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STABILIZATION OF HOMOLOGY GROUPS OF
SPACES OF MUTUALLY DISJOINT DIVISORS

ANDRZEJ KOZLOWSKI

Toyama International University

This talk will be closely related to the one given at this conference by Kohhei
Yamaguchi [GKY2] concerning our joint work with Martin Guest [GKY1]. In par-
ticular, I shall give a detailed proof of a result that is one of the key steps in that
work. However, my point of view will be somewhat different from that of Yamaguchi’s
talk, which was concerned mainly with its homotopic aspects. By contrast, I am going
to concern myself only with matters involving homology, and in particular with one
method of proving a certain type of homological result, originally developed by Arnold
[A]. Let us start by describing Arnold’s original idea.

Let C4 denote the space of complex monic polynomials of degree d (i. e. polynomials
of the form ag + a1z + ag2% + - - - + 2%), which have no repeated roots. Let iq denote an
inclusion i4 : Cq — Cg41, which we shall describe presently. Arnold proved

Theorem 1. The map i} is an isomorphism on homology groups H;(Cg) — H;(Ca+1)
up to dimension [d/2] and is surjective in dimension [d/2] (where |x] denotes the integer
part of x).

Note first that the space Cy of monic polynomials without repeated roots is simply the
configuration space of d distinct points of R? = C. Thus its homology is the homology
of the braid group B(d). One way to define the stabilization (or inclusion) map is to
take as Cj the space of configurations of points in an open half-plane, (which is, of
course, homeomorphic to the original configuration space) and adjoin a fixed point in
the other half-plane.

I shall first give a proof of the above theorem of Arnold, in a simplified version due
to Graeme Segal [S, Appendix]. :

Proof. The proof depends on making use of Poincaré Duality. Note that the space Cy4
is a 2d-dimensional open orientable manifold. By Poincaré Duality

H;(Ca) & HX(Cy),

where HJ(X) denotes cohomology of X with compact supports (which can be thought
of as the usual cohomology of the one point compactification X ). The inclusion iq :
Cq — Cg441 extends to an open embedding

q:R?xCy— Cat1,
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and the statement of Arnold’s Theorem is equivalent to the assertion
(*)a iq is a compact cohomology equivalence above dimension 2(d + 1) — [d/2]

(Here by a compact cohomology equivalence above dimension n we mean a map which
is an equivalence on H: when i > n and a surjection when i = n).

Clearly (*); holds.

Assume inductively that (x)g holds for d < n. We'introduce the following filtration
on the space of all monic polynomials of degree n (which is, of course, just C*): we
can identify a (complex) monic polynomial f of degree n with the divisor £ of degree n
composed of its roots, i. e. £ =Y, a;, where o are the roots of f.

Here by a divisor of degree d on a manifold M we simply mean an element of the
symmetric product Sp?(M). Any such divisor can be written in the form ¢ = 2n + ¢,
where the points in ¢ all have multiplicity 1.

Let P, x consist of the divisors £ = 27+ ¢ with deg () > k.

We then have

P,=P,0DF,1DF,2D...,

Note that Pnx — Pakt1 = Cn—2k X SPF(C) = Cpn—ak x C*. (By the Fundamental
Theorem of Algebra Sp*(C)—the k-fold symmetric product of C—is homeomorphic to
C*).

Next, consider the exact sequence of cohomology with compact supports

o = H{(Pojg \ Pags1) 2Hi(Pok) = HiPogs1) —HI(Pog\ Prgs1) —...

[
Hi(Cp_ak x C)

|
H2_2k (Cn——2k)

By downwards induction on k£ we now show that
(*)n K R? x P, x — Pp41,k is a compact cohomology equivalence

above dimension 2(n+ 1) — k — [n/2] (= 2k + 2(n — 2k + 1) — [(n — 2k)/2]), provided
k> 0.

This obviously holds for large k, and the inductive step follows from the 5-lemma
and the commutative diagram

. = HYR? x Cpt x Sp*(C)) —H{R? x P, }) —H{R? X Py gy1) — ...

