<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>ON THE CLOSED IMAGES OF A DEVELOPABLE SPACE (General Topology and Geometric Topology)</td>
</tr>
<tr>
<td>Author(s)</td>
<td>MIZOKAMI, TAKEMI</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1992), 784: 82-98</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1992-05</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/82560</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
ON THE CLOSED IMAGES OF A DEVELOPABLE SPACE

TAKEMI MIZOKAMI (溝上 武実)

ABSTRACT

We study the properties of the image of a developable space and an orthocompact developable space under a closed mapping, comparing with Lašnev spaces. Two classes C and C' are defined and their properties are given.

1980 Math. Subj. Class. 54E30
1. Introduction.

Throughout this paper, all spaces are assumed to be T_1 topological ones and mappings to be continuous and onto. The letter N always denotes natural numbers. The letter \mathbb{Z} always denotes a convergent sequence of points of a space such that $\mathbb{Z} = \{z_n : n \leq N\}$ and $z \rightarrow p$ implies that \mathbb{Z} converges to p as $n \rightarrow \infty$. We denote the topology of X by τ_X. We use the brief expressions HCP and IP in place of "hereditarily closure-preserving" and "interior-preserving", respectively.

As a nice generalization of metric spaces, we have a class of developable spaces, which are defined to be ones X having a sequence $\{ U_n : n \in N\}$ of open covers of X such that for each point $p \in X$, $\{S(p, U_n) : n \in N\}$ is a local base at p in X. Until now, the image of a metric space under a closed mapping, called a Lašnev space, is widely studied. But the study of the image of a developable space, briefly called the closed image of a developable space, has not been published yet. In this paper, we begin on its study, especially using the notion of pair-networks. This is our aim of this paper.

To start with, we give the meanings to the special spaces used later. A space X is called semi-stratifiable if there exists a function $\mathcal{O} : \{\text{closed subsets of } X\} \times N \rightarrow \tau_X$, called the semi-stratification of X, satisfying the following conditions:

(1) For each closed subset F of X,
$$F = \bigcap \{\mathcal{O}(F, n) : n \in N\}$$
and \(O(F, n + 1) \subseteq O(F, n) \) for each \(n \).

(2) If \(F, G \) are closed subsets of \(X \) such that \(F \subseteq G \),
then \(O(F, n) \subseteq O(G, n) \) for each \(n \).

2. The closed image of a developable space.

DEFINITION [2]. Let \(P = \{ (F_\alpha, V_\alpha) : \alpha \in A \} \) be a
collection of ordered pairs of subsets of a space \(X \).

\(P \) is called a \textit{pair-network} for \(X \) if whenever \(p \in U \in \tau_X \),
there exists \(\alpha \in A \) such that \(p \in F_\alpha \subseteq V_\alpha \subseteq U \). \(P \) is called
discrete (resp. HCP) if the family \(\{ F_\alpha : \alpha \in A \} \) is discrete
(resp. HCP) in \(X \). \(P \) is called \textit{\(\sigma \)-discrete} (resp. \(\sigma \)-HCP)
in \(X \) if \(P = \bigcup \{ P_n : n \in \mathbb{N} \} \) with each \(P_n \) discrete
(resp. HCP) in \(X \). The other terms for \(P \) are similar.

In this paper, we assume that every \(F_\alpha \) is \textit{closed} in \(X \), but
every \(V_\alpha \) is \textit{not necessarily open} in \(X \). Unless otherwise is
stated explicitly, we assume that \(P \) has the members
\(\{ (F_\alpha, V_\alpha) : \alpha \in A \} \) or \(\{ (F_\alpha, V_\alpha) : \alpha \in A, n \in \mathbb{N} \} \).

