SOME REMARKS ON P-CONGRUENCES ON P-REGULAR SEMIGROUPS I - P-congruence pairs -

- Y. Okamoto (岡本 洋介)
- T. Imaoka (今岡 輝男)

Yamada and Sen introduced the new concept of \mathcal{P} -regularity in the class of regular semigroups which is a generalization of both the concepts of "orthodox" and "(special) involution" (see [8],[9]). The purpose of this abstract is to characterize congruences on a \mathcal{P} -regular semigroups by using " \mathcal{P} -congruence pairs", which is a generalization of Petrich [7] for inverse semigroup and one of the authors [4] for regular *-semigroups. Also, for a given congruence ρ on a \mathcal{P} -regular semigroup S, the maximum and the minimum congruences on S whose traces coincide with the trace of ρ (= $\rho \cap E(S) \times E(S)$) are determined.

- 1. Introduction. Let S be a regular semigroup and E the set of idempotents of S. Let $P \subset E$. If S satisfies the following, it is called a \mathcal{P} -regular semigroup:
 - $(1) P² \subset E,$
 - (2) $qPq \subset P$ for any $q \in P$,
 - (3) for any $a \in S$, there exists $a^+ \in V(a)$ (the set of all inverses of a) such that $a^+P^1a \subset P$ and $aP^1a^+ \subset P$.

In such a case, S is denoted by S(P) and P is called a C-<u>set</u> in S. Throughout this paper, let S(P) be a \mathcal{P} -regular semigroup

with a C-set P such that the set of idempotents of S is E. Let $a \in S(P)$ and $a^+ \in V(a)$. If a^+ satisfies that $a^+P^1a \subset P$ and $aP^1a^+ \subset P$, it is called a \mathcal{P} -inverse of a, and the set of \mathcal{P} -inverses of a is denoted by $V_P(a)$. An element of a C-set P in S is called a <u>projection</u>. The class of \mathcal{P} -regular semigroups contains both the classes of orthodox semigroups and regular *-semigroups. A good account of the concept of \mathcal{P} -regularity can be seen in [8] and [9].

A congruence on S is sometimes called a \mathcal{P} -congruence on S(P). Let ρ be a \mathcal{P} -congruence on S(P), and put $\overline{x} = x\rho$ for any $x \in S$, $\overline{S} = {\overline{x}: x \in S}$ and $\overline{P} = {\overline{q}: q \in P}$. Then $\overline{S}(\overline{P})$ is also a \mathcal{P} -regular semigroup with a C-set \overline{P} . So $\overline{S}(\overline{P})$ is called the factor \mathcal{P} -regular semigroup of S(P) mod. ρ , and it is denoted by $S(P)/(\rho)_{\mathcal{P}}$.

Let ρ be a \mathcal{P} -congruence on S(P). Then it is called an $\underbrace{\text{orthodox}}_{\mathcal{P}}$ -congruence on S(P) if $S(P)/(\rho)_{\mathcal{P}}$ is an orthodox semigroup, and it is called a $\underbrace{\text{strong}}_{\mathcal{P}}$ -congruence on S(P) if it satisfies that for a ϵ S(P) and e ϵ P,

a ρ e implies a^+ ρ e for all a^+ ϵ $V_P(a)$. As was seen in [8], if ρ is a strong \mathcal{P} -congruence on S(P), then $S(P)/(\rho)_{\mathcal{P}}$ becomes a regular *-semigroup with the set $\{e\rho: e \in P\}$ of projections if the *-operation # on $S(P)/(\rho)_{\mathcal{P}}$ is defined by $(a\rho)^\# = a^+\rho$ $(a \in S(P), a^+ \in V_P(a))$.

The set $\{a \in S(P): a \ \rho \ e \ for \ some \ e \in E \ [e \in P]\}$ is called the $[\mathcal{P}-]\underline{\ker p}$ of ρ , and it denoted by $[\mathcal{P}-]\ker \rho$. The restriction $\rho \cap (E \times E) \ [\rho \cap (P \times P)]$ of ρ is called the $[\mathcal{P}-]\underline{\operatorname{trace}}$ of ρ , and it is denoted by $[\mathcal{P}-]\operatorname{tr}\rho$.

