SOME REMARKS ON \mathcal{P}-CONGRUENCES ON \mathcal{P}-REGULAR SEMIGROUPS I
- \mathcal{P}-congruence pairs -

Y. Okamoto (岡本 洋介)
T. Imaoka (今岡 輝男)

Yamada and Sen introduced the new concept of \mathcal{P}-regularity in the class of regular semigroups which is a generalization of both the concepts of "orthodox" and "(special) involution" (see [8],[9]). The purpose of this abstract is to characterize congruences on a \mathcal{P}-regular semigroups by using "\mathcal{P}-congruence pairs", which is a generalization of Petrich [7] for inverse semigroup and one of the authors [4] for regular \star-semigroups. Also, for a given congruence ρ on a \mathcal{P}-regular semigroup S, the maximum and the minimum congruences on S whose traces coincide with the trace of ρ ($=\rho \cap E(S) \times E(S)$) are determined.

1. Introduction. Let S be a regular semigroup and E the set of idempotents of S. Let $P \subseteq E$. If S satisfies the following, it is called a \mathcal{P}-regular semigroup:

(1) $P^2 \subseteq E$,
(2) $qPq \subseteq P$ for any $q \in P$,
(3) for any $a \in S$, there exists $a^+ \in V(a)$ (the set of all inverses of a) such that $a^+P^1a \subseteq P$ and $aP^1a^+ \subseteq P$.

In such a case, S is denoted by $S(P)$ and P is called a C-set in S. Throughout this paper, let $S(P)$ be a \mathcal{P}-regular semigroup
with a C-set P such that the set of idempotents of S is E. Let

$a \in S(P)$ and $a^+ \in V(a)$. If a^+ satisfies that $a^+P^1a \subseteq P$ and

$aP^1a^+ \subseteq P$, it is called a P-inverse of a, and the set of P

-inverses of a is denoted by $V_P(a)$. An element of a C-set P in

S is called a projection. The class of P-regular semigroups

contains both the classes of orthodox semigroups and regular

$*$-semigroups. A good account of the concept of P-regularity

can be seen in [8] and [9].

A congruence on S is sometimes called a P-congruence on

$S(P)$. Let ρ be a P-congruence on $S(P)$, and put $\bar{x} = x\rho$ for any

$x \in S$, $\bar{S} = \{\bar{x}: x \in S\}$ and $\bar{P} = \{q: q \in P\}$. Then $\bar{S}(\bar{P})$ is also a

P-regular semigroup with a C-set \bar{P}. So $\bar{S}(\bar{P})$ is called the

factor P-regular semigroup of $S(P)$ mod. ρ, and it is denoted by

$S(P)/(\rho)_P$.

Let ρ be a P-congruence on $S(P)$. Then it is called an

orthodox P-congruence on $S(P)$ if $S(P)/(\rho)_P$ is an orthodox

semigroup, and it is called a strong P-congruence on $S(P)$ if it

satisfies that for $a \in S(P)$ and $e \in P$,

$$a \rho e \text{ implies } a^+ \rho e \text{ for all } a^+ \in V_P(a).$$

As was seen in [8], if ρ is a strong P-congruence on $S(P)$, then

$S(P)/(\rho)_P$ becomes a regular $*$-semigroup with the set \(\{e\rho: e \in P\} \)

of projections if the $*$-operation $#$ on $S(P)/(\rho)_P$ is defined

by $(a\rho)^# = a^+\rho (a \in S(P), a^+ \in V_P(a))$.

The set $\{a \in S(P): a \rho e \text{ for some } e \in E \text{ [e } \in P]\}$ is called the

$[P]$-kernel of ρ, and it denoted by $[P]$kerρ. The restriction

$\rho \cap (ExE) \text{ [} \rho \cap (P \times P) \text{] of } \rho$ is called the $[P]$-trace of ρ, and it

is denoted by $[P]$trρ.
For any subset A of $S(P)$, define the terminology as follows:

- A is **full** if $E \subseteq A$ [$P \subseteq A$],

- A is a **P-subset** if $V_P(a) \subseteq A$ for any $a \in A$,

- A is a **P-self-conjugate** if $x^*Ax \subseteq A$ for any $x \in S(P)$ and $x^+ \in V_P(x)$.