! ! !

. Hci(Cn+1—kXSpk(C)) - Hé(P'n+1,k) - Hé(PnJrl,kJrl) ...
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However, since P, o = C", (¥),,0 also holds, and the result follows from the commu-
tative diagram

. = H{(R?x C,) —=H{R? x P,o) —H:(R?2X P, 1) —-...

! ! !

. = H{Cny1) — Hi(Pay10) — Hi(Pap11) —...
O

Actually, Arnold’s argument is more complicated and gives a lot more than just the
stabilization result. As mentioned above, this version is due to Segal, who generalized
both the result and its method of proof. Firstly, he extended the result to the space
of configurations of distinct points on any connected open manifold M (to define a
stabilization map for arbitrary connected open manifolds one uses the notion of ends.
Up to homotopy there is one such map for each end.) And secondly, he used this
method to obtain homology stabilization results in his study of spaces Hols(M; CP™)
of holomorphic maps of degree d, where M is a Riemann surface of genus g. Let’s next
see how Segal applied this method to the space Qq of pairs of disjoint divisors (£,7) in
C, which can be identified with the space of rational (or, what amounts to the same
thing, holomorphic) maps Holz(S?; S?) (We shall consider the case of a Riemann surface
of non-zero genus a little later). In this case one obtains the following:

Proposition 2. The stabilization map Q4 — Q4+1 given by adjoining distinct roots

“far from the imaginary axis” to the divisors, is a homology equivalence up to dimension
d. :

Proof. Segal’s proof of this result is almost identical to the one given above. We define
a filtration on the space Sp?(C) x Sp?(C), by

Py i, = { pairs of divisors (£,7) : deg (€ Nn) > k}.

Then
Pir\ Pirs1 = SPF(C) x Q.

The inclusion Q4 — Qg1 again extends to an open embedding C% x Q4 — Qa4 1,
and the same holds for the inclusions Py — Py 1.
We now proceed by induction. First, we assume that

(%%)g if m < d then C? x Q,, — Q41 is a compact cohomology
equivalence above dimension j = 4(m+1) - m=3m+4

The statement (**); is certainly true. From (*x)g we deduce

()a if k> 0 then C? x Py — Py 1 is a compact cohomology
equivalence above dimension 3d — k + 4
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As before, this is proved by downwards induction on k. It is true for k = d for then
P4 =C% and Pyy1,4 has dimension 4(d + 1) — 2d = 2d + 4. One passes from k+ 1 to
k by applying the 5-lemma to the diagram

. —+H2(C2 X Qd-—k X Spk(C)) -—-*H:;(C2 X Pd,k) -—)Hz(C2 X Pd,k+1) —..

! ! !

.= HiQar1-k X SP*(C)) — Hi(Payrk)' — Hi(Parrpes1) —-.

Note that for i > 3d—k+4 the homomorphism H(C? x Q4 X SpF(C)) — Hi(Qay1-k X
Sp*(C)) coincides with H:~2*(C2? x Q4_x) — H: %*(Qq4;1-1) and satisfies condition
(#%)g, 85§ > 3d—k+4=>i—2k >3d—3k+4=4((d— k) + 1) — (d — k).

Finally, by considering the cohomology sequence of the pair (Py, Pa, 1), and using
the 5-lemma in the same way as above, we obtain our result (We make use of the fact
that B, = Sp™(C) x Sp*(C) =C?.) O

~ The above argument applies essentially without change to the case of holomorphic
maps of degree d from S? to CP", with n > 1. This space can be identified with the
space .of (n + 1)-tuples of divisors (&o,&1,.-.,&x), with empty intersection. Intuitive
considerations suggest that in this case the stabilization dimension should increase with
the number of polynomials. Indeed, in the filtration P,o D P,1 D ... D P, , = Sp™(C)
where P, k. = {(éo,...,&) : deg(&oN---N&,) > k}, each layer has complex codimension
n in the precedmg one and we get the following

Proposition 3. The stabJIJZ_atmn map Qq — Qa41 given by adjoinihg distinct roots
to the divisors, is a homology equivalence up to dimension (2n — 1)d.

