Parabolic Variational Inequality for the Cahn-Hilliard Equation with Constraint

N. KENMOCHI, M. NIEZGODKA

and

I. PAWLOW

1. Introduction

In this paper we study the Cahn-Hilliard equation with constraint by means of subdifferential operator techniques. Such a state constraint problem was recently proposed by Blowey-Elliott [1] as a model of diffusive phase separation. The questions of the existence, uniqueness and asymptotic behaviour of solutions, treated in [1] for the special case of the deep quench limit, are considered in our paper without such a restriction.

The standard Cahn-Hilliard equation is a model of diffusive phase separation in isothermal binary systems, and in terms of the concentration u of one of the components it has the form

$$u_t + \nu \Delta^2 u - \Delta f(u) = 0 \quad \text{in} \quad Q_T = (0, T) \times \Omega.$$ \hspace{1cm} (1.1)

Here Ω is a bounded domain in $\mathbb{R}^N, N \geq 1$, with a smooth boundary $\Gamma = \partial \Omega$, ν is a positive constant related to the surface tension, $f(u)$ corresponds to the volumetric part of the chemical potential difference between components and is given by

$$f(u) = F'(u),$$ \hspace{1cm} (1.2)

where $F(u)$ is a homogeneous (volumetric) free energy parametrized by temperature θ, with the characteristic double-well form for θ below the critical temperature θ_c. Usually the free energy is approximated by polynomials $F: \mathbb{R} \to \mathbb{R}$, e.g. in the simplest case by quartic polynomial

$$F(u) = F_o(\theta) + \alpha_2(\theta - \theta_c)u^2 + \alpha_4u^4$$ \hspace{1cm} (1.3)

with constants $\alpha_2, \alpha_4 > 0$ and a given function $F_o(\theta)$ of temperature. To preserve an explicit physical sense, the state variable u often is subject to some constraints, e.g. in the case of concentration natural limitation is

$$0 \leq u \leq 1.$$ \hspace{1cm} (1.4)

Then the free energy $F(u)$ can be assumed in the form of the so-called regular solution model

$$F(u) = F_o(\theta) + \alpha_0[\log u + (1 - u)\log(1 - u)] + \alpha_1(\theta - \theta_c)u(u - 1)$$ \hspace{1cm} (1.5)

with a function $F_o(\theta)$ and positive constants α_0, α_1. The corresponding form of the chemical potential $f(u)$ is shown in Fig. 1. Moreover, as the deep quench limit of (1.5), i.e. as the
In particular, if \(v_0 \in D \), then (2.1) holds for \(0 = s < t \), too.

The third theorem is concerned with the large time behaviour of the solution \(v(t) \) of (VI).

Theorem 2.3. In addition to the assumptions \((\varphi 1)-(\varphi 3)\) and \((p)\) suppose that \(\alpha' \in L^1(\mathbb{R}_+) \), and

\[(\varphi 4) \varphi^t \text{ converges to a proper l.s.c. convex function } \varphi^\infty \text{ on } H \text{ in the sense of Mosco [11] as } t \to \infty, \text{ i.e.} \]

\((M1) \) for any \(z \in D(\varphi^\infty) \) there exists a function \(w : \mathbb{R}_+ \to H \) such that \(w(t) \to z \) in \(H \) and \(\varphi^t(w(t)) \to \varphi^\infty(z) \) as \(t \to \infty; \)

\((M2) \) if \(w : \mathbb{R}_+ \to H \) and \(w(t) \to z \) weakly in \(H \) as \(t \to \infty \), then \(\lim \inf_{t \to \infty} \varphi^t(w(t)) \geq \varphi^\infty(z). \)

Let \(v \) be the solution of (VI) on \(\mathbb{R}_+ \) associated with initial datum \(v_0 \in D \), and denote by \(\omega(v_0) \) the \(\omega \)-limit set of \(v(t) \) in \(H \) as \(t \to \infty \), i.e. \(\omega(v_0) := \{ z \in H; v(t_n) \to z \text{ in } H \} \) for some \(t_n \) with \(t_n \to \infty \). Then \(\omega(v_0) \neq \emptyset \) and

\[\partial \varphi^\infty(v_\infty) + p(v_\infty) \ni 0 \quad \text{for all } v_\infty \in \omega(v_0). \]

Finally we give a result on the continuous dependence of solutions of (VI) upon the data \(v_\infty, \{ \varphi^t \} \) and \(p(\cdot) \).