THEOREM 1. For a Fréchet space \(X \), the following are equivalent:

(1) \(X \) has a \(\sigma \)-HCP pair-network \(P \) such that if \(Z \rightarrow p \)
\(\in U \in \tau_X \), then there exists \(\alpha \in A \) such that \(p \in F_\alpha \subseteq V_\alpha \subseteq U \)
and \(Z \) is cofinal in \(V_\alpha \), where \(Z \) is cofinal in \(V_\alpha \) means
\(z_n \in V_\alpha \) for infinitely many \(n \).

(2) \(X \) has a \(\sigma \)-HCP pair-network \(P \) such that if \(Z \rightarrow p \)
\(\in U \in \tau_X \), then there exists \(\alpha \in A \) such that \(p \in F_\alpha \subseteq V_\alpha \subseteq U \)
and \(Z \) is residual in \(V_\alpha \), where \(Z \) is residual in \(V_\alpha \) means
\(\{ z_n : n \geq m \} \subseteq V_\alpha \) for some \(m \in \mathbb{N} \).

(3) \(X \) has a \(\sigma \)-HCP pair-network \(P \) such that if \(Z \rightarrow p \)
\(\in U \in \tau_X \) and \(Z \subset X - \{ p \} \), then there exists \(\alpha \in A \) such that
\(p \in F_\alpha \subseteq V_\alpha \subseteq U \), \(F_\alpha - \{ p \} \subseteq \text{Int} V_\alpha \) and \(Z \) is residual in \(\text{Int} V_\alpha \).
PROOF. (3) + (2) + (1) is trivial. (1) + (3): Let \(P \) be a \(\sigma \)-HCP pair-network satisfying the condition of (1). Without loss of generality we can assume \(A_n \subseteq A_{n+1} \) for each \(n \in N \). For each \(\delta \subseteq A_n, n \in N \), let

\[
F(\delta) = \bigcap \{ F_\alpha : \alpha \in \delta \}, \quad V(\delta) = \bigcup \{ V_\alpha : \alpha \in \delta \}.
\]

Since the family of all intersections of members of a HCP family is also HCP in a Fréchet space [5, Remark 3.7], the pair-collection

\[
P' = \{ (F(\delta), V(\delta)) : \delta \subseteq A_n, n \in N \}
\]

is a \(\sigma \)-HCP pair-network for \(X \). We show that \(P' \) has the required properties in (3). Let \(Z \rightarrow p \in U \subseteq \tau_X \) and \(Z \subset X - \{ p \} \).

Set for each \(n \)

\[
\delta_n = \{ \alpha \in A_n : p \in F_\alpha \subseteq V_\alpha \subseteq U \}.
\]

Then \(p \in F(\delta_n) \subseteq V(\delta_n) \subseteq U \) for each \(n \).

Claim 1: \(F(\delta_n) - \{ p \} \subseteq \text{Int} V(\delta_n) \) for some \(n \).

Assume not. Take a sequence \(\{ p_n : n \in N \} \) of points such that \(p_n \in F(\delta_n) - \{ p \} - \text{Int} V(\delta_n) \) for each \(n \). Since \(X \) is Fréchet, for each \(n \) there exists a convergent sequence \(Z(n) \) of points of \(X - V(\delta_n) \) such that \(Z(n) \rightarrow p_n \). Note that \(\{ F(\delta_n) : n \in N \} \) forms a decreasing local network at \(p \) in \(X \). Then \(p_n \rightarrow p \) as \(n \rightarrow \infty \), implying

\[
p \in \bigcup \{ Z(n) : n \in N \}.
\]

Using Fréchet-ness of \(X \), we can take a convergent sequence \(Z \) of points of \(\bigcup \{ Z(n) : n \in N \} \) such that \(Z \rightarrow p \). Because \(p_n \nrightarrow p, n \in N, Z \cap Z(n) \nrightarrow \phi \) for infinitely many \(n \). We can take a convergent subsequence \(Z' = \{ Z(n_k) : k \in N \} \) of \(Z \) such that \(Z(n_k) \in Z(n_k) \) and \(k \leq n(k) < n(k+1), k \in N \).

