
(j20). Since L(A) and (Aju—)®€ L(A) are in the category 0; by
Proposition 2.1, Hj(u_, L(A)) is also in @J, and so is a direct

sum of Lm(u) (n € P}) as m-modules. Furthermore, we have

Proposition 3.2 ([3]). Let (‘l-) be a fixed standard
bilinear form on b*. Then, for any A € P+ and j € 220’ every m-
irreducible component of Hj(u_, L(A)) is of the form Lm(u)'

(u € P;) with (u + plu + p) = (A + plA + p).
§4. Kostant’'s formula for GKM algebras.

In this section, we prove "Kostant’é formula" for GKM
algebrag, which 1s a generalization of that in my previous paper
[4]. Here, we assume that the symmetrizable GGCM,A = (aij)i,jel
satisfies the following condition (61):

(61) either a,, = 2 or a,; = 0 (i € I).

ii ii

And recall that J is a subset of I'°.

4.1. Necessity condition. Now, we review some results given
in [4, Lemma 4.2] and its proof. Let (-1-) be a standard bilinear

form -on h*. Then, we have

Lemma 4.1 ([4]). Let A €epPh. 1f, fbf some j (ij),ku is a
weight of (Ajn-)e{E L(A) and satisfies (u + plu + p) =

(A + plA + p), then
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(1) there exist a 8, € G(A) and a w, € W, such that

0
{(wo) + ht(BO) = j and u = wO(A + p - 60) - P
(2) the multiplicity of u in (A n_)®£ L(A) is equal to one,

~ _ & j -
where A n = Ejzo An
Let us fix A € P'. From the above, we can prove the following.

Lemma 4.2. Assume that u € h* is a weight of'(Aju—)®€ L(A) for

some j € ZZO,

(a) there exist a # € 6G(A) and a w € W(J), such that

and satisfies (u + plu + p) = (A + pIA + p). Then,

{(w) + ht(B) = j and u = w(A + p - B) - p;

(b) the multiplicity of u in (AJu-)QG L(A) is equal to one.

Proof. 1If u € b* is a weight of (Aju_)ef L(A), then u is a
weight of (Ajn_)em L(A), since (Aju—)em L(A) can be regarded as
a submodule of (Ajn_)am L(A); Then, by Lemma 4.1, it follows that

there exist a 60 € 6(A) and a w, € W, such that

0
t(wo) + ht(BO) = j and u = wo(A + p ',Bo) - p, and that the
multiplicity of u in (A 11“)8{E L(A) is equal to 6ne. So, we have

only to show that w. € W(J) = {w € W| w(A") n AY ¢ A (J)}. Now,

0
: _ - +
recall that wo(p) -p = - za&@ «, where ¢ = wO(A ) N A" (see
w 0
0
[4, Proposition 1.2.b)]). Express 8, = m_ o, , where m =
0 k=1 ik
ht(8,), o € ﬂim (1<k<m), and i_ # i, (1<r#t<m). And take
0 ik r t - -
non-zero root vectors Ek € g—wo(a. ) (1<k<m), Eu € S _ (x € QWO),

Tk
and a non-zero weight vector v € L(A)W(A). Then, it is clear that
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0 # (E1A°"A Em)A(Aa€¢w Ea)® v € (A ﬂ )®€ L(A) is a weight

, 0 |
vector of weight u (cf. the proof of [4, Lemma 4.2]). Since the
multiplicity of u in (A u—)®€ L(A) is equal to one, and u is a
weight of (Aju_)®€ L(A) by assumption, it follows that

(E_ A+ A Em)A(Aae

1 ¢w Ea)é \'4 G‘(Aju_)em L(A). Therefore, o € A+(J)

0

(x € Qw ). Hence, w, € W(J) by definition of W(J). Thus we have

0
proved Lemma 4.2. » o

0

By Proposition 3.2 and Lemma 4.2, we have the following.

Proposition 4.1. Let j € zzO' If Lm(u) (n € P}) is an m-
_ irreducible component of Hj(u_, L(A)), then

(a) w=w(A+p-8) - p, for some B € G(A) and some w €
W(J), such that {(w) + ht(8) = j; |

(b) Lm(u) occurs with multiplicity one as m-irreducible

components of Hj(u_, L(A)).

4.2. Sufficiencyvcondition. Here, we use the setting in §2.
Let A € P+. Before carrying out formal operations on formal
m-characters in the algebra %, we note that w(A + p - 8) - p
differs if w € W or # € 6 differs (see the proof of [4,

Proposition 4.2]).

