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On real James numbers‘
APETEAH  AUEFEE  ( Hideaki Oshima )

1. Introduction

The purpose of this note is to determine the real James numbers.
Throughout the note n, I, k denote integers withn > 1>k >1and n > 2.
Let Py denote the real projective space of dimension k — 1, Py = P[P
the stunted projective space, and Vi = O(1)/O(l — k) the Stiefel manifold
of orthonormal k-frames in R'. Note that Py 1 is the union of P and a
disjoint base point. Write g : Vi — V11 = §'~? for the projection on to
the last component, and ¢ : P x — P11 = S51=1 for the quotient Ihap. There_

is a commutative square [6]:

Vn,k . Vn,l

]

Pogx — P
q

The unstable real James numbers V{n,k} and P{n,k} are non-negative

integefs which generate respectively the images of

d= - "Tn—l(Vn,k) —* "Tn—l(Sn._l) = 4,
gx : Fne1{Pax) = Fr-1(S* 1) = Z.

In the same way, replacing homotopy group 7wp,—1{—) by stable homo-
topy group *mn—1{—) we have the stable real James numbers V*{n,k}
and P*{n,k}. Let us denote the exponent of 2 in a positive integer k

by v2(k); define (k) to be the number of integers s such that 0 < s < k
and s =0,1,2,4 (mod 8). Our results are
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THEOREM (1.1). We have P*{n,k} = V*{n,k} = V{n, k} which is
equal to 0, 1, or 2 according as n =1 (mod 2) arnd k > 2, vo(n) > ¢(k),
or 1 < wp(n) < (k). '

THEOREM (1.2). We have V{n,k} = P{n,k} ezcept for the following
cases: (1) if (n, k) = (4,3),(8,5),(8,6),(8,7),(16,9), then V{n,k} =1 and
P{n,k} =2; (2) if n = k = 2m with m = 1,2,4, then V{n,k} =1 and
P{n,k} =0; (3) if n = k =2m with m # 1,2,4, then V{n,k} = 2 and
P{n,k} =0.

Let p, : S~ ! — P, be the canonical double covering map and p, x :

S*=1 — P, x (n > k) the composition of p, with the quotient map.

COROLLARY (1.3). The rank of mp_1(Pnx), for n > k, 50,2, or 1
according asn =1 (mod 2) and 2 <k <n—2, n =2k and k =0 (mod 2),
or otherwise. The map pn r generates a free direct summand of Tp—1(Pn k)
if and only if n = k+12> 3, P{n,k} =2 or (n,k) = (4,2), (8,4), (16,8).

Note that a part of (1.1) is not new. Indeed V{n, k} was already known
[1,4,5]). We shall calculate it again by using codegree [3,8,9]. We shall
prove (1.1) in §2, and (1.2), (1.3) in §3.

2. V{n,k}
The symbol a | b means that b = ma for some integer m.

LemMa (2.1). (1) V{n,n} = V{n,n-1}; P*{n,1} = V*{n,1} =
V{n,1} = P{n,1} = 1; P{n,n} = 0.

(2) Ve{n,k} | V{n,k} | P{n,k}; V{n,k} | V{n,i} and P{n,k} |
P{n, 0} ifn>1>k>1.

(3) V{2,2} = V{4,4} = V{8,8) = V{16,9} = 1.

(4) ([7; 4.2)) P*{n,k} = V*{n,k}.
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(5) If n > 2k, then P*{n,k} = V*{n,k} = V{n,k} = P{n,k}.
(6) ([10; 23.4,25.6),[5; 2.3]) If n is even or k = 1, then V{n,k} =
1 or2 Ifnisodd and k > 2, then V{n,k} =0.

ProoOF. By definition, (1) and (2) are obvious. As is well-known, if
n = 2,4,8, then V{n,n} = 1 (cf,, [11; p.2'00]). By [6; p.4], we have
V{16,9} = 1. This proves (3). Since P, is (n — k — 1)-connected, it
follows from suspension theorem that P*{n,k} = P{n,k} if n > 2k. Hence
(5) follows from (2) and (4).