By the property of \(P \) stated in (1), there exists \(\alpha \in A_n \),
n ∈ N, such that p ∈ F_a ⊂ V_a ⊂ U and Z' is cofinal in V_a. But this is a contradiction because V_a ⊂ V(δ_k) for every k ≥ n. Hence Claim 1 is established.

Claim 2: Z is residual in Int V(δ_m) for some m.

Assume the contrary, i.e., Z is cofinal in X - Int V(δ_n) for every n. Then there exists a subset \{k(n) : n ∈ N\} of N such that \(z_{k(n)} \in X - \text{Int} V(\delta_n) \) and \(k \not\leq k(n) < k(n+1) \), n ∈ N. Using Fréchet-ness of X, for each n we can take a sequence Z(n) of points of X - V(δ_n) such that Z(n) → z_{k(n)}. Since \(z_{k(n)} \notin p \) for each n, we can use the same argument as above to get a contradiction, which implies the validity of Claim 2.

Now, let k be the maximum of n and m in Claims 1 and 2, respectively. Since F(δ_s) ⊂ F(δ_t) and V(δ_t) ⊂ V(δ_s) for every s, t with t ≥ s, and this k satisfies both claims. This completes the proof (1) → (3).

In the sequel, we denote by C the class of all Fréchet spaces satisfying one and hence all of (1) to (3) in Theorem 1. With respect to the properties of C, the following hold:

THEOREM 2. C has the following properties:

(1) C is closed under closed mappings.

(2) C is closed under subspaces.

(3) \{closed images of a developable space\} ⊂ C.

(4) C is not finitely productive.

All except (4) are easily seen from Theorem 1. (4) is a direct consequence of Theorem 9, stated later.

We give a characterization of developable spaces in terms of pair-networks some what different from the results of Burke [2, Theorem 2.1].
THEOREM 3. For a space X, the following are equivalent:

(1) X is a developable space.

(2) X is first countable and $X \subseteq \mathcal{C}$.

(3) X is a strongly Fréchet space having a σ-locally finite pair-network P satisfying the same condition as in Theorem 1, (1).

(4) X has a σ-locally finite pair-network P such that each V_α is open in X.

PROOF. As well-known, a space X is developable if and only if X has a σ-discrete pair-network P such that each V_α is open in X, [4]. So, (1) \Rightarrow (4) \Rightarrow (2) and (4) \Rightarrow (3) are obvious. (2) \Rightarrow (1): We shall show that X has a σ-discrete pair-network P such that all V_α are open in X. Let P be a σ-HCP pair-network for X satisfying the same condition as in Theorem 1, (1). For each $n \in \mathbb{N}$, let

$$X_n = \{ p \in X : \text{ord}(p, F_n) \geq n \},$$

where $F_n = \{ F_\alpha : \alpha \in A_n \}$. Since X is Fréchet and each F_n is HCP in X, each X_n is a discrete closed subset of X. Let

$$X_{0n} = \{ p \in X : F_\alpha - \text{Int} V_\alpha = \{ p \} \text{ for some } \alpha \in A_n, \ n \in \mathbb{N} \}.$$

Then obviously $\bigcup \{ X_{0n} : n \in \mathbb{N} \}$ is a σ-discrete closed subset of X. For each n, by the method of [10] we can construct a σ-discrete family H_n of closed subsets of X from

$$B_n = F_n \cup \{ (x) : x \in X_{0n} \cup X_n \}$$

such that H_n satisfying the following: For each subfamily $B_0 \subseteq B_n$, if $p \in \bigcap B_0 - \bigcup (B_n - B_0)$, then $p \in H \subseteq \bigcap B_0 - \bigcup (B_n - B_0)$ for some $H \in H_n$. For each $H \in H_n$, $n \in \mathbb{N}$, with $H \cap (X_{0n} \cup X_n) = \emptyset$, choose an open subset $V(H)$ of X such that

$$H \subseteq V(H) \subseteq \bigcap \{ \text{Int} V_\alpha : \alpha \in \delta \},$$
where δ is a finite subset of A_n such that

$$H \subseteq \bigcap \{P_a : a \in \delta\} - \bigcup \{P_a : a \notin A_n - \delta\}.$$

