On real James numbers

大阪市大理 大嶋秀明 (Hideaki Öshima)

1. Introduction

The purpose of this note is to determine the real James numbers. Throughout the note n, l, k denote integers with $n \ge l \ge k \ge 1$ and $n \ge 2$. Let P_k denote the real projective space of dimension k-1, $P_{l,k} = P_l/P_{l-k}$ the stunted projective space, and $V_{l,k} = O(l)/O(l-k)$ the Stiefel manifold of orthonormal k-frames in \mathbb{R}^l . Note that $P_{k,k}$ is the union of P_k and a disjoint base point. Write $q:V_{l,k} \to V_{l,1} = S^{l-1}$ for the projection on to the last component, and $q:P_{l,k} \to P_{l,1} = S^{l-1}$ for the quotient map. There is a commutative square [6]:

$$V_{n,k} \xrightarrow{q} V_{n,1}$$

$$\bigcup \uparrow \qquad \qquad \parallel$$

$$P_{n,k} \xrightarrow{q} P_{n,1}$$

The unstable real James numbers $V\{n,k\}$ and $P\{n,k\}$ are non-negative integers which generate respectively the images of

$$q_*: \pi_{n-1}(V_{n,k}) \to \pi_{n-1}(S^{n-1}) = \mathbb{Z},$$

 $q_*: \pi_{n-1}(P_{n,k}) \to \pi_{n-1}(S^{n-1}) = \mathbb{Z}.$

In the same way, replacing homotopy group $\pi_{n-1}(-)$ by stable homotopy group ${}^s\pi_{n-1}(-)$ we have the stable real James numbers $V^s\{n,k\}$ and $P^s\{n,k\}$. Let us denote the exponent of 2 in a positive integer k by $\nu_2(k)$; define $\varphi(k)$ to be the number of integers s such that 0 < s < k and $s \equiv 0, 1, 2, 4 \pmod{8}$. Our results are

THEOREM (1.1). We have $P^s\{n,k\} = V^s\{n,k\} = V\{n,k\}$ which is equal to 0, 1, or 2 according as $n \equiv 1 \pmod 2$ and $k \geq 2$, $\nu_2(n) \geq \varphi(k)$, or $1 \leq \nu_2(n) < \varphi(k)$.

THEOREM (1.2). We have $V\{n,k\} = P\{n,k\}$ except for the following cases: (1) if (n,k) = (4,3), (8,5), (8,6), (8,7), (16,9), then $V\{n,k\} = 1$ and $P\{n,k\} = 2$; (2) if n = k = 2m with m = 1,2,4, then $V\{n,k\} = 1$ and $P\{n,k\} = 0$; (3) if n = k = 2m with $m \neq 1,2,4$, then $V\{n,k\} = 2$ and $P\{n,k\} = 0$.

Let $p_n: S^{n-1} \to P_n$ be the canonical double covering map and $p_{n,k}: S^{n-1} \to P_{n,k}$ (n > k) the composition of p_n with the quotient map.

COROLLARY (1.3). The rank of $\pi_{n-1}(P_{n,k})$, for n > k, is 0, 2, or 1 according as $n \equiv 1 \pmod{2}$ and $2 \le k \le n-2$, n = 2k and $k \equiv 0 \pmod{2}$, or otherwise. The map $p_{n,k}$ generates a free direct summand of $\pi_{n-1}(P_{n,k})$ if and only if $n = k+1 \ge 3$, $P\{n,k\} = 2$ or (n,k) = (4,2), (8,4), (16,8).

Note that a part of (1.1) is not new. Indeed $V\{n,k\}$ was already known [1,4,5]. We shall calculate it again by using codegree [3,8,9]. We shall prove (1.1) in §2, and (1.2), (1.3) in §3.

2. $V\{n,k\}$

The symbol $a \mid b$ means that b = ma for some integer m.

