<table>
<thead>
<tr>
<th>Title</th>
<th>SOME RESULTS AND PROBLEMS ON ANR'S FOR STRATIFIABLE SPACES (General Topology and Geometric Topology)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Guo, Bao-Lin; Sakai, Katsuro</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1992), 784: 107-109</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1992-05</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/82557</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
SOME RESULTS AND PROBLEMS ON ANR'S FOR STRATIFIABLE SPACES

Bao-Lin Guo (郭 宝霖)
Katsuro Sakai (酒井 克郎)

Stratifiable spaces are also called M_3-spaces, which were introduced by Ceder [Ce] and renamed by Borges [Bo]. The class S of stratifiable spaces contains both metrizable spaces and CW-complexes and has many desirable properties (cf. [Bo]). And CW-complexes are ANR for the class S [Ca1]. Hence it has been expected that ANR theory for the class S is established so successfully as the class M of metrizable spaces. An absolute (neighborhood) retract for a class C is simply called an AR(C) (resp. ANR(C)). Although ANR(S)'s have been studied by Borges, Cauty and Miwa, etc., many problems are still left. In this note, we present the result of [GS] and some related problems.

The join of spaces X and Y is defined as the space

$$X * Y = X \cup X \times Y \times (0,1) \cup Y$$

admitting the topology generated by all open sets in the product space $X \times Y \times (0,1)$ and the following sets:

$$U \cup U \times Y \times (0,t) \quad \text{and} \quad X \times V \times (t,1) \cup V,$$

where U and V are open in X and Y, respectively, and $0 < t < 1$. In [Ca3], this join is denoted by $X \# Y$ in order to distinguish from the join as the quotient space of $X \times Y \times I$.

The mapping cylinder of a map $f : X \rightarrow Y$ is defined as the space

$$M(f) = X \times [0,1) \cup Y$$

admitting the topology generated by all open sets in the product space $X \times [0,1)$ and the following sets:

$$f^{-1}(V) \times (t,1) \cup V,$$

where V is open in Y and $0 < t < 1$. Notice that $M(f)$ is not a quotient space of $X \times I \oplus Y$. It is easily observed that $X \# Y$ is homeomorphic to

$$M(pr_X) \cup_{X \times Y \times \{0\}} M(pr_Y),$$

where $pr_X : X \times Y \rightarrow X$ and $pr_Y : X \times Y \rightarrow Y$ are the projections. By using the Bing Metrization Theorem, it is easy to see that $M(f)$ (hence $X \# Y$) is metrizable if so are X and Y. Extending [Ca3, Lemma 6.3], we can show the following:
LEMMA. For any map $f: X \to Y$, the mapping cylinder $M(f)$ is stratifiable if so are X and Y.

By [Hy] (cf. [KL]), $M(f)$ (hence $X \ast Y$) is an $ANR(M)$ if so are X and Y. This is expected to be true for $ANR(S)$'s. However we cannot apply this method to stratifiable spaces (cf. [Ca1]). In fact, San-ou [Sa] constructed a stratifiable space X with A a closed set such that (X, A) is not semi-canonical. (For the definition of semi-canonical pairs, refer to [Hy].) In his construction, by replacing N and Q by R, we have a stratifiable locally convex linear topological space X, hence X is an $AR(S)$, such that (X, A) is not semi-canonical, where $A = \{0\}$. Consider the mapping cylinder $M(i)$ of the inclusion $i: X \setminus A \subset X$. Then $(M(i), X)$ is not semi-canonical. And $((X \setminus A) \ast X, X)$ is not semi-canonical. Thus we need another approach.

To characterize AR's, Borges [Bo] introduced the concept of hyperconnectedness. For a space X, let $F(X)$ be the full simplicial complex with X the set of vertices, i.e., $X = F(X)^{(0)}$. Introducing a topology on $|F(X)|$, Cauty [Ca] constructed a test space $Z(X)$ such that a stratifiable space X is an $ANR(S)$ if and only if X is a neighborhood retract of $Z(X)$. Improving the construction of $Z(X)$, Miwa [Mi] constructed a hyperconnected space $E(X)$ containing X as a closed set and proved that $E(X)$ is stratifiable if so is X. Then any stratifiable space X can be embedded in an $AR(S) E(X)$ as a closed set. By his construction, any map $f: X \to Y$ extends to the map $\tilde{f}: E(X) \to E(Y)$ which is a simplicial map from $F(X)$ to $F(Y)$. For this extension \tilde{f}, we have the following:

Theorem 1. Let $\tilde{f}: E(X) \to E(Y)$ be the extension of a map $f: X \to Y$. Then $M(\tilde{f})$ is hyperconnected. Hence $M(\tilde{f})$ is an $AR(S)$ in case X and Y are stratifiable.

Since $M(f)$ is a closed subset of $M(\tilde{f})$, the following problem reduces to prove that $M(f)$ is a neighborhood retract of $M(\tilde{f})$.

Problem 1. Let $f: X \to Y$ be a map between $ANR(S)$'s. Is the mapping cylinder $M(f)$ an $ANR(S)$?

Although this has not yet been succeeded, the following holds:

Theorem 2. Let X and Y be $ANR(S)$'s and $f: X \to Y$ a Hurewicz fibration. Then the mapping cylinder $M(f)$ is an $ANR(S)$.

Since the projection $pr_X: X \times Y \to X$ is a Hurewicz fibration, we have the following generalization of [Ca3, Corollary 6.2]:

Theorem 3. If X and Y are $ANR(S)$'s then so is the join $X \ast Y$.
Remark. We can also prove Theorem 3 by showing that $E(X) * E(Y)$ is hypercon-
ected and that $X * Y$ is a neighborhood retract of $E(X) * E(Y)$. This approach is
 easier than the above approach.

In [Ca$_2$], Cauty asserted that the adjunction space of ANR(S)'s is also an ANR(S),
but his key lemma is false [Sa] (even if (X, A) is a pair of ANR(S)'s as shown in the
above). Thus his assertion is still a conjecture and Theorem 3 is still open for the
quotient topology:

Problem 2. Let X and Y be ANR(S)'s. Is the join $X * Y$ with the quotient topology an ANR(S)? For any map $f : X \rightarrow Y$, is the mapping cylinder $M(f)$ with the quotient topology an ANR(S)?

In [Ca$_3$], Cauty proved that the direct limit of the tower of compact ANR(M)'s is an
ANR(S). It is natural to ask the following:

Problem 3. Let $X_1 \subset X_2 \subset \cdots$ be a tower of ANR(S)'s such that each X_{n+1} is a closed subspace of X_n. Is the direct limit $\lim X_n$ an ANR(S)?

References