Theorem 2.4. Let \(\{ \varphi^t_n \} \) be a sequence of families of proper l.s.c. convex functions on \(H \) such that conditions \((\varphi 1)-(\varphi 3)\) are satisfied for common positive constants \(C_0, C_1 \) and a common function \(\alpha \in W^{1,1}_{\text{l.o.c}}(\mathbb{R}_+) \). Also, let \(p_n \) be a sequence of Lipschitz continuous operators in \(H \) such that condition \((p)\) is satisfied for a common Lipschitz constant \(L_0 > 0 \) and a non-negative \(C^1 \)-function \(P_n \) on \(H \). Suppose that for each \(t \leq 0 \), \(\varphi^t_n \) converges to \(\varphi^t \) on \(H \) in the sense of Mosco as \(n \to \infty \), i.e.

\((m1) \) for any \(z \in D \), there exists \(\{ z_n \} \subset H \) such that \(z_n \in D_n (= D(\varphi^t_n)) \), \(z_n \to z \) in \(H \) and \(\varphi^t_n(z_n) \to \varphi^t(z) \) as \(n \to \infty; \)

\((m2) \) if \(z_n \in H \) and \(z_n \to z \) weakly in \(H \) as \(n \to \infty \), then \(\lim \inf_{n \to \infty} \varphi^t_n(z_n) \geq \varphi^t(z). \)

Furthermore suppose that for each \(z \in H , \)

\[p_n(z) \to p(z) \quad \text{in } H, \quad P_n(z) \to P(z) \quad \text{as } n \to \infty. \]
The cases (1.3), (1.5) and (1.6) of free energies can be written in the form (1.7) with appropriate functions $\hat{\beta}$ and \hat{g}, and these special cases have been studied by Blowey-Elliot [1] and Elliott-Luckhaus [5].

2. Abstract results

We shall study evolution system (1.8)-(1.10) in an abstract framework. Let H and V be (real) Hilbert spaces such that V is densely and compactly embedded in H. V^* will be the dual of V. Then, identifying H with its dual, we have

$$V \subset H \subset V^*$$

with dense and compact injections. Further, let J^* be the duality mapping from V^* onto V, and for $t \in \mathbb{R}_+$, let $\varphi^t(\cdot)$ be a proper, l.s.c., non-negative and convex function on H. We shall consider the following problem (VI):

$$\begin{cases} J^*(v'(t)) + \partial \varphi^t(v(t)) + p(v(t)) \ni 0 & \text{in } H, \ t > 0, \\ v(0) = v_0, \end{cases}$$

where $v' = (\frac{d}{dt})v$, $\partial \varphi^t$ is the subdifferential of φ^t in H; $p(\cdot) : H \rightarrow H$ is a Lipschitz continuous operator and v_0 a given initial datum.

When it is necessary to indicate the data φ^t, p and v_0 explicitly, (VI) is denoted by $(VI; \varphi^t, p, v_0)$.

Throughout this paper we use the following notations:

- (\cdot, \cdot): the inner product in H;
- $\langle \cdot, \cdot \rangle$: the duality pairing between V^* and V;
- $| \cdot |_W$: the norm in W for any normed space W;
- J: the duality mapping from V onto V^*, hence $J^* = J^{-1}$.

We use some basic notions and results about monotone operators and subdifferentials of convex functions; for details we refer to Brézis [2] and Lions [10].

