<table>
<thead>
<tr>
<th>Title</th>
<th>SOME REMARKS ON \mathcal{P}-CONGRUENCES ON \mathcal{P}-REGULAR SEMIGROUPS I: \mathcal{P}-congruence pairs (Algebraic Theory of Codes and Combinatorics on Words)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Okamoto, Y.; Imaoka, T.</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1992), 786: 32-42</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1992-06</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/82589</td>
</tr>
<tr>
<td>Rights</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
SOME REMARKS ON \mathcal{P}-CONGRUENCES ON \mathcal{P}-REGULAR SEMIGROUPS I

- \mathcal{P}-congruence pairs -

Y. Okamoto (岡本 洋介)
T. Imaoka (今岡 輝男)

Yamada and Sen introduced the new concept of \mathcal{P}-regularity in the class of regular semigroups which is a generalization of both the concepts of "orthodox" and "(special) involution" (see [8],[9]). The purpose of this abstract is to characterize congruences on a \mathcal{P}-regular semigroups by using "\mathcal{P}-congruence pairs", which is a generalization of Petrich [7] for inverse semigroup and one of the authors [4] for regular \star-semigroups.

Also, for a given congruence ρ on a \mathcal{P}-regular semigroup S, the maximum and the minimum congruences on S whose traces coincide with the trace of ρ ($= \rho \cap E(S) \times E(S)$) are determined.

1. Introduction. Let S be a regular semigroup and E the set of idempotents of S. Let $P \subseteq E$. If S satisfies the following, it is called a \mathcal{P}-regular semigroup:

1. $P^2 \subseteq E$,
2. $qPq \subseteq P$ for any $q \in P$,
3. for any $a \in S$, there exists $a^+ \in V(a)$ (the set of all inverses of a) such that $a^+P^1a \subseteq P$ and $aP^1a^+ \subseteq P$.

In such a case, S is denoted by $S(P)$ and P is called a C-set in S. Throughout this paper, let $S(P)$ be a \mathcal{P}-regular semigroup
with a C-set P such that the set of idempotents of S is E. Let
$a \in S(P)$ and $a^+ \in V(a)$. If a^+ satisfies that $a^+ P^1 a \subset P$ and $a P^1 a^+ \subset P$, it is called a \textit{P-inverse} of a, and the set of P-
inverses of a is denoted by $V_P(a)$. An element of a C-set P in S is called a \textit{projection}. The class of P-regular semigroups contains both the classes of orthodox semigroups and regular $*$-semigroups. A good account of the concept of P-regularity can be seen in [8] and [9].

A congruence on S is sometimes called a \textit{P-congruence} on $S(P)$. Let ρ be a P-congruence on $S(P)$, and put $\overline{x} = x\rho$ for any $x \in S$, $\overline{S} = \{\overline{x}: x \in S\}$ and $\overline{P} = \{q: q \in P\}$. Then $\overline{S(P)}$ is also a P-regular semigroup with a C-set \overline{P}. So $\overline{S(P)}$ is called the factor \textit{P-regular semigroup} of $S(P)$ mod. ρ, and it is denoted by $S(P)/(\rho)_P$.

Let ρ be a P-congruence on $S(P)$. Then it is called an \textit{orthodox P-congruence} on $S(P)$ if $S(P)/(\rho)_P$ is an orthodox semigroup, and it is called a \textit{strong P-congruence} on $S(P)$ if it satisfies that for $a \in S(P)$ and $e \in P$,

$$a \rho e \text{ implies } a^+ \rho e \text{ for all } a^+ \in V_P(a).$$

As was seen in [8], if ρ is a strong P-congruence on $S(P)$, then $S(P)/(\rho)_P$ becomes a regular $*$-semigroup with the set $\{e\rho: e \in P\}$ of projections if the $*$-operation $#$ on $S(P)/(\rho)_P$ is defined by $(a\rho)^# = a^+\rho$ ($a \in S(P)$, $a^+ \in V_P(a)$).