So far we have not distinguished between monic polynomials and based rational maps
on the one hand, and divisors or tuples of divisors on the other. These concepts are
equivalent as long as we are concerned with based rational functions on S2, or tuples of
divisors in C. For Riemann surfaces the relation between rational functions and divisors
is described. in the following

Proposition 4. Let X be a Riemann surface of genus g > 0, and let X' = X \ xo.
There is a map j : Sp™(X) — J, where J is a torus of complex dimension g associated
to X (its Jacobian variety) such that

(a) A pair (£,m) € Q,(X) arises from a rational function on X if and only if
3(€) = 3(n)

(b) j:Sp™(X) — J is a smooth fibre bundle w1th fibre CP™9 ifn > 2g — 1.

(c) j:8p™(X') — J is a smooth fibre bundle with fibre C*~9 if n > 2g.

Here part (a) is Abel’s theorem, part (b) is proved in [M] and part (c) follows from
(b). As a consequence of Proposition 4 one can deduce results about rational functions
from results about divisors provided n > 2¢. Using Proposition 4 and Arnold’s method
Segal obtained the following generalization of Proposition 2 for Riemann surfaces of non
Zero genus:
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Theorem 5 (Segal). Let X be a Riemann surface of genus g > 0, and let X’ = X \ xo.
Let QY denote the space of (n -+ 1)-tuples of divisors of degree d on X', with empty
intersectio. Then the stabilization map Q% — Q. is a homology equivalence up to
dimension (d — 29 + 1)(2n — 1) when g # 0 and (2n — 1)d when g = 0.

Of course this theorem could equally well be stated for holomorphic functions
Holy(Mg; CP™). o

However, another natural way to generalize Proposition 2 is to consider n-tuples of
divisors which are mutually disjoint, i. e. the set EF = {({1,&2,...&n) : degés =
dand & NE; = 0 for ¢ # j}. This space is in some ways more analogous to the case
of pairs of divisors (and like the latter but unlike the case of (n + 1)-tuples of divisors
(n > 1), it is not simply-connected). We refer to these spaces as “Epshtein spaces”,
after S. I. Epshtein, who in [E] first computed their fundamental groups (His results
include that of Jones, which states that m;(Qq4) = Z. Jones’ argument is reproduced in
[S]). For Epshtein spaces we shall prove

Theorem 6. Let M be an Riemann surface and let Eq4 denote the space of n-tuples of
mutually disjoint divisors of degree d on M. Then the stabilization map Eq — Eg4,, is
a homology equivalence up to dimension d.

As explained in Yamaguchi’s talk, when M is the Riemann sphere we can in fact
determine the homotopy type of these spaces up to dimension d. Note that M = S?
and n = 2 this result coincides with Segal’'s. When M is a Riemann surface of genus
g > 0 our result is an improvement on the Segal result for divisors (though not for
holomorphic maps!)

Before proving Theorem 6, we shall use the same technique to prove a natural gener-
alization of Proposition 1 of Arnold. Let E‘g denote the Epshtein space of (n+1)-tuples
of monic polynomials, with the additional condition that they have no repeated roots,
or more generally the set of (n + 1)-tuples of distinct subsets of cardinality d of points
of any connected open manifold M. We can prove

Theorem 7. For any n the space E7} stabilizes in homology up to dimension [d/2).

Theorem 7 will follow from a more general result. First, for positive integersd;, ds, ..., .
d,, and an open manifold M, let E(dy,ds,...dm, M) be the space of mutually disjoint
sets of points in M of cardinality dy, d, ... d,. (These spaces have recently played an
important role in the study of representations of braid groups.) By adding a particle
“at infinity” in a standard way, for each 1 < s < m, we have the s-th stabilization map

jo: E(dy,da, ... dm: M) — E(dy, dy,...,ds +1,...dp : M).