Lemma 4.3. For w € W(J) and 8 € 6, w(A + p - B) - p € P;.
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Proof. We have to show that <w(A + p - §) - p, a;> € ZZO'
for 1 € J. Since w € W(J) and i € J C Ire’ it follows that
w_l(ai) € AY since W(J) = {w € W| w_l(A;) c AT}. So, we have

A(tA) c b is the dual root system of

w—l(az) e ()", where A’

g(A) (see [2]). Moreover, w—l(ai) € 2.

EaY since J C 1¥€. on
jeI J )

re

the other hand, we have
<w(A + p - 8) - p, aZ> = <A+ p - 8, w_l(a¥)> - <p, a¥>
= <A, w_l(a¥)> - <8, w_l(a;)> + <p, w_l(a¥)> -1

Since A € PY and 8 is a sum of elements from ﬂlm, we deduce that

<w(A + p - B) - p, a;$ 220 from the above equality. Thus the

assertion has been proved. o

Proposition 4.2. For A e,P+, there holds in the algebra #,

J - =
ijo(-l) Chm(Hj(u » L(A))) =

ht(8) EWEW(J) (det w)m(w(A+p-8)-p).

= EBGG(A)(_l)

Proof. Both sides of the above equality are clearly in the

algebra 7 by Lemma 4.3. So, because ¥(m, b): 7—¢& is injective,
we have only to show the following in the algebra & (cf. also

Proposition 4.1).
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(-1)9ch(H, (1™, L(A))) =

#) 3550 ]

= . ht(8) o o
B zBEG(A)( 1) zweW(J)(det w) -ch Lm(w(A+p 8)-p).
By the well-known Euler-Poincare principle, the left hand side of

(#) is equal to

S a0 (-1 e (7, L)) = 3, 0¢-DIen(AduTrep Lia)) -
= Sypet-17-ch AuTyceh Ld) =1 - e(-a)™ W en Lea) -
0eEA  (J)
e(p) (1 - e(-a))m1t{) |
- uEh ‘ch L(A).
mult (o)

e(p):Nl (1 - e(-a))

aEAJ

By Theorem 1.1, this is equal to

ht(8)

e(-p) "Ry 3 ydet w) Spec (-1 P ewinrp-8)),

where R, := 1Tl +(1 - e(_a))mult(a)_

J
aGAJ

On the other hand, by Theorem 1.1 applied for an m (= g5 *+ h)

-module Lm(w(A¥p—B)-p), the right hand side of (#) is equal to

_1.

_ . ht(8)
e(-p) RJ ZBGG(A)( 1) 2

WGW(J)(det'W) EueWJ(det we(u(w(A+p-8)))
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ht(B) S (det uw)e(uw(A+p-8)).

-1
= e(—p)'RJ 'zseG(A)(_l) -

wEW(J) , ueEW

Now, we quote the fact that every w € W can.be uniquely

J-w(J), where wJ € WJ and w(J) € W(J).

Note that this fact requires J to be a subset of I'€. (See [3]

expressed in the form w

for the proof.) Therefore, the above is equal to

._.1.

. . \ht(8)
e(-p) RJ ZBEG(A)( 1) >

wew(det w)e(w(A+p-8))

ht(B)e(W(Aw-B)).

— - ' . —l- ‘ —
= e(-p) "Ry -2yey(det W) Zpeqp)(-1)
Thus, we have proved the equality (#). This completes the proof

of Proposition 4.2. , s]
By Propositions 4.1 and 4.2, we have the following.

Proposition 4.3. Fix j E_ZZO. And put w:= w(A + p - 8) - p,
where 8 € 6G(A) and w € W(J), such that {(w) + ht(8) = j; Then,

Lm(u) occurs as m-irreducible components of Hj(u_, L(A)).

Summarizing Propositions 3.1, 4.1, and 4.3, we obtain the

following theorem.

Theorem 4.1 (Kostant's formula). Let A € P'. And let g(A)
be the GKM algebra associated to a symmetrizable GGCM A =

(aij)i eI satisfying (61). We assume that the subset J of I is
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n

{i € 1} a;; = 2}. Then, as m-modules (jz0),

wlu*, L) = Hj(u', L(A))
RN 2 ;)
* 26e6(A) ZwewW(J) L, (W(A+p-8)-p).

t(w)=j-ht(8)

Here, Lm(u) (u € P}) is the irreducible highest weight m-module

with highest weight u.

Remark 4.1. In our arguments, the assumption that J is a

subset of Ire plays an essential role. So, we can not remove it.
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