The set $\{a \in S(P): a \rho e \text{ for some } e \in E \text{ [e } \in P]\}$ is called the \textit{$[P]$-kernel} of ρ, and it denoted by $[P]\ker\rho$. The restriction $\rho \cap (E \times E)$ \textit{[} $\rho \cap (P \times P)$ \textit{]} of ρ is called the \textit{$[P]$-trace} of ρ, and it is denoted by $[P]\tr\rho$.
For any subset A of $S(P)$, define the terminology as follows:

- A is a \mathcal{P}-full if $E \subset A$ ($P \subset A$),
- A is a \mathcal{P}-subset if $V_P(a) \subset A$ for any $a \in A$,
- A is a \mathcal{P}-self-conjugate if $x^*Ax \subset A$ for any $x \in S(P)$ and $x^+ \in V_P(x)$,
- A is weakly closed if $a^2 \in A$ for any $a \in A$.

The following results are fundamental and are used frequently in this abstract.

Result 1.1 (due to [8] and [9]). Let $a, b \in S(P), e \in E$ and $q \in P$. Then

1. $V_P(b)V_P(a) \subset V_P(ab)$,
2. if $a^+ \in V_P(a)$, then $a \in V_P(a^+)$,
3. $V_P(e) \subset E$,
4. $q \in V_P(q)$.

Result 1.2 (due to [2]). Let ρ be a \mathcal{P}-congruence on $S(P)$ and $a, b \in S(P)$. Then $a \rho b$ if and only if $ba' \in \ker \rho$, $aa' \rho bb'aa'$, $b'b \rho b'ba'a$ for some $a' \in V(a)$ and $b' \in V(b)$.

In section 2, for a given \mathcal{P}-congruence ρ on a \mathcal{P}-regular semigroup $S(P)$, the maximum and the minimum \mathcal{P}-congruences on $S(P)$ whose traces coincide with $\text{tr}\rho$ are determined, and the properties for those \mathcal{P}-congruences are given.

The concept introduced in section 3 is "\mathcal{P}-congruence pairs". This concept is a characterization of the pair $(\text{tr}\rho, \ker \rho)$ associated with a given \mathcal{P}-congruence ρ on $S(P)$, and the
pair uniquely determines the \mathcal{P}-congruence κ such that $\text{tr}\kappa = \text{tr}\rho$ and $\ker\kappa = \ker\rho$.

We use the notation and terminology of [3] and [9] unless otherwise stated.

2. \mathcal{P}-congruences with the same trace. For any \mathcal{P}-congruence ρ on $S(P)$, define a relation ρ_{max} on $S(P)$ as follows:

$$\rho_{\text{max}} = \{(a, b) : \text{there exist } a^+ \in V_\mathcal{P}(a) \text{ and } b^+ \in V_\mathcal{P}(b) \text{ such that } aea^+ \rho beb^+aea^+, beb^+ \rho aea^+beb^+, a^+ea \rho a^+eab^+eb \text{ and } b^+eb \rho b^+eba^+ea \text{ for all } e \in P\}.$$

Then we can easily see that

$$\rho_{\text{max}} = \{(a, b) : aea^+ \rho beb^+aea^+, beb^+ \rho aea^+beb^+, a^+ea \rho a^+eab^+eb \text{ and } b^+eb \rho b^+eba^+ea \text{ for all } a^+ \in V_\mathcal{P}(a), b^+ \in V_\mathcal{P}(b) \text{ and } e \in P\}$$

Lemma 2.1. Let ρ be a \mathcal{P}-congruence on $S(P)$ and $a, b \in S(P)$. If $a \rho_{\text{max}} b$, then

$$aa^+ \rho bb^+aa^+, bb^+ \rho aa^+bb^+, a^+a \rho a^+ab^+b, b^+b \rho b^+ba^+a$$

for any $a^+ \in V_\mathcal{P}(a)$ and $b^+ \in V_\mathcal{P}(b)$.

Theorem 2.2. For any \mathcal{P}-congruence ρ on a \mathcal{P}-regular semigroup $S(P)$, ρ_{max} is the greatest \mathcal{P}-congruence on $S(P)$ whose trace coincides with $\text{tr}\rho$.