For any subset A of S(P), define the terminology as follows:

A is $[\mathcal{P}-]$ full if $E \subset A$ $[P \subset A]$,

A is a \mathcal{P} -subset if $V_p(a) \subset A$ for any $a \in A$,

A is a \mathcal{P} -self-conjugate

if $x^+Ax \subset A$ for any $x \in S(P)$ and $x^+ \in V_P(x)$,

A is <u>weakly closed</u> if $a^2 \in A$ for any $a \in A$.

The following results are fundamental and are used frequently in this abstract.

Result 1.1 (due to [8] and [9]). Let a, b \in S(P), e \in E and q \in P. Then

- (i) $V_p(b)V_p(a) \subset V_p(ab)$,
- (ii) $\underline{if} \ a^{\dagger} \in V_{p}(a), \underline{then} \ a \in V_{p}(a^{\dagger}),$
- (iii) $V_{\mathbf{p}}(\mathbf{e}) \subset \mathbf{E}$, (iv) $\mathbf{q} \in V_{\mathbf{p}}(\mathbf{q})$.

Result 1.2 (due to [2]). Let ρ be a \mathcal{P} -congruence on S(P) and a, b ϵ S(P). Then a ρ b if and only if ba' ϵ ker ρ , aa' ρ bb'aa', b'b ρ b'ba'a for some a' ϵ V(a) and b' ϵ V(b).

In section 2, for a given \mathcal{P} -congruence ρ on a \mathcal{P} -regular semigroup S(P), the maximum and the minimum \mathcal{P} -congruences on S(P) whose traces coincide with $\operatorname{tr}\rho$ are determined, and the properties for those \mathcal{P} -congruences are given.

The concept introduced in section 3 is " \mathcal{P} -congruence pairs". This concept is a characterization of the pair (tr ρ , ker ρ) associated with a given \mathcal{P} -congruence ρ on S(P), and the

pair uniquely determines the $\mathcal P$ -congruence κ such that $\mathrm{tr}\,\kappa$ = $\mathrm{tr}\,\rho$ and $\mathrm{ker}\,\kappa$ = $\mathrm{ker}\,\rho$.

We use the notation and terminology of [3] and [9] unless otherwise stated.

- 2. $\mathcal P$ -congruences with the same trace. For any $\mathcal P$ -congruence ρ on S(P), define a relation ρ_{\max} on S(P) as follows:
 - $\rho_{\max} = \{(a,b): \text{ there exist a}^+ \in V_P(a) \text{ and b}^+ \in V_P(b) \text{ such}$ $\text{that aea}^+ \rho \text{ beb}^+ \text{aea}^+, \text{ beb}^+ \rho \text{ aea}^+ \text{beb}^+, \text{ a}^+ \text{ea} \rho$ $\text{a}^+ \text{eab}^+ \text{eb and b}^+ \text{eb } \rho \text{ b}^+ \text{eba}^+ \text{ea for all e} \in P\}.$

Then we can easily see that

- $\rho_{\max} = \{(a,b) \colon aea^{\dagger} \ \rho \ beb^{\dagger}aea^{\dagger}, \ beb^{\dagger} \ \rho \ aea^{\dagger}beb^{\dagger}, \ a^{\dagger}ea \ \rho$ $a^{\dagger}eab^{\dagger}eb \ and \ b^{\dagger}eb \ \rho \ b^{\dagger}eba^{\dagger}ea \ for \ all \ a^{\dagger} \ \epsilon \ V_{p}(a),$ $b^{\dagger} \ \epsilon \ V_{p}(b) \ and \ e \ \epsilon \ P\}$
- Lemma 2.1. Let ρ be a \mathcal{P} -congruence on S(P) and a, b ϵ S(P). If a ρ_{\max} b, then
- $aa^+ \rho bb^+ aa^+, bb^+ \rho aa^+ bb^+, a^+ a \rho a^+ ab^+ b, b^+ b \rho b^+ ba^+ a$ $\underline{for} \ \underline{any} \ a^+ \epsilon \ V_p(a) \ \underline{and} \ b^+ \epsilon V_p(b).$
- Theorem 2.2. For any \mathcal{P} -congruence ρ on a \mathcal{P} -regular semigroup S(P), ρ_{max} is the greatest \mathcal{P} -congruence on S(P) whose trace coincides with $\text{tr}\,\rho$.
 - **Theorem 2.3.** For any orthodox \mathcal{P} -congruence ρ on S(P),

 ρ_{\max} is the greatest orthodox $\mathcal{P}\text{--congruence}$ on S(P) whose trace coincides with $\operatorname{tr}\rho$.