LEMMA (2.1). (1) $V\{n,n\} = V\{n,n-1\}; P^s\{n,1\} = V^s\{n,1\} = V\{n,1\} = P\{n,1\} = 1; P\{n,n\} = 0.$

- (2) $V^s\{n,k\} \mid V\{n,k\} \mid P\{n,k\}; V\{n,k\} \mid V\{n,l\} \text{ and } P\{n,k\} \mid P\{n,l\} \text{ if } n > l > k > 1.$
 - (3) $V{2,2} = V{4,4} = V{8,8} = V{16,9} = 1.$
 - (4) ([7; 4.2]) $P^{s}\{n,k\} = V^{s}\{n,k\}.$

- (5) If $n \ge 2k$, then $P^s\{n,k\} = V^s\{n,k\} = V\{n,k\} = P\{n,k\}$.
- (6) ([10; 23.4, 25.6], [5; 2.3]) If n is even or k = 1, then $V\{n, k\} = 1$ or 2. If n is odd and $k \ge 2$, then $V\{n, k\} = 0$.

PROOF. By definition, (1) and (2) are obvious. As is well-known, if n = 2, 4, 8, then $V\{n, n\} = 1$ (cf., [11; p. 200]). By [6; p. 4], we have $V\{16, 9\} = 1$. This proves (3). Since $P_{n,k}$ is (n - k - 1)-connected, it follows from suspension theorem that $P^s\{n, k\} = P\{n, k\}$ if $n \ge 2k$. Hence (5) follows from (2) and (4).

PROPOSITION (2.2). The number $V^s\{n,k\}$ is 0, 1, or 2 according as $n \equiv 1 \pmod{2}$ and $k \geq 2$, $\nu_2(n) \geq \varphi(k)$, or $1 \leq \nu_2(n) < \varphi(k)$.

PROOF. Let $L_k \to P_k$ be the canonical line bundle. Then L_k is of order $2^{\varphi(k)}$ in the J-group of P_k [2]. If a positive integer m satisfies $m+n\equiv 0$ (mod $2^{\varphi(k)}$), then $P^s\{n,k\} = {}^s \operatorname{cdg}(P_k^{mL},m)$ by stable duality [6; (7.9)], where ${}^s\operatorname{cdg}(-)$ is the stable codegree [3, 8, 9] which was denoted by $\operatorname{cd}(mL_k)$ in [8], and P_k^{mL} is the Thom space of mL_k . Then the assertion follows from (2.1)(4) and [8; 3.5] (cf., [3]).

Proposition (2.3). $V^{s}\{n, k\} = V\{n, k\}$.

To prove (2.3), we need

LEMMA (2.4). (1) If $k \ge 10$, then $2^{\varphi(k)} > 2k$. If $1 \le k \le 9$, then $2^{\varphi(k)} < 2k$.

- (2) Conditions $2k > n \ge k \ge 2$ and $n \equiv 0 \pmod{2^{\varphi(k)}}$ are satisfied if and only if (n, k) is (2, 2), (4, 3), (4, 4), (8, 5), (8, 6), (8, 7), (8, 8) or (16, 9).
 - (3) $V\{n,k\} = 1$ for every (n,k) in (2).

PROOF. Write k - 1 = 8x + y with $0 \le y \le 7$. Then $\varphi(k) = 4x + z$ such that z is 0 (if y = 0), 1 (if y = 1), 2 (if y = 2, 3), and 3 (if $4 \le y \le 7$).

If $x \ge 2$, that is, if $k \ge 17$, then $2^{\varphi(k)} \ge 2^{4x} > 16(x+1) \ge 2k$. Hence the following table completes the proof of (1).

k	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
2k	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32
$2^{\varphi(k)}$	1	2	4	4	8	8	8	8	16	32	64	64	128	128	128	128

If $2k > n \ge k \ge 2$ and $n \equiv 0 \pmod{2^{\varphi(k)}}$, then $k \le 9$ by (1), hence (2) follows from the table. We have (3) by (2.1)(2)(3).

Proof of Proposition (2.3). By (2.1)(5)(6) and (2.2), it suffices to consider the case: $2k > n \equiv 0 \pmod{2}$. If $1 \leq \nu_2(n) < \varphi(k)$ and n < 2k, then $V^s\{n,k\} = V\{n,k\} = 2$ by (2.1)(2)(6) and (2.2). If $2k > n \equiv 0 \pmod{2^{\varphi(k)}}$, then $V^s\{n,k\} = V\{n,k\} = 1$ by (2.2) and (2.4)(3).

