<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>CONTINUOUS FUNCTIONALS ON FUNCTION SPACES (General Topology and Geometric Topology)</td>
</tr>
<tr>
<td>著者</td>
<td>Morishita, Kazuhiko</td>
</tr>
<tr>
<td>引用</td>
<td>数理解析研究所講究録 1992年5月号 784: 40-44</td>
</tr>
<tr>
<td>発行日</td>
<td>1992-05</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/82564</td>
</tr>
<tr>
<td>タイプ</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>テキストersion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
CONTINUOUS FUNCTIONALS ON FUNCTION SPACES

森下和彦 (Kazuhiko Morishita)

Institute of Mathematics, University of Tsukuba

In this note, we assume that all spaces are Tychonoff. Let $C(X)$ be the set of all real-valued continuous functions on X. We call a real-valued function on $C(X)$ a functional. $C_p(X)$, $C_k(X)$ and $C_n(X)$ denote function spaces over X with the pointwise convergent topology, the compact-open topology and the sup-norm topology respectively. For a family \mathcal{A} of sets, we write $\bigcap \mathcal{A} = \bigcap \{A : A \in \mathcal{A}\}$. For a function f on X and a subset M of X, the restriction of f to M is denoted by $f|_M$. The symbol $\pi_M : C_k(X) \to C_k(M)$ denotes the restriction map from X to a subspace M. \mathbb{R}, ω and ω_1 denote the real line, the first infinite ordinal and the first uncountable ordinal respectively.

First, we consider linear continuous functionals on $C_p(X)$. For any point x in X, we can suppose that x is a functional, which carries f into $f(x)$ for any f in $C(X)$, on $C(X)$. Obviously x is a linear continuous functional on $C_p(X)$. The following fact is well-known.

Fact 1. Let λ be a non-constant linear continuous functional on $C_p(X)$. There exist a finite subset $\{x_1, \ldots, x_n\}$ and non-zero numbers $\{\alpha_1, \ldots, \alpha_n\}$ such that $\lambda = \sum_{i=1}^{n} \alpha_i x_i$.

By Fact 1, we have;

- (1) For any pair (f, g) of functions in $C_p(X)$, if $f|_{\{x_1, \ldots, x_n\}} = g|_{\{x_1, \ldots, x_n\}}$ holds, then $\lambda(f) = \lambda(g)$ holds,
• (2) There exists a real-valued continuous function $\tilde{\lambda}$ on $\mathbb{R}^{\{x_1, \ldots, x_n\}}$ such that $\lambda = \tilde{\lambda} \circ \pi_{\{x_1, \ldots, x_n\}}$.

In (2), the continuity of $\tilde{\lambda}$ is deduced by the following fact.

Fact 2. Let F be a closed subset of X and π_F the restriction map from $C_p(X)$ into $C_p(F)$. Then π_F is an open map onto $\pi_F(C_p(X))$.

Below, we shall deal with non-linear functionals in general. In view of (1), (2) and Fact 2, we define a notion.

Definition. Let ξ be a functional on $C(X)$. A subset S of X is said to be a support for ξ if S is closed in X and $\xi(f) = \xi(g)$ holds for any pair (f, g) of functions in $C(X)$ such that $f|_{S} = g|_{S}$. $\text{Supp} \xi$ denotes the set of all supports for a functional ξ on $C(X)$.

By Fact 2, if ξ is a continuous functional on $C_p(X)$ and S is a support for ξ, then there exists a real-valued continuous function $\tilde{\xi}$ on $\pi_S(C_p(X))$ such that $\xi = \tilde{\xi} \circ \pi_S$.

Moreover, we have a condition on the set $\{x_1, \ldots, x_n\}$ in Fact 1.

• (3) If S is a support for λ, then $\{x_1, \ldots, x_n\} \subset S$ holds.

(3) says that the set $\{x_1, \ldots, x_n\}$ is minimal in supports for λ in Fact 1. In general, we define a concept;

Definition. Let ξ be a functional on $C(X)$ and S a support for ξ. S is said to be minimal if every support for ξ contains S.

By (1) and (3), we have that every linear continuous functional on $C_p(X)$ has the finite minimal support. Generally, we have;
Theorem 3. ([1]) The minimal support S for any continuous functional on $C_p(X)$ exists and S is a separable subspace of X.

In the proof of Theorem 3, we show that, for any continuous functional ξ on $C_p(X)$, $\bigcap \text{Supp} \xi$ is a support for ξ.