From now on, denote the maximum idempotent-separating congruence on a semigroup T by $\mu_{\,\mathrm{T}}.$

Corollary 2.4 (compare with [8, Proposition 4.1]). The maximum idempotent-separating \mathcal{P} -congruence $\mu_{S(P)}$ on S(P) is given as follows:

 $\mu_{S(P)} = \{(a,b) : \underline{\text{there exist }} a^+ \in V_P(a) \underline{\text{and }} b^+ \in V_P(b) \underline{\text{such }}$ $\underline{\text{that }} aea^+ = beb^+ aea^+, beb^+ = aea^+ beb^+, a^+ ea =$ $a^+ eab^+ eb \underline{\text{and }} b^+ eb = b^+ eba^+ ea \underline{\text{for all }} e \in P\}.$ $= \{(a,b) : aea^+ = beb^+ aea^+, beb^+ = aea^+ beb^+, a^+ ea$ $= a^+ eab^+ eb \underline{\text{and }} b^+ eb = b^+ eba^+ ea \underline{\text{for all }} a^+ \in$ $V_P(a), b^+ \in V_P(b) \underline{\text{and }} e \in P\}$

Let S be an orthodox semigroup and E the band of idempotents of S. Then it is easy to check that S(E) is a \mathcal{P} -regular semigroup with a C-set E in S. So we have immediately

Corollary 2.5 ([1, Theorem 4.2]). Let ρ be a congruence on an othodox semigroup S with the band E of idempotents of S. Then

 $\rho_{\max} = \{(a,b): \underline{\text{there exist a'}} \in V(a) \underline{\text{and b'}} \in V(b) \underline{\text{such}}$ $\underline{\text{that aea'}} \rho \underline{\text{beb'aea'}}, \underline{\text{beb'}} \rho \underline{\text{aea'beb'}}, \underline{\text{a'ea}} \rho$ $\underline{\text{a'eab'eb, b'eb}} \rho \underline{\text{b'eba'ea}} \underline{\text{for any e}} \in E\}$ $= \{(a,b): \underline{\text{aea'}} \rho \underline{\text{beb'aea'}}, \underline{\text{beb'}} \rho \underline{\text{aea'beb'}}, \underline{\text{a'ea}} \rho$

a'eab'eb, b'eb ρ b'eba'ea <u>for any</u> a' ϵ V(a), b' ϵ V(b) <u>and</u> e ϵ E}

is the greatest congruence on S whose trace coincides with $\operatorname{tr} \rho$.

On the other hand, the minimum $\mathcal{P}\text{-congruence}$ on S(P) with the same trace is given as follows:

Theorem 2.6. For any \mathcal{P} -congruence ρ on a \mathcal{P} -regular semigroup S(P), define a relation ρ on S(P) by

 ρ_0 = {(a,b): <u>there exist</u> x, y \in S(P)¹ <u>and e, f \in E <u>such that</u> a = xey, b = xfy <u>and</u> e ρ f}</u>

Then $\rho_{\min} = \rho_0^{t}$, the transitive closure of ρ_0 , is the least \mathcal{P} -congruence on S(P) whose trace coincides with $\text{tr}\rho$. In other words, the least \mathcal{P} -congruence on S(P) with $\text{tr}\rho$ as its trace is the \mathcal{P} -congruence on S(P) generated by $\text{tr}\rho$.

The following corollary gives us the characterization which is defferent from both [1, Theorem 4.1] and [7, Theorem 3.3], of the least congruence on an orthodox semigroup with the same trace.

Corollary 2.7. For any congruence ρ on an orthodox semigroup S, the congruence generated by $\text{tr}\rho$ is the least congruence on S whose trace coincides with $\text{tr}\rho$.

Proposition 2.9. For any \mathcal{P} -congruence ρ on S(P), ρ = ρ_{max} if and only if $S(P)/(\rho)_{\mathcal{P}}$ is a fundamental \mathcal{P} -regular

semigroup.

For any $\mathcal P$ -congruences ρ and σ on S(P) such that $\rho\subset\sigma$, define a relation σ/ρ on $S(P)/(\rho)_{\mathcal P}$ by

$$\sigma/\rho = \{(a\rho, b\rho): (a,b) \in \sigma\}$$

Proposition 2.10. For any \mathcal{P} -congruence ρ on S(P), ρ_{max}/ρ is the maximum idempotent-separating \mathcal{P} -congruence on $S(P)/(\rho)_{\mathcal{P}}$.