- A is **weakly closed** if $a^2 \in A$ for any $a \in A$.

The following results are fundamental and are used frequently in this abstract.

Result 1.1 (due to [8] and [9]). Let $a, b \in S(P)$, $e \in E$ and $q \in P$. Then

1. $V_P(b)V_P(a) \subseteq V_P(ab),$

2. if $a^+ \in V_P(a)$, then $a \in V_P(a^+),$

3. $V_P(e) \subseteq E,$

4. $q \in V_P(q).$

Result 1.2 (due to [2]). Let ρ be a **P-congruence** on $S(P)$ and $a, b \in S(P)$. Then $a \rho b$ if and only if

$ba' \in \ker \rho$, $aa' \rho$, $bb'aa'$, $b'b \rho$, $b'ba' a$

for some $a' \in V(a)$ and $b' \in V(b)$.

In section 2, for a given P-congruence ρ on a P-regular semigroup $S(P)$, the maximum and the minimum P-congruences on $S(P)$ whose traces coincide with $\tr \rho$ are determined, and the properties for those P-congruences are given.

The concept introduced in section 3 is "P-congruence pairs". This concept is a characterization of the pair $(\tr \rho, \ker \rho)$ associated with a given P-congruence ρ on $S(P)$, and the
pair uniquely determines the \mathcal{P}-congruence κ such that $\text{tr}_\kappa = \text{tr}_\rho$ and $\ker\kappa = \ker\rho$.

We use the notation and terminology of [3] and [9] unless otherwise stated.

2. \mathcal{P}-congruences with the same trace. For any \mathcal{P}-congruence ρ on $S(P)$, define a relation ρ_{max} on $S(P)$ as follows:

$$\rho_{\text{max}} = \{(a,b) : \text{ there exist } a^+ \in V_\mathcal{P}(a) \text{ and } b^+ \in V_\mathcal{P}(b) \text{ such that } aea^+ \rho beb^+aea^*, beb^+ \rho aea^*beb^*, a^+ea \rho a^+eab^*eb \text{ and } b^+eb \rho b^+eba^*ea \text{ for all } e \in \mathcal{P}\}.$$

Then we can easily see that

$$\rho_{\text{max}} = \{(a,b) : aea^+ \rho beb^*aea^*, beb^+ \rho aea^*beb^*, a^+ea \rho a^+eab^*eb \text{ and } b^+eb \rho b^+eba^*ea \text{ for all } a^+ \in V_\mathcal{P}(a), b^+ \in V_\mathcal{P}(b) \text{ and } e \in \mathcal{P}\}.$$

Lemma 2.1. Let ρ be a \mathcal{P}-congruence on $S(P)$ and $a, b \in S(P)$. If $a \rho_{\text{max}} b$, then

$$aa^+ \rho bb^*aa^*, bb^+ \rho aa^*bb^*, a^+a \rho a^+ab^*b, b^+b \rho b^*ba^*a$$

for any $a^+ \in V_\mathcal{P}(a)$ and $b^+ \in V_\mathcal{P}(b)$.

Theorem 2.2. For any \mathcal{P}-congruence ρ on a \mathcal{P}-regular semigroup $S(P)$, ρ_{max} is the greatest \mathcal{P}-congruence on $S(P)$ whose trace coincides with tr_ρ.

Theorem 2.3. For any orthodox \mathcal{P}-congruence ρ on $S(P)$,
ρ_{max} is the greatest orthodox \mathcal{P}-congruence on $S(P)$ whose trace coincides with $\text{tr}\rho$.

From now on, denote the maximum idempotent-separating congruence on a semigroup T by μ_T.