We shall discuss $(VI) = (VI; \varphi^t, p, v_0)$ under the following additional hypotheses:

(\varphi 1) The effective domain $D(\varphi^t) = \{ z \in H; \varphi^t(z) < \infty \}$ of φ^t is independent of $t \in \mathbb{R}_+$, $D := D(\varphi) \subset V$ and

$$\varphi^t(z) \geq C_0 |z|_V^2$$

for all $z \in V$ and all $t \in \mathbb{R}_+$,

where C_0 is a positive constant.

(\varphi 2) $(z_1^* - z_2^*, z_1 - z_2) \geq C_1 |z_1 - z_2|_V^2$ for all $z_i \in D$, $z_i^* \in \partial \varphi^t(z_i), i = 1, 2$, and all $t \in \mathbb{R}_+$, where C_1 is a positive constant.

(\varphi 3) There is a function $\alpha \in W_{\text{loc}}^{1,1}(\mathbb{R}_+)$ such that

$$\varphi^t(z) - \varphi^s(z) \leq |\alpha(t) - \alpha(s)|(1 + \varphi^s(z))$$

for all $z \in D$ and $s, t \in \mathbb{R}_+$ with $s \leq t$.
(p) p is a Lipschitz continuous operator in H and there is a non-negative C^1-function $P : H \rightarrow \mathbb{R}$ whose gradient coincides with p, i.e. $p = \nabla P$; hence

$$\frac{d}{dt} P(w(t)) = (p(w(t)), w'(t)) \quad \text{for a.e. } t \in \mathbb{R}, \text{ if } w \in W^{1,2}_{\text{loc}} \mathbb{R}_{+}; H.$$

We now introduce a notion of the solution in a weak sense to problem (VI).

Definition 2.1. (i) Let $0 < T < \infty$. Then a function $v : [0, T] \rightarrow H$ is called a solution of (VI) on $[0, T]$, if $v \in L^2(0, T; V) \cap C([0, T]; V^*)$, $v' \in L^2_{\text{loc}}((0, T]; V^*)$, $v(0) = v_o$, $\varphi^t(v) \in L^1(0, T)$ and

$$-J'(v'(t)) - p(v(t)) \in \partial \varphi^t(v(t)) \quad \text{for a.e. } t \in [0, T].$$

(ii) A function $v : \mathbb{R}_{+} \rightarrow H$ is called a solution of (VI) on \mathbb{R}_{+}, if the restriction of v to $[0, T]$ is a solution of (VI) on $[0, T]$ for every finite $T > 0$.

Our results for (VI) are given as follows.

Theorem 2.1. Assume that $(\varphi 1)-(\varphi 3)$ and (p) are satisfied. Let T be any positive number. Then the following two statements (a) and (b) hold:

(a) If v_o is given in the closure D_\star of D in V^*, then (VI) has one and only one solution v on $[0, T]$ such that

$$t^\frac{1}{2} v' \in L^2(0, T; V^*), \quad \sup_{0 < t \leq T} t \varphi^t(v(t)) < \infty.$$

(b) If $v_o \in D$, then the solution v of (VI) on $[0, T]$ satisfies that

$$v' \in L^2(0, T; V^*), \quad \sup_{0 \leq t \leq T} \varphi^t(v(t)) < \infty;$$

hence $v \in C([0, T]; H)$.

The second theorem is concerned with the energy inequality for (VI).

Theorem 2.2. Assume that $(\varphi 1)-(\varphi 3)$ and (p) hold. Let v be the solution of (VI) on \mathbb{R}_{+} associated with initial datum $v_o \in D_\star$. Define

$$X(t, z) = \varphi^t(z) + P(z) \quad \text{for } z \in D \text{ and } t \in \mathbb{R}_{+}.$$