Let Λ be the lattice of all \mathcal{P} -congruences on S(P). Define a relaton Θ on Λ as follows: for any ρ , $\sigma \in \Lambda$,

 $\rho \Theta \sigma$ if and only if $tr \rho = tr \sigma$.

It immediately follows from Theorems 2.2 and 2.6 that $\rho \Theta$, the Θ -class containing $\rho \in \Lambda$, is the interval $[\rho_{\min}, \rho_{\max}]$ of Λ .

Proposition 2.11 ([6, Theorem 5.1]). If \mathcal{P} -congruences ρ and σ on S(P) are Θ -equivalent, then ρ σ = σ ρ . Therefore, for any ρ ϵ Λ , ρ Θ is a complete modular subsemilattice of Λ .

Proposition 2.12. Let $\xi \in \Lambda$, and let Γ be the lattice of all idempotent-separating \mathcal{P} -congruences on $S(P)/(\xi_{\min})_{\mathcal{P}}$. Then the mapping $\rho \to \rho/\xi_{\min}$ is a complete isomorphism of $\xi \Theta$ onto Γ .

3. \mathcal{P} -congruence pairs. Let ξ be an equivalence on E. Then ξ is called a <u>normal equivalence</u> on E if it satisfies the following conditions: for any a ϵ S(P) and e, f, g, h, i, j, k ϵ

Ε,

- (a) if $e \notin f$ and aea^+ , $afa^+ \in E$ for some $a^+ \in V_P(a)$, then $aea^+ \notin afa^+$,
- (b) if e ξ f, g ξ h and eg, fh ϵ E, then eg ξ fh,
- (c) if $\square \neq (e\xi)(f\xi) \cap E \subset h\xi$, $\square \neq (f\xi)(g\xi) \cap E \subset i\xi$ and $\square \neq (e\xi)(i\xi) \cap E \subset j\xi$ $[\square \neq (h\xi)(g\xi) \cap E \subset k\xi]$, then $\square \neq (h\xi)(g\xi) \cap E$ $[\square \neq (e\xi)(i\xi) \cap E]$ and $j \notin k$.

Let ξ be a normal equivalence on E. Define a partial binary operation \bullet on E/ ξ as follows: for any e, f, g ϵ E, $e\xi \cdot f\xi = g\xi$, where $\Box \neq (e\xi)(f\xi) \cap E \subset g\xi$.

It is easy to verify that the partial binary operation \bullet is well-defined. The partial groupoid E/ξ satisfies the following:

(w) if $e\xi \cdot f\xi$, $f\xi \cdot g\xi$ and $e\xi \cdot (f\xi \cdot g\xi)$ [$(e\xi \cdot f\xi) \cdot g\xi$] are defined in E/ξ , then $(e\xi \cdot f\xi) \cdot g\xi$ [$e\xi \cdot (f\xi \cdot g\xi)$] is defined in E/ξ and $(e\xi \cdot f\xi) \cdot g\xi = e\xi \cdot (f\xi \cdot g\xi)$.

Let K be a weakly closed full \mathcal{P} -subset of S(P) and ξ a normal equivalence on E. Then the pair (ξ,K) is called a \mathcal{P} -congruence pair for S(P) if itsatisfies the following conditions: for any a, b, c $\in S(P)$, $c^+ \in V_P(c)$, e, f, g \in E and q $\in P$,

- (C1) $a \in K$ implies $a^{\dagger}a \xi a^{\dagger}a^{\dagger}aa$ for any $a^{\dagger} \in V_{p}(a)$,
- (C2) aefb \in K and $e\xi \cdot f\xi = (a^{\dagger}a)\xi$ for some $a^{\dagger} \in V_{p}(a)$ imply $ab \in K$,
- (C3) $ab^+ \in K$ and $aa^+ \notin bb^+ aa^+$, $b^+b \notin b^+ ba^+ a$ for some $a^+ \in V_P(a)$ and $b^+ \in V_P(b)$ imply $aqb^+ \in K$ and $aqa^+ \notin bqb^+ aqa^+$, $b^+qb \notin b^+qba^+qa$,