Corollary 2.4 (compare with [8, Proposition 4.1]). The maximum idempotent-separating \mathcal{P}-congruence $\mu_{S(P)}$ on $S(P)$ is given as follows:

$$
\mu_{S(P)} = \{(a,b) : \text{there exist } a^+ \in V_P(a) \text{ and } b^+ \in V_P(b) \text{ such that } aea^+ = beb^+a^+, \text{ beb}^+ = aea^+beb^+, a^+ea = a^+eab^+eb \text{ and } b^+eb = b^+eba^+ea \text{ for all } e \in P\}.
$$

$$
= \{(a,b) : aea^+ = beb^+a^+, \text{ beb}^+ = aea^+beb^+, a^+ea = a^+eab^+eb \text{ and } b^+eb = b^+eba^+ea \text{ for all } a^+ \in V_P(a), b^+ \in V_P(b) \text{ and } e \in P\}
$$

Let S be an orthodox semigroup and E the band of idempotents of S. Then it is easy to check that $S(E)$ is a \mathcal{P}-regular semigroup with a C-set E in S. So we have immediately

Corollary 2.5 ([1, Theorem 4.2]). Let ρ be a congruence on an orthodox semigroup S with the band E of idempotents of S. Then

$$
\rho_{\text{max}} = \{(a,b) : \text{there exist } a' \in V(a) \text{ and } b' \in V(b) \text{ such that } aea' \rho b'eb, \text{ beb'} \rho aea'beb', \text{ a'ea } \rho a'eab'eb, \text{ b'eb } \rho b'eba'ea \text{ for any } e \in E\}
$$

$$
= \{(a,b) : aea' \rho b'eb, \text{ beb'} \rho aea'beb', \text{ a'ea } \rho a'eab'eb, \text{ b'eb } \rho b'eba'ea \text{ for any } e \in E\}
$$
a’eab’eb, b’eb \rho b’eba’ea for any a' \in V(a), b' \in V(b) and e \in E\}
is the greatest congruence on S whose trace coincides with tr\rho.

On the other hand, the minimum \mathcal{P}-congruence on S(P) with the same trace is given as follows:

Theorem 2.6. For any \mathcal{P}-congruence \rho on a \mathcal{P}-regular semigroup S(P), define a relation \rho_0 on S(P) by

\[
\rho_0 = \{(a, b) : \text{there exist } x, y \in S(P)^{\dagger} \text{ and } e, f \in E \text{ such that } a = xey, b = xfy \text{ and } e \rho f\}
\]

Then \rho_{\min} = \rho_0^t, the transitive closure of \rho_0, is the least \mathcal{P}-congruence on S(P) whose trace coincides with tr\rho. In other words, the least \mathcal{P}-congruence on S(P) with tr\rho as its trace is the \mathcal{P}-congruence on S(P) generated by tr\rho.

The following corollary gives us the characterization which is different from both [1, Theorem 4.1] and [7, Theorem 3.3], of the least congruence on an orthodox semigroup with the same trace.

Corollary 2.7. For any congruence \rho on an orthodox semigroup S, the congruence generated by tr\rho is the least congruence on S whose trace coincides with tr\rho.

Proposition 2.9. For any \mathcal{P}-congruence \rho on S(P), \rho = \rho_{\max} if and only if S(P)/(\rho) \mathcal{P} is a fundamental \mathcal{P}-regular
For any \mathcal{P}-congruences ρ and σ on $S(P)$ such that $\rho \subseteq \sigma$, define a relation σ/ρ on $S(P)/(\rho)\mathcal{P}$ by
\[\sigma/\rho = \{(a\rho, b\rho) : (a, b) \in \sigma\} \]

Proposition 2.10. For any \mathcal{P}-congruence ρ on $S(P)$, ρ_{max}/ρ is the maximum idempotent-separating \mathcal{P}-congruence on $S(P)/(\rho)\mathcal{P}$.