For each point $p \in X$, let $\{O_n(p) : n \in \mathbb{N}\}$ be a local base at p in X. Construct the pair-collection

$$P' = \{(p, O_n(p)) : p \in X_k, k, n \in \mathbb{N}\} \cup \{(p, O_n(p)) : p \in X_{0n}, k, n \in \mathbb{N}\} \cup \{(H, V(H)) : H \in H_n', n \in \mathbb{N}\},$$

where

$$H_n' = \{H \in H_n : H \cap (X_{0n} \cup X_n) = \emptyset\}, n \in \mathbb{N}.$$

Then it is easy to see that P' is a σ-discrete pair-network for X such that the second subset of each pair of P' is open in X, proving that X is developable.

(3) \rightarrow (2): It suffices to show that X is first countable.

Let $P = \bigcup \{P_n : n \in \mathbb{N}\}$ be a pair-network for X satisfying the same condition as in Theorem 1, (1), where each $P_n = \{(F_a, V_a) : a \in A_n\}$ is locally finite in X. Without loss of generality we can assume $A_n \subseteq A_{n+1}$, $n \in \mathbb{N}$. For each point p, $A_n(p) = \{a \in A_n : p \in F_a\}, n \in \mathbb{N}$, is finite. For each n, set

$$\Delta_n = \{\delta \subseteq A_n(p) : p \in \text{Int } V(\delta)\},$$

where

$$V(\delta) = \bigcup \{V_a : a \in \delta\}, \delta \in \Delta_n.$$

We show that

$$\{\text{Int } V(\delta) : \delta \in \bigcup \{\Delta_n : n \in \mathbb{N}\}\}$$

is a local base at p in X. Let $p \in U \subseteq \tau_X$. For each n, we take

$$\delta_n \subseteq A_n(p)$$

such that

$$\delta_n = \{a \in A_n(p) : V_a \subseteq U\}.$$

Assume $p \notin \text{Int } V(\delta_n)$ for each n. Since X is strongly Fréchet, there exists a sequence $\{p_n : n \in \mathbb{N}\}$ of points of X such that $p_n \rightarrow p$ and $p_n \notin V(\delta_n), n \in \mathbb{N}$. By the property of P, there
exists \(a \in A_n, \ n \in \mathbb{N} \), such that \(p \in F_a \subseteq V_a \subseteq U \) and \(\{ p_n \} \)

is cofinal in \(V_a \). But this is a contradiction. Hence we have \(p \in \text{Int} \ V(\delta_n) \subseteq U \) for some \(m \).

As the corollaries, we have two: The former is already known [9, Cor. to Proposition 4] and the latter is known for the case when \(X \) is an Moore space [3, Corollary 1.1]. The proof of the latter is the same as that of \((2) \Rightarrow (1)\).

COROLLARY 1. If a closed image of a developable space is first countable, then it is developable.

COROLLARY 2. If \(X \) is a closed image of a developable space, then \(X = X_0 \cup X_1 \), where \(X_0 \) is a \(\sigma \)-discrete closed subset and \(X_1 \) is a developable space.

The proof of \((3) \Rightarrow (2)\) above assures the following theorem:

THEOREM 4. If \(X \) is a strongly Fréchet space and \(X \in \mathcal{C} \), then \(X \) has a \(\sigma \)-HCP pair-network such that all \(V_a \) are open in \(X \).

But we do not know whether such a space is developable.

QUESTION 1. If \(X \) is a strongly Fréchet space and \(X \in \mathcal{C} \), then is \(X \) developable?