Then: (a)

$$\sup_{0 \leq r \leq t} |v(r)|^2_{V^*} + \int_0^t \varphi^r(v(r))dr \leq M_o\{ |v_o|^2_{V^*} + \int_0^t \varphi^r(z)dr + (|z|^2_{H} + 1)\}e^{M_o t}$$

for all $z \in D$ and $t > 0$,

where M_o is a positive constant dependent only on C_o in $(\varphi 1)$, the Lipschitz constant L_p of $p(\cdot)$ and the value $|p(0)|_H$.
limit of (1.5) as $\theta \to 0$, the non-smooth free energy

$$F(u) = \begin{cases} F_0(\theta) + \alpha_1 \theta_c u (1-u) & \text{if } 0 \leq u \leq 1, \\ \infty & \text{otherwise} \end{cases}$$

(1.6)

is obtained (see Fig. 2); the constraint (1.4) is included in formula (1.6). This type of free energy (1.6) was introduced by Oono-Puri [12], and the corresponding Cahn-Hilliard equation was numerically studied by them; subsequently this model was analyzed theoretically, too, by Blowey-Elliott [1].

For generality we propose in this paper the representation of (possibly non-smooth) free energy in the form

$$F(u) = \hat{\beta}(u) + \hat{g}(u),$$

(1.7)

where $\hat{\beta}$ is a proper, l.s.c. and convex function on \mathbb{R} and \hat{g} is a non-negative function of C^1-class on \mathbb{R} with Lipschitz continuous derivative $g = \hat{g}'$ on \mathbb{R}. In such a non-smooth case of free energy functionals, the formula (1.2), giving the volumetric part $f(u)$ of the chemical potential difference, does not make sense any longer. Therefore, following the idea in [1], we introduce a generalized notion of chemical potential which is represented in terms of the multivalued function

$$F(u) = \{\xi + g(u); \xi \in \beta(u)\},$$

where β is the subdifferential of $\hat{\beta}$ in \mathbb{R}. Then the Cahn-Hilliard equation (1.1) is extended to the general form

$$u_t + \nu \Delta^2 u - \Delta (\xi + g(u)) = 0, \quad \xi \in \beta(u) \quad \text{in } Q_T.$$

(1.8)

Equation (1.8) is to be satisfied together with boundary conditions

$$\frac{\partial u}{\partial n} = 0, \quad \frac{\partial}{\partial n} (\nu \Delta u + \xi + g(u)) = 0 \quad \text{on } \Sigma_T := (0, T) \times \gamma$$

(1.9)

and initial condition

$$u(0, \cdot) = u_o \quad \text{in } \Omega,$$

(1.10)

where u_o is a given initial datum, and $\frac{\partial}{\partial n}$ denotes the outward normal derivative on Γ.
Let \(\{v_{\alpha}\} \) be a sequence in \(V^* \) such that \(v_{\alpha} \in D_{n\star} \) (=the closure of \(D_n \) in \(V^* \)), \(v_0 \in D_\star \) and \(v_{\alpha} \to v_0 \) in \(V^* \) as \(n \to \infty \). Then the solution \(v_n \) of \((VI)_n := (VI; \varphi^t, p_n, v_{\alpha}) \) converges to the solution \(v \) of \((VI) := (VI; \varphi^t, p, v_0) \) as \(n \to \infty \) in the following sense: for every finite \(T > 0 \) and every \(0 < \delta < T \),

\[
\begin{align*}
 v_n & \to v \quad \text{in } C([0, T]; V^*), \\
 t^1 v_n \to t^1 v' & \quad \text{weakly in } L^2(0, T; V^*), \\
 v_n & \to v \quad \text{in } C([\delta, T]; H) \text{ and weakly}^* \text{ in } L^\infty(\delta, T; V),
\end{align*}
\]
as \(n \to \infty \).

3. Sketch of the proofs

We sketch the proofs of the main theorems.