Let Λ be the lattice of all \mathcal{P}-congruences on $S(P)$. Define a relation Θ on Λ as follows: for any $\rho, \sigma \in \Lambda$,
\[\rho \Theta \sigma \quad \text{if and only if} \quad \text{tr}\rho = \text{tr}\sigma. \]
It immediately follows from Theorems 2.2 and 2.6 that $\rho \Theta$, the Θ-class containing $\rho \in \Lambda$, is the interval $[\rho_{\text{min}}, \rho_{\text{max}}]$ of Λ.

Proposition 2.11 ([6, Theorem 5.1]). If \mathcal{P}-congruences ρ and σ on $S(P)$ are Θ-equivalent, then $\rho \sigma = \sigma \rho$. Therefore, for any $\rho \in \Lambda$, $\rho \Theta$ is a complete modular subsemilattice of Λ.

Proposition 2.12. Let $\xi \in \Lambda$, and let Γ be the lattice of all idempotent-separating \mathcal{P}-congruences on $S(P)/(\xi_{\text{min}})\mathcal{P}$. Then the mapping $\rho \mapsto \rho/\xi_{\text{min}}$ is a complete isomorphism of $\xi \Theta$ onto Γ.

3. \mathcal{P}-congruence pairs.
Let ξ be an equivalence on E.
Then ξ is called a normal equivalence on E if it satisfies the following conditions: for any $a \in S(P)$ and $e, f, g, h, i, j, k \in E$, etc.
E,

(a) if \(e \in \xi \) f and \(a e a^+ \in E \) for some \(a^+ \in V_P(a) \),

then \(a e a^+ \in \xi \) afa^+.

(b) if \(e \in \xi \) f, g \(\in \xi \) h and \(e g \) fh \(\in E \), then \(e g \) fh.

(c) if \(\square \not\in (e \xi)(f \xi) \cap E \subset h \xi \), \(\square \not\in (f \xi)(g \xi) \cap E \subset i \xi \) and

\(\square \not\in (e \xi)(i \xi) \cap E \subset j \xi \) \(\square \not\in (h \xi)(g \xi) \cap E \subset k \xi \),

then \(\square \not\in (h \xi)(g \xi) \cap E \) \(\square \not\in (e \xi)(i \xi) \cap E \) and \(j \xi \subset k \xi \).

Let \(\xi \) be a normal equivalence on \(E \). Define a partial binary operation \(\ast \) on \(E/\xi \) as follows: for any \(e, f, g \in E \),

\[e \xi \ast f \xi = g \xi, \text{ where } \square \not\in (e \xi)(f \xi) \cap E \subset g \xi. \]

It is easy to verify that the partial binary operation \(\ast \) is well-defined. The partial groupoid \(E/\xi \) satisfies the following:

(w) if \(e \xi \ast f \xi \), \(f \xi \ast g \xi \) and \(e \xi \ast (f \xi \ast g \xi) = (e \xi \ast f \xi) \ast g \xi \) are

defined in \(E/\xi \), then \((e \xi \ast f \xi) \ast g \xi = e \xi \ast (f \xi \ast g \xi) \) is

defined in \(E/\xi \) and \((e \xi \ast f \xi) \ast g \xi = e \xi \ast (f \xi \ast g \xi) \).

Let \(K \) be a weakly closed full \(\mathcal{P} \)-subset of \(S(P) \) and \(\xi \) a

normal equivalence on \(E \). Then the pair \((\xi, K)\) is called a \(\mathcal{P} \)-congruence pair for \(S(P) \) if its satisfies the following conditions: for any \(a, b, c \in S(P), c^+ \in V_P(c) \), \(e, f, g \in E \) and \(q \in P \),

\[(C1) \quad a \in K \text{ implies } a^+ a \xi a^+ a^+ a \text{ for any } a^+ \in V_P(a), \]

\[(C2) \quad a e f b \in K \text{ and } e \xi \ast f \xi = (a^+ a) \xi \text{ for some } a^+ \in V_P(a) \]

imply \(a b \in K \),

\[(C3) \quad a b^+ \in K \text{ and } a a^+ \xi b b^+ a^+, b^+ b \xi b^+ b a^+ \text{ for some } \]