The following gives another characterization of the class \(\mathcal{C} \), which is similar to that of Lašnev spaces in terms of \(\sigma \)-HCP \(k \)-networks by Foged.
THEOREM 5. A space \(X \) belongs to \(C \) if and only if \(X \) is a Fréchet space which has a \(\sigma \)-HCP pair-network \(P \) such that if \(K \subset U \subset \tau_X \) with \(K \) compact in \(X \), then there exists a finite subcollection \(\{(F_a, V_a) : a \in \delta\} \) of \(P \) such that
\[
K \subset \bigcup \{V_a : a \in \delta\} \subset U
\]
and \(K \cap F_a \neq \emptyset \) for each \(a \in \delta \).

PROOF. If part is trivial. Only if part: Let \(P \) be a \(\sigma \)-HCP pair-network for \(X \) satisfying the condition of Theorem 1, (1). Assume \(A_n \subset A_{n+1} \) for each \(n \). For each \(\delta \subset A_n \), \(n \in \mathbb{N} \), set
\[
F(\delta) = \bigcap \{F_a : a \in \delta\}, \quad V(\delta) = \bigcup \{V_a : a \in \delta\}
\]
and
\[
Q = \{(F(\delta), V(\delta)) : \delta \subset A_n, \ n \in \mathbb{N}\}.
\]
Then \(Q \) is a \(\sigma \)-HCP pair-network for \(X \). We shall show that \(Q \) has the required property. Let \(K \subset U \subset \tau_X \) with \(K \) compact in \(X \). For each \(n \in \mathbb{N} \), let
\[
A_{0n} = \{a \in A_n : F_a \cap K \neq \emptyset \text{ and } V_a \subset U\}.
\]
Then \(\text{HCP-ness of } \{F_a : a \in A_n\} \) implies
\[
\{F_a : a \in A_{0n}\}|K = \{F_1, F_2, \ldots, F_{k(n)}\}
\]
with some \(k(n) \in \mathbb{N} \), [7, Proposition 3.7]. For each \(i \) with \(1 \leq i \leq k(n) \), choose \((F(\delta_{n_1}), V(\delta_{n_1})) \in Q \) such that
\[
\delta_{n_1} = \{a \in A_{0n} : F_a \cap K = F_i\}.
\]
Obviously \(\bigcup \{V(\delta_{n_1}) : 1 \leq i \leq k(n)\} \subset U \). Assume
\[
K \not\subset \bigcup \{V(\delta_{n_1}) : 1 \leq i \leq k(n)\}
\]
for each \(n \). Choose a sequence \(\{p_n : n \in \mathbb{N}\} \) of points of \(X \) such that
\[
p_n \in K \setminus \bigcup \{V(\delta_{n_1}) : 1 \leq i \leq k(n)\}, \ n \in \mathbb{N}.
\]
Since \(K \) is metrizable, \(\{p_n\} \) has a convergent subsequence \(Z \) to some point \(p \in K \) in \(X \). By the property of \(P \), there exists \(a_0 \in A_m, \ m \in \mathbb{N} \), such that \(p \in F_{a_0} \subset V_{a_0} \subset U \) and
Z is cofinal in V_{α_0}. But this is a contradiction because

$$V_{\alpha_0} \subset \bigcup \{V(\delta_{m_l}) : 1 \leq l \leq k(m)\}.$$

This completes the proof.

Viewing Theorem 1, (1), we can easily observe that
a space X belongs to C if and only if X is a Fréchet space

having a σ-HCP pair-network P such that the following

conditions:

(C1) For each $\alpha \in A$, there exists an open subset W_α of X
such that $V_\alpha = F_\alpha \cup W_\alpha$.

(C2) If $Z \rightarrow p \in U \in \tau_X$ and $Z \subset X-\{p\}$, then there exists

$\alpha \in A$ such that $p \in F_\alpha \subset V_\alpha \subset U$, $F_\alpha - \{p\} \subset W_\alpha$ and Z is

residual in W_α.