(1) (Uniqueness) Let \(v_1, i = 1, 2 \), be two solutions of \((VI) \) on \([0, T]\) and put \(v := v_1 - v_2 \). Multiply the difference of two equations, which \(v_1 \) and \(v_2 \) satisfy, by \(v \), and then use the inequality

\[
|z|^2_H \leq \epsilon|z|^2_V + C(\epsilon)|z|^2_{V^*}
\]

for all \(z \in V \), where \(\epsilon \) is an arbitrary positive number and \(C(\epsilon) \) is a suitable positive constant dependent only on \(\epsilon \). Then we have an inequality of the form

\[
\frac{1}{2} \frac{d}{dt} |v(t)|^2_V + k_1 |v(t)|^2_V \leq k_2 |v(t)|^2_{V^*}
\]

for a.e. \(t \in [0, T] \), where \(k_1 \) and \(k_2 \) are some positive constants. Therefore, Gronwall's lemma implies that \(v = 0 \).

(2) (Approximate problems) Let \(v_0 \in D \) and \(\mu \) be any parameter in \((0, 1]\). Consider the following approximate problem \((VI)_\mu \) for \((VI) \):

\[
\begin{align*}
 \{ & (J^* + \mu I)(v_\mu(t)) + \partial \varphi^t(v_\mu(t)) + p(v_\mu(t)) \ni 0 \quad \text{in } H, \quad 0 < t < T, \\
 & v_\mu(0) = v_0.
\}
\]

By making use of the results in [9] this problem \((VI)_\mu \) has one only one solution \(v_\mu \in W^{1,2}(0, T; H) \cap L^\infty(0, T; V) \). Also, multiplying the equation of \((VI)_\mu \) by \(v_\mu, v'_\mu \) and \(tv'_\mu \), we have similar estimates as those in Theorem 2.2.

(3) (Existence and estimates for \((VI) \)) In the case when \(v_0 \in D \), by the standard monotonicity and compactness methods we can prove that the solution \(v_\mu \) tends to the solution \(v \) of \((VI) \) as \(\mu \to 0 \) in the sense that

\[
\begin{align*}
 v_\mu & \to v \quad \text{in } C([0, T]; H) \text{ and weakly}^* \text{ in } L^\infty(0, T; V), \\
 v'_\mu & \to v' \quad \text{weakly in } L^2(0, T; V^*), \\
 \mu v'_\mu & \to 0 \quad \text{in } L^2(0, T; H).
\]

\]
Moreover we have the estimates in Theorem 2.2 for v. In the case when $v_0 \in D_*$, it is enough to approximate v_0 by a sequence $\{v_{0n}\} \subset D$ and to see the convergence of the solution v_n associated with initial datum v_{0n}.

(4) (Proof of Theorem 2.3) From the energy estimates which were obtained in Theorem 2.2, it follows that $v' \in L^2(1, \infty; V^*)$ and $v \in L^\infty(1, \infty; V)$; hence Theorem 2.3 holds.

(5) (Proof of Theorem 2.4) Under the assumptions of Theorem 2.4, we see from the energy estimates for v_n that $\{v_n\}$ is bounded in $C([0, T]; H) \cap L^2(0, T; V) \cap L^\infty_{loc}((0, T]; V) \cap W^{1,2}_{loc}((0, T]; V^*)$. Hence by the usual monotonicity and compactness argument we have the assertions of Theorem 2.4.

4. Application to the Cahn-Hilliard equation with constraint

We denote by (CHC) the Cahn-Hilliard equation with constraint (1.8)-(1.10). Here we suppose that

(A1) $g : \mathbb{R} \to \mathbb{R}$ is a Lipschitz continuous function with a non-negative primitive \hat{g} on \mathbb{R}.

(A2) β is a maximal monotone graph in $\mathbb{R} \times \mathbb{R}$ such that $0 \in R(\beta)$ and $int. D(\beta) \neq \emptyset$; we may assume that there is a non-negative proper l.s.c. convex function on \mathbb{R} such that its subdifferential $\partial \hat{\beta}$ coincides with β in \mathbb{R}.

(A3) $u_0 \in L^2(\Omega), u_0(x) \in \overline{D(\beta)}$ for a.e. $x \in \Omega$.