Theorem 2.3. For any orthodox \mathcal{P}-congruence ρ on $S(P)$,
\(\rho_{\text{max}} \) is the greatest orthodox \(\mathcal{P} \)-congruence on \(S(P) \) whose trace coincides with \(\text{tr} \rho \).

From now on, denote the maximum idempotent-separating congruence on a semigroup \(T \) by \(\mu_T \).

Corollary 2.4 (compare with [8, Proposition 4.1]). The maximum idempotent-separating \(\mathcal{P} \)-congruence \(\mu_{S(P)} \) on \(S(P) \) is given as follows:

\[
\mu_{S(P)} = \{(a,b) : \text{there exist } a^+ \in V_p(a) \text{ and } b^+ \in V_p(b) \text{ such that } aea^+ = beb^+aea^+, \text{ beb}^+ = aea^+beb^+, \text{ a}^+ea = a^+eab^+eb \text{ and } b^+eb = b^+eba^+ea \text{ for all } e \in P\}.
\]

Let \(S \) be an orthodox semigroup and \(E \) the band of idempotents of \(S \). Then it is easy to check that \(S(E) \) is a \(\mathcal{P} \)-regular semigroup with a C-set \(E \) in \(S \). So we have immediately

Corollary 2.5 ([1, Theorem 4.2]). Let \(\rho \) be a congruence on an orthodox semigroup \(S \) with the band \(E \) of idempotents of \(S \). Then

\[
\rho_{\text{max}} = \{(a,b) : \text{there exist } a' \in V(a) \text{ and } b' \in V(b) \text{ such that } aea' \rho \text{ beb}'aea', \text{ beb}' \rho \text{ aea}'be'b', \text{ a}'ea \rho \text{ a}'eab'e'b, b'eb \rho b'eba'e'a \text{ for any } e \in E\}
\]

= \{(a,b) : aea' \rho \text{ beb}'aea', \text{ beb}' \rho \text{ aea}'be'b', \text{ a}'ea \rho \text{ a}'eab'e'b, b'eb \rho b'eba'e'a \text{ for any } e \in E\}

= \{(a,b) : \text{there exist } a' \in V(a) \text{ and } b' \in V(b) \text{ such that } aea' \rho \text{ beb}'aea', \text{ beb}' \rho \text{ aea}'be'b', \text{ a}'ea \rho \text{ a}'eab'e'b, b'eb \rho b'eba'e'a \text{ for any } e \in E\}

a'eb'eb, b'eb ρ b'eba'ea for any a' ∈ V(a), b' ∈ V(b) and e ∈ E} is the greatest congruence on S whose trace coincides with \(tr_\rho \).

On the other hand, the minimum \(P \)-congruence on \(S(P) \) with the same trace is given as follows:

Theorem 2.6. For any \(P \)-congruence \(\rho \) on a \(P \)-regular semigroup \(S(P) \), define a relation \(\rho_0 \) on \(S(P) \) by

\[
\rho_0 = \{(a,b): \text{there exist } x, y \in S(P)^1 \text{ and } e, f \in E \text{ such that } a = xey, b = xfy \text{ and } e \rho f \}
\]

Then \(\rho_{\min} = \rho_0^t \), the transitive closure of \(\rho_0 \), is the least \(P \)-congruence on \(S(P) \) whose trace coincides with \(tr_\rho \). In other words, the least \(P \)-congruence on \(S(P) \) with \(tr_\rho \) as its trace is the \(P \)-congruence on \(S(P) \) generated by \(tr_\rho \).

The following corollary gives us the characterization which is different from both [1, Theorem 4.1] and [7, Theorem 3.3], of the least congruence on an orthodox semigroup with the same trace.

Corollary 2.7. For any congruence \(\rho \) on an orthodox semigroup \(S \), the congruence generated by \(tr_\rho \) is the least congruence on \(S \) whose trace coincides with \(tr_\rho \).