By setting one more additional condition to P, we define
a class C' of spaces as follows: A space X belongs to C'

if and only if X is a Fréchet space having a σ-HCP pair-network

P satisfying the following additional condition (IP) besides

(C1) and (C2):

(IP) For each n, $W_n = \{W_\alpha : \alpha \in A_n\}$ is an IP family
of open subsets of X.

With respect to the properties of C', the following
holds and that corresponds to Theorem 2 for C.

THEOREM 6. C' has the following properties:

(1) C' is closed under closed mappings.

(2) C' is closed under subspaces.

(3) A closed image of an orthocompact developable space

belongs to C'.

(4) C' is not finitely productive.
PROOF. (2) is obvious and (4) is a direct consequence of Theorem 9. So, we state the proofs of (1) and (3) only. First, we show (1). Let \(f : X \to Y \) be a closed mapping of \(X \) onto a space \(Y \) and let \(X \subseteq C' \). Let \(P \) be a \(\sigma \)-HCP pair-network for \(X \) assured by the definition of \(X \subseteq C' \). Assume \(A_n \subseteq A_{n+1} \), \(n \in \mathbb{N} \). For each \(\delta \subseteq A_n \), \(n \in \mathbb{N} \), set

\[
F(\delta) = \bigcap \{ f(P_\alpha) : \alpha \in \delta \},
\]

\[
W(\delta) = Y - f(X - \bigcup \{ W_\alpha : \alpha \in \delta \}),
\]

\[
V(\delta) = F(\delta) \cup W(\delta).
\]

Obviously \(\{ F(\delta) : \delta \subseteq A_n \} \) is a HCP family of closed subsets and \(\{ W(\delta) : \delta \subseteq A_n \} \) is an IP family of open subsets of \(Y \). Thus, the pair-collection

\[
P' = \{ (F(\delta), V(\delta)) : \delta \subseteq A_n, n \in \mathbb{N} \}
\]

is a \(\sigma \)-HCP pair-network for \(Y \) satisfying (C1) and (IP).

We show that \(P' \) satisfies the condition (C2) in \(Y \). Let \(Z \to y \subseteq U \subseteq \tau_X \) and \(Z \subseteq Y - \{ y \} \). For each \(n \), let

\[
\delta_n = \{ \alpha \subseteq A_n : P_\alpha \cap f^{-1}(y) \neq \phi \}
\]

and

\[
V_\alpha \subseteq f^{-1}(U).
\]

Then obviously, without loss of generality we can assume \(y \subseteq F(\delta_n) \subseteq V(\delta_n) \subseteq U \) for each \(n \in \mathbb{N} \).

Claim 1: \(F(\delta_n) - \{ y \} \subseteq W(\delta_n) \) for some \(m \).

To see it, assume the contrary. Then we can choose a point \(p_n \in F(\delta_n) - \{ y \} - W(\delta_n) \) for each \(n \). Since \(\{ F(\delta_n) : n \in \mathbb{N} \} \) forms a decreasing local network at \(y \) in \(Y \), \(p_n \to y \) as \(n \to \infty \) in \(Y \). Using the closedness of \(f \) and Fréchet-ness of \(X \), we can choose a sequence \(\{ q_n(k) : k \in \mathbb{N} \} \) of points of \(X - f^{-1}(y) \) such that \(\{ q_n(k) \} \) converges to some point of \(f^{-1}(y) \), \(f(q_n(k)) = p_n(k) \).
and
\[q_n(k) \subseteq \bigcup \{ W_\alpha : \alpha \in \delta_n(k) \} \quad \text{for each } k \]
where \(k \leq n(k) < n(k+1) \), \(k \in \mathbb{N} \). By (C2) of \(C' \), there exists \(\alpha \in A_n \), \(n \in \mathbb{N} \), such that \(\{ q_n(k) \} \) is residual in \(W_\alpha \) and \(\alpha \in \delta_n \). But this is a contradiction. Hence Claim 1 is established.

By the same argument as above, we can show that \(Z \) is residual in \(W(\delta_m) \) for some \(m \). This completes the proof of (1).

