SOME REMARKS ON \mathcal{P}-CONGRUENCES ON \mathcal{P}-REGULAR SEMIGROUPS I

- \mathcal{P}-congruence pairs -

Y. Okamoto (岡本 洋介)
T. Imaoka (今岡 輝男)

Yamada and Sen introduced the new concept of \mathcal{P}-regularity in the class of regular semigroups which is a generalization of both the concepts of "orthodox" and "(special) involution" (see [8],[9]). The purpose of this abstract is to characterize congruences on a \mathcal{P}-regular semigroups by using "\mathcal{P}-congruence pairs", which is a generalization of Petrich [7] for inverse semigroup and one of the authors [4] for regular \ast-semigroups. Also, for a given congruence ρ on a \mathcal{P}-regular semigroup S, the maximum and the minimum congruences on S whose traces coincide with the trace of ρ ($= \rho \cap E(S) \times E(S)$) are determined.

1. Introduction. Let S be a regular semigroup and E the set of idempotents of S. Let $P \subseteq E$. If S satisfies the following, it is called a \mathcal{P}-regular semigroup:

1. $P^2 \subseteq E$,
2. $qpq \subseteq P$ for any $q \in P$,
3. for any $a \in S$, there exists $a^+ \in V(a)$ (the set of all inverses of a) such that $a^+pa \subseteq P$ and $ap^1a^+ \subseteq P$.

In such a case, S is denoted by $S(P)$ and P is called a C-set in S. Throughout this paper, let $S(P)$ be a \mathcal{P}-regular semigroup.
with a C-set P such that the set of idempotents of S is E. Let
\(a \in S(P) \) and \(a^+ \in V(a) \). If \(a^+ \) satisfies that \(a^+P^1a \subset P \) and
\(aP^1a^+ \subset P \), it is called a \(P \)-inverse of a, and the set of \(P \)
inverses of a is denoted by \(V_P(a) \). An element of a C-set P in
S is called a projection. The class of \(P \)-regular semigroups
contains both the classes of orthodox semigroups and regular
\(* \)-semigroups. A good account of the concept of \(P \)-regularity
can be seen in [8] and [9].

A congruence on S is sometimes called a \(P \)-congruence on
\(S(P) \). Let \(\rho \) be a \(P \)-congruence on \(S(P) \), and put \(\overline{x} = x\rho \) for any
\(x \in S, \overline{S} = \{ \overline{x} : x \in S \} \) and \(\overline{P} = \{ q : q \in P \} \). Then \(\overline{S}(\overline{P}) \) is also a
\(P \)-regular semigroup with a C-set \(\overline{P} \). So \(\overline{S}(\overline{P}) \) is called the
factor \(P \)-regular semigroup of \(S(P) \) mod. \(\rho \), and it is denoted by
\(S(P)/(\rho) \).

Let \(\rho \) be a \(P \)-congruence on \(S(P) \). Then it is called an
orthodox \(P \)-congruence on \(S(P) \) if \(S(P)/(\rho) \) is an orthodox
semigroup, and it is called a strong \(P \)-congruence on \(S(P) \) if it
satisfies that for \(a \in S(P) \) and \(e \in P \),

\[
a \rho e \text{ implies } a^+ \rho e \text{ for all } a^+ \in V_P(a).
\]

As was seen in [8], if \(\rho \) is a strong \(P \)-congruence on \(S(P) \), then
\(S(P)/(\rho) \) becomes a regular \(* \)-semigroup with the set \(\{ e\rho : e \in P \} \) of projections if the \(* \)-operation \(\# \) on \(S(P)/(\rho) \) is defined
by \((a\rho)\# = a^+\rho \) (\(a \in S(P) \), \(a^+ \in V_P(a) \)).