By Theorem 3, we have an operation from the set of all continuous functionals on $C_p(X)$ to the set of all closed separable subspaces of X. The following is remarkable.

Remark 4. For any countable subset A of X, there exists a continuous functional ξ_A on $C_p(X)$ such that $\bigcap \text{Supp} \xi_A = \overline{A}$.

Using the same idea in the proof of Theorem 3, we can prove the following theorem.

Theorem 5. Let \mathcal{F} be a non-empty proper closed subset of $C_p(X)$. We put

$$\text{Supp} \mathcal{F} = \{S \subset X : S \text{ is closed in } X, \pi_S^{-1} (\pi_S (\mathcal{F})) = \mathcal{F}\}.$$

Then the set $\bigcap \text{Supp} \mathcal{F}$ belongs to $\text{Supp} \mathcal{F}$.

This theorem gives a result on the minimal support.

Theorem 6. ([1]) Let ξ be a non-constant continuous functional on $C_p(X)$. For an $r \in \xi(C_p(X))$, we put $S_r = \bigcap \text{Supp} \xi^{-1}(r)$. Then we have

$$\bigcap \text{Supp} \xi = \overline{\cup \{S_r : r \in \xi(C_p(X))\}}.$$

For function spaces with the compact-open topology, we have a similar result.

Theorem 7. ([2]) The minimal support for any continuous functional on $C_k(X)$ exists.
Making a comparison between Theorem 3 and Theorem 7, we have the following question naturally.

Question. Let S be the minimal support in Theorem 7. Does S have a dense σ-compact subset?

Below, we consider this question. For the proofs of the following results, see [2]. Let τ be a cardinal. A space X is said to be *almost τ-compact* if for any $\alpha < \tau$, there exists a non-empty compact subset K_α of X such that $X = \bigcup \{K_\alpha : \alpha < \tau\}$. Almost ω-compact spaces are said to be *almost σ-compact*. The smallest cardinal τ such that X is almost τ-compact, is denoted by $cd(X)$.

Definition. A space X has the *property (σ)* if, for any continuous functional ξ on $C_k(X)$, the closed subset $\cap Supp \xi$ of X is almost σ-compact.

First, we give a sufficient condition of the property (σ).

Theorem 8. If the space $C_k(X)$ satisfies the countable chain condition, then X has the property (σ).

Vidossich [4] and Nakhmanson [3] proved that $C_k(X)$ satisfies the countable chain condition if X is submetrizable. We have the following corollary.

Corollary 9. If X is submetrizable (in particular, metrizable), then X has the property (σ).

Proposition 10. The space ω_1 has the property (σ).

Remark 11. Nakhmanson [3] noted that $C_k(\omega_1)$ does not satisfy the countable chain condition.
In special cases, we have a condition that the property (σ) necessarily satisfies.

Theorem 12. Let X be a space which has a closed-and-open subset Y such that $\text{cd}(Y) = \omega_1$. If X has the property (σ), then every compact subset of X is metrizable.

Using Theorem 12, we have a space which does not have the property (σ).

Example. Let $D(\omega_1)$ be the discrete space whose cardinarity is ω_1. The space $D(\omega_1) \oplus (\omega_1 + 1)$ does not have the property (σ).

Remark 13. The above example shows that the property (σ) is not preserved by topological sums in general. In fact, since $C_k(D(\omega_1)) = C_p(D(\omega_1))$ holds, every continuous functional on $C_k(D(\omega_1))$ has the countable minimal support. Obviously the space $\omega_1 + 1$ has the property (σ).

Final Remarks. Theorem 5 and Theorem 6 are valid for $C_k(X)$ (See [2]). Theorem 3 and Theorem 5 are not valid for $C_n(X)$. For any f in $C_n(\omega_1)$, \bar{f} denotes the unique extension of f to $\omega_1 + 1$. We define a functional ξ on $C_n(\omega_1)$ by the rule $\xi(f) = \bar{f}(\omega_1)$ for any f in $C_n(\omega_1)$. Then ξ is continuous obviously. Since $[\alpha, \omega_1) \in \text{Supp} \xi$ holds for any $\alpha < \omega_1$, we have $\cap \text{Supp} \xi = \emptyset$. Put $\mathcal{F} = \{f \in C_n(\omega_1) : \bar{f}(\omega_1) = 0\}$. Then \mathcal{F} is a non-empty proper closed subset of $C_n(\omega_1)$. Similarly, we have $\cap \text{Supp} \mathcal{F} = \emptyset$ also.

References