PROPOSITION (2.2). The number V*{n,k} 130, 1, or 2 according as
n=1 (mod 2) and k > 2, va(n) > @(k), or 1 < 12(n) < (k).

Proor. Let Ly — P; be the canonical line bundle. Then L; 1s of order
2¢(¥) in the J-group of P [2]. If a positive integer m satisfies m + n =0
(mod 2¢(F)), then P*{n,k} = *cdg(P™%,m) by stable duality [6; (7.9)],
where *cdg(—) is the stable codegree [3, 8,9] which was denoted by cd(mLy)

in [8], and P/*L is the Thom space of mLy. Then the assertion follows from
(2.1)(4) and [8; 3.5] (cf., [3]).

ProposITION (2.3). V*{n,k} = V{n,k}.

To prove (2.3), we need

LEMMA (2.4). (1) If k > 10, then 2¢F) > 2k, If1 < k <9, then
20(k) < 9k, |

(2) Conditions 2k > n >k > 2 and n =0 (mod 29%)) are satisfied if

and only if(n,k)} 15 (2,2), (4,3), (4,4), (8,5), (8,6), (8,7), (8,8) or (16,9).
(3) V{n,k} =1 for every (n,k) in (2). |

PROOF. Write k—1 = 8z +y with 0 < y < 7. Then ¢(k) = 4z + 2
such that 2is0(if y =0),1 (ify=1),2(fy=2,3),and 3 (if 4 <y < 7).
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If z > 2, that is, if & > 17, then 2¢(k) > 2% > 16(1& + 1) > 2k. Hence the
following table completes the proof of (1).

E |1]2(3(4|5](6 |7 |8 |9 ]10]11]12]13 [14 [15 |16
2k [2]4]6|8]10[12]|14]16]18] 20|22 24| 26| 28 | 30 | 32

2¢(F) 1112 1414]8|8|8|8[16/32]|64]64[128]128]128/128

If2k >n>k>2and n =0 (mod 2¢()), then ¥ < 9 by (1), hence (2)
follows from the table. We have (3) by (2.1)(2)(3)-

Proof of Proposition (2.3). By (2.1)(5)(6) and (2.2), it suffices to con-
sider the case: 2k > n = 0 (mod 2). If 1 < v3(n) < ¢(k) and n < 2k,
then V*{n,k} = V{n,k} = 2 by (2.1)(2)(6) and (2.2). f 2k > n =0
(mod 2¢(%)), then V*{n,k} = V{n,k} = 1 by (2.2) and (2.4)(3).

Proof of Theorem (1.1). This follows from (2.1)(4), (2.2) and (2.3).
Let us write n = (2a 4+ 1)2%+%¢, where a, b, ¢ are integers and 0 < b < 3;

let us define p(n) = 2% + 8c. As is easily shown, v2(n) > (k) if and only if
p(n) > k. Hence we have the following by Theorem (1.1).

THEOREM (2.5) (Eckmann, Adams). The fibration g : V, x — Vy 1 has
a cross section if and only if p(n) > k.

3. P{n,k}

Let 1 € 7x (Sk) be the class of the identity map of S*. Then the

following is well-known.

LEMMA (3.1). The komotopy class ofpn,l s 2t, 7 or 0 according as

n 1s even or 0dd; wa—1(Pn) = Z{e-pp}, where € is 1 or 1/2 according as
n>3orn=2.

LeMMmaA (3.2). If n is even, then P{n,n—1} = 2 forn > 4 and
P{n,k}=1o0r2 forn>k. Ifn is 0dd and k > 2, then P{n,k} = 0.
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- Proor. If nis even, then P{n,n — 1} is 1 or 2 according as n = 2 or
n >4 by (2.1)(1) and (3.1), hence P{n,k} | 2 provided n > k by (2.1)(2).
The second assertion follows from (2.1)(2)(6).