Definition 4.1. Let $0 < T < \infty$. Then $u : [0, T] \to H$ is called a (weak) solution of (CHC) on $[0, T]$, if u satisfies the following properties (w1)-(w3):

(w1) $u \in L^2(0, T; H^1(\Omega)) \cap C([0, T]; (H^1(\Omega))^*) \cap L^\infty_{loc}((0, T]; H^1(\Omega) \cap W^{1,2}_{loc}((0, T]; (H^1(\Omega))^*)$ and $\hat{\beta}(u) \in L^1(Q_T)$;

(w2) $u(0, \cdot) = u_0$ a.e. in Σ_T;

(w3) there is a function $\xi : [0, T] \to L^2(\Omega)$ such that

$$\xi \in L^1_{loc}((0, T]; L^2(\Omega)), \quad \xi \in \beta(u) \quad a.e. \ in \ Q_T$$

and

$$\frac{d}{dt}(u(t), \eta) + \nu(\Delta u(t), \Delta \eta) - (\xi(t) + g(u(t)), \Delta \eta) = 0$$

for all $\eta \in H^2(\Omega)$ with $\frac{\partial}{\partial n} a.e.$ on Γ, and for a.e. $t \in [0, T]$.

Applying Theorems 2.1-2.4 to (CHC) we have:

Theorem 4.1. Assume that (A1)-(A3) hold and

$$m := \frac{1}{|\Omega|} \int_{\Omega} u_0 dx \in int. D(\beta).$$
Then for every finite $T > 0$ problem (CHC) has one and only one solution u on $[0, T]$, and the following statements (a) and (b) hold:

(a) $u \in L^\infty(\delta, \infty; H^1(\Omega))$, $u'(\delta, \infty; (H^1(\Omega))^*)$ for every $\delta > 0$, and hence the ω-limit set $\omega(u_\delta) := \{ z \in L^2(\Omega); u(t_n) \to z \text{ in } L^2(\Omega) \text{ for some } t_n \text{ with } t_n \to \infty \}$ is non-empty;

(b) $\omega(u_\delta) \subset H^2(\Omega)$, and any $u_\infty \in \omega(u_\delta)$ with some $\mu_\infty \in \mathbb{R}$ and $\xi_\infty \in L^2(\Omega)$ solves the following stationary problem

$$-\nu \Delta u_\infty + \xi_\infty + g(u_\infty) = \mu_\infty \quad \text{in } \Omega, \quad \xi_\infty \in \beta(u_\infty) \quad \text{a.e. in } \Omega,$$

$$\frac{\partial u_\infty}{\partial n} = 0 \quad \text{a.e. on } \Gamma, \quad \frac{1}{|\Omega|} \int_\Omega u_\infty\, dx = m.$$

Now, let us reformulate (CHC) as an evolution problem of the form (VI) in the space $H := \{ z \in L^2(\Omega); \int_\Omega z\, dx = 0 \}$ with $|z|_H = |z|_{L^2(\Omega)}$; put also $V := H \cap H^1(\Omega)$ with $|z|_V = |\nabla z|_{L^2(\Omega)}$.

For this purpose we consider the data $\varphi^t = \varphi, p(\cdot) \text{ and } v_\circ$ as follows:

$$\varphi(z) := \begin{cases} \frac{\nu}{2} |\nabla z|_{L^2(\Omega)}^2 + \int_\Omega \hat{\beta}(z + m)\, dx & \text{if } z \in V \\ \infty & \text{otherwise,} \end{cases}$$

where $m = \frac{1}{|\Omega|} \int_\Omega u_\circ\, dx$;

$$p(z) := \pi(g(z + m)), \quad P(z) := \int_\Omega \hat{g}(z + m)\, dx, \quad z \in H;$$

$$v_\circ := u_\circ - m.$$

By virtue of the following lemma, problems (CHC) and (VI) associated with the data defined above are equivalent.