Proposition 2.9. For any \(P \)-congruence \(\rho \) on \(S(P) \), \(\rho = \rho_{\max} \) if and only if \(S(P)/(\rho) \) is a fundamental \(P \)-regular
For any \(P \)-congruences \(\rho \) and \(\sigma \) on \(S(P) \) such that \(\rho \subseteq \sigma \), define a relation \(\sigma / \rho \) on \(S(P)/(\rho)_P \) by

\[
\sigma / \rho = \{ (a\rho, b\rho) : (a, b) \in \sigma \}
\]

Proposition 2.10. For any \(P \)-congruence \(\rho \) on \(S(P) \), \(\rho_{\text{max}} / \rho \) is the maximum idempotent-separating \(P \)-congruence on \(S(P)/(\rho)_P \).

Let \(\Lambda \) be the lattice of all \(P \)-congruences on \(S(P) \). Define a relation \(\Theta \) on \(\Lambda \) as follows: for any \(\rho, \sigma \in \Lambda \),

\[
\rho \Theta \sigma \text{ if and only if } tr\rho = tr\sigma .
\]

It immediately follows from Theorems 2.2 and 2.6 that \(\rho \Theta \), the \(\Theta \)-class containing \(\rho \in \Lambda \), is the interval \([\rho_{\text{min}}, \rho_{\text{max}}]\) of \(\Lambda \).

Proposition 2.11 ([6, Theorem 5.1]). If \(P \)-congruences \(\rho \) and \(\sigma \) on \(S(P) \) are \(\Theta \)-equivalent, then \(\rho \sigma = \sigma \rho \). Therefore, for any \(\rho \in \Lambda \), \(\rho \Theta \) is a complete modular subsemilattice of \(\Lambda \).

Proposition 2.12. Let \(\xi \in \Lambda \), and let \(\Gamma \) be the lattice of all idempotent-separating \(P \)-congruences on \(S(P)/(\xi_{\text{min}})_P \). Then the mapping \(\rho \rightarrow \rho / \xi_{\text{min}} \) is a complete isomorphism of \(\xi \Theta \) onto \(\Gamma \).

3. \(P \)-congruence pairs. Let \(\xi \) be an equivalence on \(E \). Then \(\xi \) is called a normal equivalence on \(E \) if it satisfies the following conditions: for any \(a \in S(P) \) and \(e, f, g, h, i, j, k \in \)
E,

(a) if $e \xi f$ and $aea^+ \in E$ for some $a^+ \in V_p(a)$, then $aea^+ \xi afa^+$.

(b) if $e \xi f$, $g \xi h$ and $eg \in E$, then $eg \xi fh$.

(c) if $\square \neq (e \xi)(f \xi) \cap E \subset h \xi$, $\square \neq (f \xi)(g \xi) \cap E \subset i \xi$ and $\square \neq (e \xi)(i \xi) \cap E \subset j \xi$, $\square \neq (h \xi)(g \xi) \cap E \subset k \xi$, then $\square \neq (h \xi)(g \xi) \cap E \subset (e \xi)(i \xi) \cap E$ and $j \xi k$.

Let ξ be a normal equivalence on E. Define a partial binary operation \bullet on E/ξ as follows: for any $e, f, g \in E$,

$$e\xi \bullet f\xi = g\xi,$$

where $\square \neq (e\xi)(f\xi) \cap E \subset g\xi$.

It is easy to verify that the partial binary operation \bullet is well-defined. The partial groupoid E/ξ satisfies the following:

(w) if $e\xi \bullet f\xi$, $f\xi \bullet g\xi$ and $e\xi \bullet (f\xi \bullet g\xi)$ $[(e\xi \bullet f\xi) \bullet g\xi]$ are defined in E/ξ, then $(e\xi \bullet f\xi) \bullet g\xi$ $[e\xi \bullet (f\xi \bullet g\xi)]$ is defined in E/ξ and $(e\xi \bullet f\xi) \bullet g\xi = e\xi \bullet (f\xi \bullet g\xi)$.