Proof of Theorem (1.1). This follows from (2.1)(4), (2.2) and (2.3).

Let us write $n = (2a+1)2^{b+4c}$, where a, b, c are integers and $0 \le b \le 3$; let us define $\rho(n) = 2^b + 8c$. As is easily shown, $\nu_2(n) \ge \varphi(k)$ if and only if $\rho(n) \ge k$. Hence we have the following by Theorem (1.1).

THEOREM (2.5) (Eckmann, Adams). The fibration $q: V_{n,k} \to V_{n,1}$ has a cross section if and only if $\rho(n) \geq k$.

3.
$$P\{n,k\}$$

Let $\iota_k \in \pi_k(S^k)$ be the class of the identity map of S^k . Then the following is well-known.

LEMMA (3.1). The homotopy class of $p_{n,1}$ is $2\iota_{n-1}$ or 0 according as n is even or odd; $\pi_{n-1}(P_n) = \mathbb{Z}\{\varepsilon \cdot p_n\}$, where ε is 1 or 1/2 according as $n \geq 3$ or n = 2.

LEMMA (3.2). If n is even, then $P\{n, n-1\} = 2$ for $n \geq 4$ and $P\{n, k\} = 1$ or 2 for n > k. If n is odd and $k \geq 2$, then $P\{n, k\} = 0$.

PROOF. If n is even, then $P\{n, n-1\}$ is 1 or 2 according as n=2 or $n \ge 4$ by (2.1)(1) and (3.1), hence $P\{n, k\} \mid 2$ provided n > k by (2.1)(2). The second assertion follows from (2.1)(2)(6).

LEMMA (3.3). If n = 2, 4, 8, then $\pi_{2n-1}(P_{2n,n+1}) = \mathbb{Z}\{p_{2n,n+1}\} \oplus \text{Tor.}$

PROOF. Let n=2, 4, 8. The assertion is obvious by (3.1) when n=2. Let $\omega_n: S^{2n-1} \to S^n$ be the Hopf map. We denote by Tor the torsion subgroup of any group. Then $\pi_{2n-1}(S^n) = \mathbb{Z}\{\omega_n\} \oplus \text{Tor.}$ Let $T\mathcal{OR}$ be the class of torsion groups. By mod $T\mathcal{OR}$ Hurewicz theorem, $\pi_*(P_{2n-1,n})$ is a torsion group for n=4, 8. It then follows from the homotopy exact sequence of the pair $(P_{2n,n+1}, P_{2n-1,n})$ that the rank of $\pi_{2n-1}(P_{2n,n+1})$ is 1 and $p_{2n,n+1}$ is of infinite order for n=4, 8. To complete the proof, it suffices to prove

(3.4)
$$\pi_{2n-1}(P_{2n,n}) = \mathbb{Z}\{p_{2n,n}\} \oplus \mathbb{Z} \oplus \text{Tor for } n = 2, 4, 8.$$

We shall prove (3.4). Since the manifold P_n is parallelizable and the Whitney sum of the tangent bundle of P_n with a trivial line bundle is nL_n , we have $P_{2n,n} = P_n^{nL} = S^n \wedge P_{n,n} = S^n \vee (S^n \wedge P_n) = S^n \vee (S^n \wedge P_{n-1}) \vee S^{2n-1}$ up to homotopy. Hence $\pi_{2n-1}(P_{2n,n}) \cong \pi_{2n-1}(S^n) \oplus \pi_{2n-1}(S^n \wedge P_{n-1}) \oplus \pi_{2n-1}(S^{2n-1})$ by [11; (1.5) in p.492, (7.12) in p.368], where the isomorphism is induced by inclusion maps, and the rank of $\pi_{2n-1}(P_{2n,n})$ is 2, since $\pi_*(S^n \wedge P_{n-1})$ is a torsion group by mod TOR Hurewicz theorem. We can write $p_{2n,n} \equiv i_{1*}(a_n\omega_n) + i_{3*}(2\iota_{2n-1}) \pmod{TO}$ by (3.1), where $a_n \in \mathbb{Z}$ and i_k is a respective inclusion map. As is well-known, $\omega_n = f \circ p_{2n,n}$ for some map $f: P_{2n,n} \to S^n$. Write $f|_{S^n} = x\iota_n$ and $f|_{S^{2n-1}} \equiv z\omega_n \pmod{TO}$ with $x,z \in \mathbb{Z}$. Then $\omega_n = f \circ p_{2n,n} \equiv (a_nx^2 + 2z)\omega_n \pmod{TO}$, hence a_n is odd, therefore (3.4) follows. This completes the proof of (3.3).