Lemma 4.1. Let $\ell \in L^2(\Omega)$. Then $\pi(\ell) \in \partial \varphi(z)$ if and only if $z_m = z + m$ satisfies that there are $\mu_m \in \mathbb{R}$ and $\xi_m \in L^2(\Omega)$ such that

$$-\nu \Delta z_m + \xi_m = \ell + \mu_m \quad \text{in } L^2(\Omega), \quad \xi_m \in \beta(z_m) \quad \text{a.e. in } \Omega,$$

$$\frac{\partial z_m}{\partial n} = 0 \quad \text{a.e. on } \Gamma, \quad \frac{1}{|\Omega|} \int_\Omega z_m\, dx = m;$$

hence $z_m \in H^2(\Omega)$. Moreover, μ_m can be chosen so that

$$|\mu_m| \leq M(1 + |\ell|_{L^2(\Omega)}),$$

where $M > 0$ is a certain constant dependent only upon β and m, and z_m satisfies that

$$\nu |\Delta z_m|_{L^2(\Omega)} \leq |\ell|_{L^2(\Omega)} + |\mu_m||\Omega|^\frac{1}{2}.$$
By Theorem 2.1 problem (VI) has one and only one solution \(v \). Moreover we see from
the above lemma that the function \(u := v + m \) is the unique solution of (CHC), and from
Theorems 2.2 and 2.3 that (a) and (b) hold.

When the state constraint \(\xi \in \beta(u) \) is not imposed, the system (1.8)-(1.10) becomes
the standard Cahn-Hilliard problem. For such a problem various existence, uniqueness and
asymptotic results have been established; see e.g. Elliott [3], Elliott-Zheng [6] and Zheng [15].
For related results in abstract setting we refer to Temam [13] and von Wahl [14]. For the
Cahn-Hilliard models with non-smooth free energy functionals we refer to Elliott-Mikelic
[4]. The structure of stationary solutions corresponding to the Cahn-Hilliard equation was
studied by Gurtin-Matano [7]; their analysis covers also some cases of free energy \(F(u) \) with
infinite walls.

Finally we give examples of \(\beta \) and the corresponding Cahn-Hilliard equations.

Example 4.1. (i) (Logarithmic form) For constants \(\alpha_o > 0 \) and \(\theta > 0 \), \(\theta \) being a parameter,

\[
\beta(u) := \beta^\theta(u) = \begin{cases}
\alpha_o \theta \log \frac{u}{1-u} & \text{for } 0 < u < 1, \\
\emptyset & \text{otherwise.}
\end{cases}
\]

Given any Lipschitz continuous function \(\tilde{g} \) on \([0,1]\), we extend it to a Lipschitz continuous
function \(g \), with support in \([-1,2]\), on the whole line \(\mathbb{R} \).

(ii) (The limit of \(\beta^\theta \) as \(\theta \to 0 \))

\[
\beta(u) := \beta^0(u) = \begin{cases}
[0,\infty) & \text{if } u = 1, \\
\{0\} & \text{if } 0 < u < 1, \\
(-\infty,0] & \text{if } u = 0, \\
\emptyset & \text{otherwise,}
\end{cases}
\]

and \(g \) is the same as in (i).

Example 4.2. Denote by (CHC)_\(\theta \) and (CHC)_0 the Cahn-Hilliard equations (CHC) associated
with \(\beta = \beta^\theta \) and \(\beta = \beta^0 \), respectively. Then, by the theorems proved above, (CHC)_\(\theta \)
and (CHC)_0 have the unique solutions \(u^\theta \) and \(u^0 \), respectively, and moreover \(u^\theta \to u^0 \) as
\(\theta \to 0 \) in the similar sense as Theorem 2.4.

References

N. Kenmochi: Department of Mathematics, Faculty of Education, Chiba University 1-33 Yayoi-chō, Chiba, 260 Japan

M. Niezgódka: Institute of Applied Mathematics and Mechanics, Warsaw University Banacha 2, 00-913 Warsaw, Poland

I. Pawlow: Systems Research Institute, Polish Academy of Sciences, Newelska 6, 01-447 Warsaw, Poland