LEMMA (33) Ifn = 2,4,8, then 7"21;-1(P2n,n+1) = Z{pz,,_,,,.,.l}EBTor.

ProoF. Let n = 2, 4, 8. The assertion is obvious by (3.1) when n = 2.
Let w, : $?2"~! — S™ be the Hopf map. We denote by Tor the torsion
subgroup of any group. Then 7,_1(S") = Z{w,} ® Tor. Let TOR be
the class of torsion groups. By mod 7OR Hurewicz theorem, 74x(Pon~1,1)
is a torsion group for n = 4, 8. It then follows from the homotopy exact
sequence of the pair (Pop n41,Pon—1,) that the rank of mop—1(Ponnt1) is
1 and p2n,n41 1s of infinite order for n = 4, 8. To complete the proof, it

suffices to prove

(3.4) Ton-1(Pan,n) = Z{ponn} ® 7.® Tor for n =2, 4, 8.

We shall prove (3.4). Since the manifold P, is parallelizable and the Whit-
ney sum of the tangent bundle of P, with a trivial line bundle is nL,, we
have Popn = PPl = S* AP, , = S*V(S*APR,) = S V(8™ AP,_;)V§2*-1
up to homotopy. Hence mon—1(Ponn) = 72n-1(5%) ® m2n-1(S* A Prz1) @
Ton—1(S*"~1) by [L1; (1.5) in p.492, (7.12) in p.368], where the isomor-
phism 1s induced by inclusion maps, and the rank of 7o, —1(Pzp ») is 2, since
7. (S™ A P,_1) is a torsion group by mod 7OR Hurewicz theorem. We can
write pap n = 114(@nwn) + 234(2¢2n—1) (mod Tor) by (3.1), where a, € Z
and 1 1s a respective inclusion niap. As is well-known, w, = f o pa, p for
some map f : Po, , — S™. Write f|s» = zt, and fls2n-1 = 2w, (mod Tor)
with 2,z € Z. Then wp, = fopo o = (anz? + 22)w, (mod Tor), hence a,
is odd, therefore (3.4) follows. This completes the proof of (3.3).

Proof of Theorem (1.2). As is easily shown, v2(n) > ¢(n) if and only
if n = 2,4,8, Then the assertion for n = k follows from (1.1) and (2.1)(1).
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If V{n,k} is 0 or 2, then P{n,k} = V{n,k} by (1.1), (2.1)(2) and (3.2).
Suppose that V{n,k} =1 and n > k. Then n = 0 (mod 2¢(¥)) by (1.1).
Ifk>100r k <9 and n > 2%, then V{n,k} = P{n,k} by (2.1)(5) and
(2.4)(1). If £ € 9 and n < 2k, then (n,k) is (4,3), (8,5), (8,86), (8,7), or
(16,9) by (2.4)(2), and P{n, k} = 2 except for (n, k) = (8,6) by (3.1), (3.2)
and (3.3). We then have P{8,6} = 2 by (2.1)(2).

Proof of Corollary (1.3). The assertions are obvious when k = lor k =
n —1, by (3.1). Suppose 2 < k <n—2. If nis odd, then 7, (P, x) € TOR
for k even by mod 7OR Hurewicz theorem, and i, : 7.(S™*) — 7.(Py )
is a 7OR-isomorphism for k¥ odd by mod 7TOR Whitehead theorem. Let
7t Pp_q k-1 — Py, be the inclusion map and f : sn-1 o, F, » a map with
g«(f) = P{n,k}in—1. If n is even, then, by mod 7OR Whitehead theorem,
x : Tx(Pnk) — w*(S"'i) and (f Vj): ‘7r,,‘(,5""'}1 VPn_l,k;l) — (P i)
are 7 OR-isomorphisms when k is odd and even respectively. Then the
assertions can be proved easily by using (1.1), (1.2) and (3.4).
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