Let K be a weakly closed full \mathcal{P}-subset of $S(P)$ and ξ a normal equivalence on E. Then the pair (ξ, K) is called a \mathcal{P}-congruence pair for $S(P)$ if its satisfies the following conditions: for any $a, b, c \in S(P)$, $c^+ \in V_p(c)$, $e, f, g \in E$ and $q \in P$,

(C1) $a \in K$ implies $a^+ a \xi a^+ a a$ for any $a^+ \in V_p(a)$,

(C2) $aefb \in K$ and $e\xi \bullet f\xi = (a^+ a) \xi$ for some $a^+ \in V_p(a)$ imply $ab \in K$,

(C3) $ab^+ \in K$ and $aa^+ \xi b^+ b \xi b^+ b a a$, $b^+ b \xi b^+ b a a$ for some $a^+ \in V_p(a)$ and $b^+ \in V_p(b)$ imply $aqb^+ \in K$ and $aqa^+ \xi bqb^+ aqa^+$, $b^+ qb \xi b^+ qba^+ qa$.

(C4) \(a, b \in K, \) \(aa^+ \xi ee^+aa^+, ee^+ \xi aa^+ee^+, a^+a \xi a^+ae^+e, \)
\(e^+e \xi e^+ea^+a, bb^+ \xi ff^+bb^+, ff^+ \xi bb^+ff^+, \)
\(b^+b \xi b^+bf^+f, f^+f \xi f^+fb^+b \) \(\text{and} \) \(e\xi f\xi = g\xi \) \(\text{for some} \)
\(a^+ \in V_p(a), b^+ \in V_p(b), e^+ \in V_p(e) \) \(\text{and} \) \(f^+ \in V_p(f) \)
\imply ab \in K,

(C5) \(aq \in K \) \(\text{and} \) \(aa^+ \xi qaa^+, q \xi qa^+a \) \(\text{for some} \) \(a^+ \in V_p(a) \)
\imply cac^+ \in K.

For any \(\mathcal{P} \)-congruence pair \((\xi, K)\) for \(S(P) \), define a relation
\(\kappa(\xi, K) \)
on \(S(P) \) as follows:

\[
\kappa(\xi, K) = \{(a, b) : ab^+ \in K \text{ and } aa^+ \xi bb^+aa^+, bb^+ \xi \\
aa^+bb^+, a^+a \xi a^+ab^+b, b^+b \xi b^+ba^+a \text{ for some} \}
\]
\(\text{any} \) \(a^+ \in V_p(a) \) \(\text{and} \) \(b^+ \in V_p(b) \} \).

Now we can determine \(\mathcal{P} \)-congruences on \(S(P) \) by \(\mathcal{P} \)-congruence pairs.

Theorem 3.1. For any \(\mathcal{P} \)-congruence pair \((\xi, K)\) for a \(\mathcal{P} \)
-regular semigroup \(S(P) \), \(\kappa(\xi, K) \) is a \(\mathcal{P} \)-congruence on \(S(P) \) such
that \(\text{tr}_\kappa(\xi, K) = \xi \) \(\text{and} \) \(\ker_\kappa(\xi, K) = K \). Conversely, for any \(\mathcal{P} \)
-congruence \(\rho \) on \(S(P) \), \((\text{tr}_\rho, \ker_\rho) \) is a \(\mathcal{P} \)-congruence pair for
\(S(P) \) \(\text{and} \) \(\rho = \kappa(\text{tr}_\rho, \ker_\rho) \).

Let \(\mathcal{A} \) be the set of \(\mathcal{P} \)-congruence pairs for \(S(P) \). Define
an order \(\prec \) on \(\mathcal{A} \) by

\[
(\xi_1, K_1) \prec (\xi_2, K_2) \text{ if and only if } \xi_1 \subset \xi_2, K_1 \subset K_2.
\]

Corollary 3.2. The mappings
\((\xi, K) \rightarrow \kappa(\xi, K), \quad \rho \rightarrow (\text{tr}_\rho, \ker \rho)\)

are mutually inverse order-preserving mappings of \(\mathcal{A}\) onto \(\Lambda\) and of \(\Lambda\) onto \(\mathcal{A}\), respectively. Therefore, \(\mathcal{A}\) forms a complete lattice.

References

CODEC Co., Ltd.

2-11, Taira, 1-chome, Miyamae-ku, Kawasaki, 216 Japan

and

Department of Mathematics

Shimane University

Matsue, Shimane, 690 Japan