\(a^+ \in V_P(a) \) and \(b^+ \in V_P(b) \) imply \(a q b^+ \in K \) and

\[a q a^+ \xi b q b^+ a q a^+, b^+ q b \xi b^+ q b a^+ q a, \]
(C4) \(a, b \in K, \; aa^+ \xi \; ee^aa^+, \; ee^+ \xi \; aa^+ee^+, \; a^+a \xi \; a^ae^+e, \)
\[e^e \xi \; e^eaa^+, \; bb^+ \xi \; ff^bb^+, \; ff^+ \xi \; bb^ff^+, \]
\[b^+b \xi \; b^+bf^+f, \; f^+f \xi \; f^+fb^+b \text{ and } e^e \xi f^+f = g^e \text{ for some} \]
\[a^+ \in V_p(a), \; b^+ \in V_p(b), \; e^+ \in V_p(e) \text{ and } f^+ \in V_p(f) \]
\[\text{imply } ab \in K, \]
\[(C5) \; aq \in K \text{ and } aa^+ \xi \; qaa^+, \; q \xi \; qa^a \text{ for some } a^+ \in V_p(a) \]
\[\text{imply } cac^+ \in K. \]

For any \(\mathcal{P} \)-congruence pair \((\xi, K)\) for \(S(P) \), define a relation \(\kappa(\xi, K) \) on \(S(P) \) as follows:
\[
\kappa(\xi, K) = \{(a, b) : ab^+ \in K \text{ and } aa^+ \xi \; bb^+aa^+, \; bb^+ \xi \}
\[\text{aa}^+bb^+, \; a^+a \xi \; a^+ab^+b, \; b^+b \xi \; b^+ba^+a \text{ for some} \]
\[\text{any} \; a^+ \in V_p(a) \text{ and } b^+ \in V_p(b) \}. \]

Now we can determine \(\mathcal{P} \)-congruences on \(S(P) \) by \(\mathcal{P} \)-congruence pairs.

Theorem 3.1. For any \(\mathcal{P} \)-congruence pair \((\xi, K)\) for a \(\mathcal{P} \)
-regular semigroup \(S(P) \), \(\kappa(\xi, K) \) is a \(\mathcal{P} \)-congruence on \(S(P) \) such
that \(\text{tr} \kappa(\xi, K) = \xi \) and \(\ker \kappa(\xi, K) = K \). Conversely, for any \(\mathcal{P} \)
-congruence \(\rho \) on \(S(P) \), \((\text{tr} \rho, \ker \rho) \) is a \(\mathcal{P} \)-congruence pair for \(S(P) \) and \(\rho = \kappa(\text{tr} \rho, \ker \rho) \).

Let \(\mathcal{A} \) be the set of \(\mathcal{P} \)-congruence pairs for \(S(P) \). Define
an order \(< \) on \(\mathcal{A} \) by
\[
(\xi_1, K_1) < (\xi_2, K_2) \text{ if and only if } \xi_1 \subset \xi_2, \; K_1 \subset K_2. \]

Corollary 3.2. The mappings
\[(\xi, K) \rightarrow \kappa(\xi, K), \quad \rho \rightarrow (\text{tr}\rho, \ker\rho)\]

are mutually inverse order-preserving mappings of \(\mathcal{A}\) onto \(\Lambda\) and of \(\Lambda\) onto \(\mathcal{A}\), respectively. Therefore, \(\mathcal{A}\) forms a complete lattice.

References

CODEC Co., Ltd.
2-11, Taira, 1-chome, Miyamae-ku, Kawasaki, 216 Japan

and

Department of Mathematics
Shimane University
Matsue, Shimane, 690 Japan