Theorem 8. If M is a connected open manifold of dimension > 2, the stabilization
map

je: E(dy,da, ... dm: M) — E(dy,dy...,ds +1,dp : M).

is a homology equivalence up to dimension [d,/2].
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Corollary. If M is a connected open manifold of dimension > 2, the stabilization map
j:E(di,dy,....dm: M) — E(di+1,dy+1...,dm+1: M).
is a homology equivalence up to dimension [d/2], where d = min{d, : 1 < s <m}.

Proof. Consider the stabilization map E(d;,ds, ... ,dn) — E(dy +1,dy,...,d,) with
respect to the first set of points, and the projection map onto the remaining set of points.
The projection E(dl,dz,. ey dy) — E(dg,da,. ..,d,) is a bundle map, with the fibre
Cq,(M\ {(d2 +d3 +...d,) points}) (where Cx(M) denotes the space of configurations
of n-points on M), which is a connected open manifold. The stabilization map induces
a map of bundles ~

E(dy,dy,...,dn) —— E(dy1+1,da,...,dy)

E(d2a-'-,dn) » E(d27"',dn)
with the induced map on the fibres the stabilization map
Ca, (M \ {(dz +d3+---+d,) points}) — Cd1+1(M \ {(d2+d3+---+d,) points}).
By Segal’s generalization of Arnold’s theorem this map is a homology equivalence up
to dimension [d; /2], hence so is the map on E(d;,ds,ds,...,d,). Theorem 8 follows.

0O
We prove Theorem 6 by using essentially the same method.
First, for positive integers dy, ds, . .. ,d, and a Riemann surface M, let E(d,,ds,...d., :

M) be the space
{(€1>€2)"' ’ém) . €kbe Spd"(M) and f,‘ ﬂ§3 =@ if ¢ 75.7}.

By adding a particle at infinity in a standard way, for each 1 < s < m, we have the s-th
stabilization map

js : E(dy,da,...,dyn : M) — E(dy,ds,...,d, + 1,...dm-: M).
Again, Theorem 6 will follow from a more general result:
Theorem 9. If M is a connected Riemann surface, the stabilization map
Je: E(dy,ds,...,ds...dp: M) — E(dy,...,ds + 1,...,dn : M),
is a homology equivalence up to dimension d;.
Corollary. If M is a connected Riemann surface, the stabilization map
j:E(di,de,y...,dn M) — E(di+1,d2+1...,dn+1: M),
is a'homology equivalence up to dimension d, where d = min{d, : 1 < s < m}.

We shall only prove Theorem 9 in the case m = 3, as the general case is quite
analogous.
We shall need a lemma.
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Lemma 10. If X is a connected based CW-complex, the natural inclusion map
j: Sp*(X) — Sp*ti(X)

is a homotopy equivalence up to dimension d.

Proof. We can suppose that X has only one zero cell. Then Sp?*+1(X) is a cell complex,
with a typical cell of dimension k of the form [o1 X 02 X. . . 0441 with ky+ko+- - -+kay1 =
k, where k; is the dimension of the cell o;. Thus in a cell of dimension < d at least
one of the cells o; must be the zero dimensional cell. This means that the d skeleton of
Sp3*! lies in Sp?, whence the result follows. O

Proof of Theorem 9. We shall consider only the case-of triples of mutually prime monic
polynomials (p,q,r), where degp = d;, degq = d2 and degr = ds. We shall stabilize
with respect to the first polynomial (by adjoining a root in the way described earlier) and
consider the projection on to the remaining two polynomials. In other words, consider
the map

o
E(dy,ds,d3) — E(d2,d3)
(p,q,7) — (g,7)

Let us now introduce a bi-filtration on E(dg, d3) by defining B; ; = {(g,7) : ¢ has at least
distinct roots and r has at least j distinct roots}. Let Ed' = NI7Y(B; ;) and let

X¢, = EH\ (B4, JY E¢,,1). In other words, X2, consists of triples (p,q,7) of mu-
tually copnme monic polynomials of degrees d,d2 and d3 respectively, such that ¢ has
exactly i distinct roots and 7 has exactly j distinct roots. Note that ES , = X3 da,ds 80d

E¢y = E(d,dg,ds). Next, note that the map H‘x- 1 Xi; — Y (where Y ; = II(X; ;)
L

is a fibre bundle, with fibre Sp?(M \ {(i + j) points}).
Now, consider the stabilization map E(d;,ds,d3) — E(d; + 1,d2,ds3). It gives rise
the following diagram of fibre bundles

di di+1
Xii — Xij

1 !