Proof of Theorem (1.2). As is easily shown, $\nu_2(n) \geq \varphi(n)$ if and only if n = 2, 4, 8. Then the assertion for n = k follows from (1.1) and (2.1)(1).

If $V\{n,k\}$ is 0 or 2, then $P\{n,k\} = V\{n,k\}$ by (1.1), (2.1)(2) and (3.2). Suppose that $V\{n,k\} = 1$ and n > k. Then $n \equiv 0 \pmod{2^{\varphi(k)}}$ by (1.1). If $k \geq 10$ or $k \leq 9$ and $n \geq 2k$, then $V\{n,k\} = P\{n,k\}$ by (2.1)(5) and (2.4)(1). If $k \leq 9$ and n < 2k, then (n,k) is (4,3), (8,5), (8,6), (8,7), or (16,9) by (2.4)(2), and $P\{n,k\} = 2$ except for (n,k) = (8,6) by (3.1), (3.2) and (3.3). We then have $P\{8,6\} = 2$ by (2.1)(2).

Proof of Corollary (1.3). The assertions are obvious when k = 1 or k = n-1, by (3.1). Suppose $2 \le k \le n-2$. If n is odd, then $\pi_*(P_{n,k}) \in \mathcal{TOR}$ for k even by mod \mathcal{TOR} Hurewicz theorem, and $i_*: \pi_*(S^{n-k}) \to \pi_*(P_{n,k})$ is a \mathcal{TOR} -isomorphism for k odd by mod \mathcal{TOR} Whitehead theorem. Let $j: P_{n-1,k-1} \to P_{n,k}$ be the inclusion map and $f: S^{n-1} \to P_{n,k}$ a map with $q_*(f) = P\{n, k\}\iota_{n-1}$. If n is even, then, by mod \mathcal{TOR} Whitehead theorem, $q_*: \pi_*(P_{n,k}) \to \pi_*(S^{n-1})$ and $(f \vee j)_*: \pi_*(S^{n-1} \vee P_{n-1,k-1}) \to \pi_*(P_{n,k})$ are \mathcal{TOR} -isomorphisms when k is odd and even respectively. Then the assertions can be proved easily by using (1.1), (1.2) and (3.4).

REFERENCES

- [1] J. F. Adams, Vector fields on spheres, Ann. of Math. 75 (1962), 603-632.
- [2] _____, On the groups J(X)-II, Topology 3 (1965), 137-171.
- [3] M. C. Crabb and K. Knapp, James numbers and the codegree of vector bundles I, preprint.
- [4] B. Eckmann, Stetige Lösungen linearer Gleichung systeme, Comment. Math. Helv. 15 (1942/3), 318-339.
- [5] I. M. James, Cross-sections of Stiefel manifolds, Proc. London Math. Soc. 8 (1958), 536-547.
- [6] _____, The topology of Stiefel manifolds, Cambridge University Press, Cambridge, 1976.
- [7] H. Ōshima, On stable James numbers of stunted complex or quaternionic projective spaces, Osaka J. Math. 16 (1979), 479-504.
- [8] _____, Remarks on the j-codegree of vector bundles, Japanese J. Math. 16 (1990), 97-117.

- [9] H. Ōshima and K. Takahara, Cohomotopy of Lie groups, Osaka J. Math. 28 (1991), 213-221.
- [10] N. E. Steenrod, The topology of fibre bundles, Princeton University Press, Princeton, 1951.
- [11] G. W. Whitehead, Elements of homotopy theory, Springer-Verlag, Berlin, 1978.