Since an orthocompact developable space \(X \) has a \(\sigma \)-discrete pair-network \(P \) such that for each \(n \) \(\{ V_\alpha : \alpha \in A_n \} \) is an IP family of open subsets of \(X \), obviously \(X \in C' \), which combined with (1) implies (3).

We give two lemmas used in the proof of Theorem 7.

Lemma 1. Let \(X \in C' \). Then for each discrete family \(\{ F_\lambda : \lambda \in \Lambda \} \) of closed subsets of \(X \) there exist families \(\{ W_\lambda : \lambda \in \Lambda \} \) of open subsets of \(X \) satisfying the following:

1. For each \(\lambda \), \(W_\lambda \) is an outer base of \(F_\lambda \) in \(X \).
2. \(\bigcup \{ W_\lambda \mid (X - F_\lambda) : \lambda \in \Lambda \} \) is IP in \(X \).

Proof. For each \(\lambda \in \Lambda \), there exists a sequence \(\{ O(\lambda, n) : n \in \mathbb{N} \} \) of open subsets of \(X \) such that \(F_\lambda = \bigcap \{ O(\lambda, n) : n \in \mathbb{N} \} \), \(O(\lambda, n+1) \subseteq O(\lambda, n) \subseteq O(F_\lambda, n) \cap (X - \bigcup \{ F_\mu : \mu \uparrow \lambda \}) \).

Let \(P \) be a \(\sigma \)-HCP pair-network for \(X \) assured by \(X \in C' \). Let \(\lambda \in \Lambda \) be fixed for a while. Set
\[
W_n = \{ W_\alpha \cap O(\lambda, n) : \alpha \in A_n \}, \quad n \in \mathbb{N}.
\]
Let \(\{ W(\delta) : \delta \in \Delta(\lambda) \} \) be the totality of subfamilies of
\[\bigcup \{ w_n : n \in \mathbb{N} \} \text{ such that} \]

\[W(\delta) = F_\lambda \cup \left(\bigcup \{ w(\delta) \} \right) \]

is an open neighborhood of \(F_\lambda \) in \(X \). We show that \(\{ W(\delta) : \delta \in \Delta(\lambda) \} \) is an outer base of \(F_\lambda \) in \(X \). Let \(F_\lambda \subseteq O \subseteq \tau_X \). Let

\[w_n' = \{ W \subseteq w_n : W \subseteq O \}, \quad n \in \mathbb{N}, \]

\[w(\delta) = \bigcup \{ w_n' : n \in \mathbb{N} \}. \]

Then \(F_\lambda \subseteq W(\delta) \subseteq O \). To see that \(W(\delta) \) is open in \(X \), assume the contrary. Take a point \(p \in F_\lambda \setminus \text{Int } W(\delta) \). Since \(X \) is Préchet, there exists a sequence \(Z \) of points of \(X \setminus W(\delta) \) such that \(Z \to p \) in \(X \). By the property of \(P \), we can choose \(a \in A_n \), \(n \in \mathbb{N} \), such that

\[p \in F_a \subset V_a \subset O, \quad F_a \setminus \{ p \} \subset W_a \]

and \(Z \) is residual in \(W_a \). This implies also that \(Z \) is residual in \(W_a \cap O(\lambda, n) \). But this is a contradiction. From the property \((IP) \) of \(P \), we can easily see that \((2) \) is satisfied for thus constructed

\[w_\lambda = \{ W(\delta) : \delta \in \Delta(\lambda) \}, \quad \lambda \in \Lambda. \]

This completes the proof.

A space \(X \) is called d-IP-expandable [6] if for each discrete family \(\{ F_\lambda : \lambda \in \Lambda \} \) of closed subsets and each family \(\{ U_\lambda : \lambda \in \Lambda \} \) of open subsets of \(X \) such that \(F_\lambda \subseteq U_\lambda \), \(\lambda \in \Lambda \), there exists an IP family \(\{ V_\lambda : \lambda \in \Lambda \} \) of open subsets of \(X \) such that \(F_\lambda \subseteq V_\lambda \subseteq U_\lambda \), \(\lambda \in \Lambda \).