Y; Yi,j

»J

Since, by Lemma 10, the map induced on the fibres is a homology equivalence up to
dimension d;, this holds also for the total spaces (the base spaces being the same). So
we can assume that each of the maps Xff;- — X,‘-f;-“ is a homology equivalence up to

dimension d. Note that Ej; a Ej;fi; is a homology equivalence up to dimension
d1, since it coincides with the map Xj;’ d Xj;j;. Consider the map Ef; — Eff;“,

with 7 + j = k and suppose by induction that Ef’; — Ef’;“ is a homology equivalence
up to dimension d;, for i + 75 > k.
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Note that the stabilization map E(di,ds,d3) — E(d; + 1,dz2,ds) (and each of the
other stabilization maps induced by it) extends to an open embedding R%2x E(d;, dz2, d3) —
E(dy + 1,da,d3), of orientable open manifolds of dimension 2(d; + d2 + ds + 1). Hence,
by Poincaré Duality, the statement we are trying to prove is equivalent to the as-
sertion that H:(R? x E(dy,ds,d3)) — H(E(d; + 1,ds,d3)) is an isomorphism for
i > 2(d1+dy+ds+1)—d; and surjective for i = 2(dy+da+d3z+1)—d; = d1+2d2+2d3+2.

We shall next prove inductively that the map H:(R? x Ef’_{i) — H;'(Ez;.“) is an
isomorphism for i > 2(d; +d2+ds+1)—d; and is surjective for i = 2(d; +ds+ds+1)—d; =
dy + 2d2 + 2d3 + 2.

First note that this is true for ¢ + j = da + ds, since the space Eg;’ds = Xj;,da is an
open orientable manifold of dimension 2(d1 + d2 + d3 + 1). Now, suppose by induction
it holds for all i + j < k. Then, since E{* 41,5 N fl; 1= Ef’j_l,j +1, it follows from the
Mayer-Vietoris sequence 1n cohomology with compact supports (see [B, p. 65]) that it
holds for R? x (B, ;UEH 1) — EfiTJUESY]. Now consider the long exact sequence
of cohomology with compact supports for the pair (Ef;,E 115U E"'J 1)

.= HER?x X)) — HER®x E) —HER®x (B, UEL,) —.
. —HYR? x X)) - HER? x EAYY) — HE(R? x (EST UERTD) —.

From the five lemma and the inductive hypothesis it now follows that the statement is
valid for the map Ef’; — Eff;.“. Hence, going down by induction it is valid for

Egy ——  Eg
|| ”
E(dl)d27d3) - E(d1+1)d2ad3)

This proves our theorem. 0O

Finally, let me point out one possible generalization of the above results. Con-

sider the set of all n-tuples of divisors of some fixed degree d on a Riemann surface

n times
N

M, in other words :S'pd(M ) X ...x Sp*(M 5 Of course, we have a stabilization map

n times n+1 times
_ A .

SpA(M) x ... x SpA(M) — Sp(M) x ... x Sp?(M), which induces a homology iso-

n times
™ ———

morphism up to degree d. Inside the space Sp?(M) x ... x Sp*(M) one can consider
various subspaces defined by “incidence conditions ” among divisors, of which the Segal
and the Epshtein conditions are the two extreme special cases, for example, one may
require that for some fixed k, any collection of k divisors have an empty intersection,
where 2 < k < n. There should be a stabilization theorem for each of these cases.
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