The set \(\{ a \in S(P) : a \rho e \text{ for some } e \in E \} \) is called the
\([P] \)-kernel of \(\rho \), and it denoted by \([P]\ker \rho \). The restriction
\(\rho \cap (E \times E) \) \([\rho \cap (P \times P)] \) of \(\rho \) is called the \([P] \)-trace of \(\rho \), and it
is denoted by \([P]\tr \rho \).
For any subset A of $S(P)$, define the terminology as follows:

- A is \mathcal{P}-full if $E \subseteq A$ ($P \subseteq A$).
- A is a \mathcal{P}-subset if $V_p(a) \subseteq A$ for any $a \in A$.
- A is a \mathcal{P}-self-conjugate
 if $x^*Ax \subseteq A$ for any $x \in S(P)$ and $x^* \in V_p(x)$.
- A is weakly closed if $a^2 \in A$ for any $a \in A$.

The following results are fundamental and are used frequently in this abstract.

Result 1.1 (due to [8] and [9]). Let $a, b \in S(P), e \in E$ and $q \in P$. Then

1. $V_p(b)V_p(a) \subseteq V_p(ab)$,
2. if $a^+ \in V_p(a)$, then $a \in V_p(a^+)$,
3. $V_p(e) \subseteq E$,
4. $q \in V_p(q)$.

Result 1.2 (due to [2]). Let ρ be a \mathcal{P}-congruence on $S(P)$ and $a, b \in S(P)$. Then $a \rho b$ if and only if

$$ba' \in \ker\rho, \quad aa' \rho bb' aa', \quad b' b \rho b' ba' a$$

for some $a' \in V(a)$ and $b' \in V(b)$.

In section 2, for a given \mathcal{P}-congruence ρ on a \mathcal{P}-regular semigroup $S(P)$, the maximum and the minimum \mathcal{P}-congruences on $S(P)$ whose traces coincide with $tr\rho$ are determined, and the properties for those \mathcal{P}-congruences are given.

The concept introduced in section 3 is "\mathcal{P}-congruence pairs". This concept is a characterization of the pair $(tr\rho, \ker\rho)$ associated with a given \mathcal{P}-congruence ρ on $S(P)$, and the
pair uniquely determines the \mathcal{P}-congruence κ such that $\text{tr}\kappa = \text{tr}\rho$ and $\ker\kappa = \ker\rho$.

We use the notation and terminology of [3] and [9] unless otherwise stated.

2. \mathcal{P}-congruences with the same trace. For any \mathcal{P}-congruence ρ on $S(P)$, define a relation ρ_{max} on $S(P)$ as follows:

$$\rho_{\text{max}} = \{(a,b) : \text{there exist } a^+ \in V_P(a) \text{ and } b^+ \in V_P(b) \text{ such that } aea^+ \rho beb^+aea^+, \quad beb^+ \rho aea^+beb^+, \quad a^+ea \rho a^+eb^+eb \rho b^+eb^+ea \text{ for all } e \in P\}.$$

Then we can easily see that

$$\rho_{\text{max}} = \{(a,b) : aea^+ \rho beb^+aea^+, \quad beb^+ \rho aea^+beb^+, \quad a^+ea \rho a^+eb^+eb \rho b^+eb^+ea \text{ for all } a^+ \in V_P(a), \quad b^+ \in V_P(b) \text{ and } e \in P\}$$

Lemma 2.1. Let ρ be a \mathcal{P}-congruence on $S(P)$ and $a, b \in S(P)$. If $a \rho_{\text{max}} b$, then

$$aa^+ \rho bb^+aa^+, \quad bb^+ \rho aa^+bb^+, \quad a^+a \rho a^+ab^+b, \quad b^+b \rho b^+ba^+a$$

for any $a^+ \in V_P(a)$ and $b^+ \in V_P(b)$.

Theorem 2.2. For any \mathcal{P}-congruence ρ on a \mathcal{P}-regular semigroup $S(P)$, ρ_{max} is the greatest \mathcal{P}-congruence on $S(P)$ whose trace coincides with $\text{tr}\rho$.