Lemma 2. If \(X \in C' \), then \(X \) is orthocompact.

Proof. By the lemma above, \(X \) is d-IP-expandable.

Since a submetacompact, d-IP-expandable space is orthocompact, [6, Theorem 2.5], \(X \) is orthocompact.
From Lemmas 2 and 3, we have a characterization of orthocompact developable spaces in terms of pair-networks as follows:

THEOREM 7. For a space X, the following are equivalent:

1. X is an orthocompact developable space.
2. X is a first countable space and $X \in C'$.

A space X is called **d-paracompact** \([1]\) if for each open cover \mathcal{U} of X, there exists a \mathcal{U}-mapping of X onto a developable space. A space X is called **subdevelopable** if τ_X contains a developable subtopology. With respect to the notions, we have the following:

THEOREM 8. If $X \in C'$, then X is both d-paracompact and subdevelopable.

PROOF. If $X \in C'$, then by Lemma 1 X is D-expandable and hence id d-paracompact \([1, \text{Theorem 1}]\). Since a d-paracompact space with a $G_δ$-diagonal is subdevelopable \([8, \text{Theorem 4}]\), X is subdevelopable.

But we do not know whether the above holds for the class C'.

QUESTION 2. If $X \in C$, then is X d-paracompact or subdevelopable?

It is well-known as Heyman's result that for any non-discrete spaces X, Y, the product space $X \times Y$ being Lašnev means both X, Y are metrizable. This is true for the class C'.
we state it more generally.

Theorem 9. Let X, Y be non-discrete spaces. If
$X \times Y \in C'$, then $X \times Y$ is an orthocompact developable space.

Proof. By the virtue of Theorem 7, it suffices to show that both X, Y are first countable. Let P be a σ-HCP pair-network for $X \times Y$ defining $X \times Y \in C'$. Let Z be a sequence of points of X such that $Z \rightarrow x$ and $Z \subseteq X - \{x\}$. Let y be an arbitrary point of Y. We show that y has a countable local base in Y. Obviously

$$Z' = \{(z_k, y) : k \in \mathbb{N}\} \rightarrow (x, y)$$

in $X \times Y$. Since $\{W_\alpha : \alpha \in A_n\}$, $n \in \mathbb{N}$, is IP in $X \times Y$ by (IP), for each pair $(m, n) \in \mathbb{N}^2$ with

$$(z_m, y) \in W_\alpha \quad \text{for some } \alpha \in A_n,$$

there exists an open subset $O(m, n)$ of X such that

$$(z_m, y) \in O(m, n) \subseteq \bigcap \{W_\alpha : \alpha \in A_n\},$$

$$(z_m, y) \in W_\alpha.$$

Let N_0 be the totality of such pairs (m, n). Let $p : X \times Y \rightarrow Y$ be the projection. By the property of P, it is easily seen that $\{p(O(m, n)) : (m, n) \in N_0\}$ is a local base at y in Y. This completes the proof.

Corollary. Let X, Y be non-discrete spaces. If $X \times Y$ is the closed image of an orthocompact developable space, then $X \times Y$ is an orthocompact developable space.

But, we do not know whether Theorem 9 holds for the class C:
QUESTION 3. For non-discrete spaces X, Y, does $X \times Y$ imply that $X \times Y$ is developable?

Finally, we pose the following question about the characterization of a closed image of a developable space:

QUESTION 4. If a space X belongs to C, then is X a closed image of a developable space?

REFERENCES

[8] , On d-paracompact, P-, σ- and Σ-spaces, manuscript.

[10] F. Siwiec and J. Nagata, A note on nets and metrization,

Department of Mathematics
Joetsu university of Education
Joetsu, Niigata 943
Japan