- (C4) $a, b \in K$, $aa^{\dagger} \xi ee^{\dagger}aa^{\dagger}$, $ee^{\dagger} \xi aa^{\dagger}ee^{\dagger}$, $a^{\dagger}a \xi a^{\dagger}ae^{\dagger}e$, $e^{\dagger}e \xi e^{\dagger}ea^{\dagger}a$, $bb^{\dagger} \xi ff^{\dagger}bb^{\dagger}$, $ff^{\dagger} \xi bb^{\dagger}ff^{\dagger}$, $b^{\dagger}b \xi b^{\dagger}bf^{\dagger}f$, $f^{\dagger}f \xi f^{\dagger}fb^{\dagger}b$ and $e\xi \circ f\xi = g\xi$ for some $a^{\dagger} \in V_{p}(a)$, $b^{\dagger} \in V_{p}(b)$, $e^{\dagger} \in V_{p}(e)$ and $f^{\dagger} \in V_{p}(f)$ imply $ab \in K$,
- (C5) aq ϵ K and aa⁺ ξ qaa⁺, q ξ qa⁺a for some a⁺ ϵ V_P(a) imply cac⁺ ϵ K.

For any \mathcal{P} -congruence pair (ξ ,K) for S(P), define a relation $\kappa_{(\xi,K)}$ on S(P) as follows:

 $\kappa_{(\xi,K)} = \{(a,b): ab^+ \in K \text{ and } aa^+ \xi bb^+ aa^+, bb^+ \xi$ $aa^+ bb^+, a^+ a \xi a^+ ab^+ b, b^+ b \xi b^+ ba^+ a \text{ for some}$ $[any] a^+ \in V_p(a) \text{ and } b^+ \in V_p(b)\}.$

Now we can determine $\mathcal P$ -congruences on S(P) by $\mathcal P$ -congruence pairs.

Theorem 3.1. For any \mathcal{P} -congruence pair (ξ ,K) for a \mathcal{P} -regular semigroup S(P), $\kappa_{(\xi,K)}$ is a \mathcal{P} -congruence on S(P) such that $\operatorname{tr}\kappa_{(\xi,K)} = \xi$ and $\operatorname{ker}\kappa_{(\xi,K)} = K$. Conversely, for any \mathcal{P} -congruence ρ on S(P), $(\operatorname{tr}\rho,\operatorname{ker}\rho)$ is a \mathcal{P} -congruence pair for S(P) and $\rho = \kappa_{(\operatorname{tr}\rho,\operatorname{ker}\rho)}$.

Let $\mathscr A$ be the set of $\mathscr P$ -congruence pairs for S(P). Define an order \lessdot on $\mathscr A$ by

 $(\xi_1, K_1) \leq (\xi_2, K_2)$ if and only if $\xi_1 \subset \xi_2$, $K_1 \subset K_2$.

Corollary 3.2. The mappings

$$(\xi, K) \rightarrow \kappa_{(\xi, K)}, \quad \rho \rightarrow (\operatorname{tr} \rho, \ker \rho)$$

are mutually inverse order-preserving mappings of $\mathcal A$ onto Λ and of Λ onto $\mathcal A$, respectively. Therefore, $\mathcal A$ forms a complete lattice.

References

- [1] Feigenbaum, R., Kernels of orthodox semigroup homomorphisms, J. Austral. Math. Soc. 22 (Series A)(1976), 234-245.
- [2] Gomes, G.M.S., Orthodox congruences on regular semigroups, Semigroup Forum 37(1988), 149-166.
- [3] Howie, J.M., An introduction to semigroup theory, Academic Press, London, 1976.
- [4] Imaoka, T., Representation of *-congruences on regular*-semigroups, Proc. 1984 Marquette Conference on Semigroups,Marquette Univ., 1985, 65-72.
- [5] Imaoka, T. and Y.Okamoto, Congruences on \mathcal{P} -regular semigroups, Proc. of the International Sympo. on the Semigroup Theory held at Ritsumeikan Univ., Kyoto, Japan, 1990, 109-123.
- [6] Meakin, J., Idempotent-equivalent congruences on orthodox semigroups, J. Austal. Math. Soc. 11(1971), 221-241.
- [7] Petrich, M., Congruences on inverse semigroups, J. Algebra 55(1978), 231-256.
- [8] Yamada, M. and M.K.Sen, \mathcal{P} -regularity in semigroups, Mem. Fac. Sci., Shimane Univ. 21(1987), 47-54.
- [9] Yamada, M. and M.K.Sen, \mathcal{P} -regular semigroups, Semigroup Forum 39(1989), 157-178.

CODEC Co., Ltd.

2-11, Taira, 1-chome, Miyamae-ku, Kawasaki, 216 Japan

and

Department of Mathematics

Shimane University

Matsue, Shimane, 690 Japan