Theorem 2.3. For any orthodox \mathcal{P}-congruence ρ on $S(P)$,
\(\rho_{\text{max}} \) is the greatest orthodox \(\mathcal{P} \)-congruence on \(S(P) \) whose trace coincides with \(\text{tr}\rho \).

From now on, denote the maximum idempotent-separating congruence on a semigroup \(T \) by \(\mu_T \).

Corollary 2.4 (compare with [8, Proposition 4.1]). The maximum idempotent-separating \(\mathcal{P} \)-congruence \(\mu_{S(P)} \) on \(S(P) \) is given as follows:

\[
\mu_{S(P)} = \{(a,b) : \text{there exist } a^+ \in V_P(a) \text{ and } b^+ \in V_P(b) \text{ such that } aea^+ = beb^+aea^+, \text{ beb}^+ = aea^+beb^+, \text{ a}^+ea = a^+eab^+eb \text{ and } b^+eb = b^+eba^+ea \text{ for all } e \in P \}. \\
= \{(a,b) : aea^+ = beb^+aea^+, \text{ beb}^+ = aea^+beb^+, \text{ a}^+ea = a^+eab^+eb \text{ and } b^+eb = b^+eba^+ea \text{ for all } a^+ \in V_P(a), b^+ \in V_P(b) \text{ and } e \in P \}
\]

Let \(S \) be an orthodox semigroup and \(E \) the band of idempotents of \(S \). Then it is easy to check that \(S(E) \) is a \(\mathcal{P} \)-regular semigroup with a C-set \(E \) in \(S \). So we have immediately

Corollary 2.5 ([1, Theorem 4.2]). Let \(\rho \) be a congruence on an orthodox semigroup \(S \) with the band \(E \) of idempotents of \(S \). Then

\[
\rho_{\text{max}} = \{(a,b) : \text{there exist } a' \in V(a) \text{ and } b' \in V(b) \text{ such that } aea' \rho \text{ beb'aea}', \text{ beb'} \rho \text{ aea'beb'}, \text{ a'ea } \rho \\
\text{a'eab'eb, b'eb } \rho \text{ b'eba'ea for any } e \in E \} \\
= \{(a,b) : aea' \rho \text{ beb'aea}', \text{ beb'} \rho \text{ aea'beb'}, \text{ a'ea } \rho
\]
a'eab'eb, b'eb ρ b'eba'ea for any a' ∈ V(a), b' ∈ V(b) and e ∈ E}
is the greatest congruence on S whose trace coincides with trρ.

On the other hand, the minimum P-congruence on S(P) with the same trace is given as follows:

Theorem 2.6. For any P-congruence ρ on a P-regular semigroup S(P), define a relation ρ₀ on S(P) by

ρ₀ = {(a,b): there exist x, y ∈ S(P)¹ and e, f ∈ E
such that a = xey, b = xfy and e ρ f}

Then ρₘᵟₐₙ = ρ₀ᵗ, the transitive closure of ρ₀, is the least P-congruence on S(P) whose trace coincides with trρ. In other words, the least P-congruence on S(P) with trρ as its trace is the P-congruence on S(P) generated by trρ.

The following corollary gives us the characterization which is different from both [1, Theorem 4.1] and [7, Theorem 3.3], of the least congruence on an orthodox semigroup with the same trace.

Corollary 2.7. For any congruence ρ on an orthodox semigroup S, the congruence generated by trρ is the least congruence on S whose trace coincides with trρ.

Proposition 2.9. For any P-congruence ρ on S(P), ρ = ρₘᵟₐₓ if and only if S(P)/(ρ)ₚ is a fundamental P-regular
For any \(P \)-congruences \(\rho \) and \(\sigma \) on \(S(P) \) such that \(\rho \subseteq \sigma \), define a relation \(\sigma / \rho \) on \(S(P)/(\rho) \) by
\[
\sigma / \rho = \{(a \rho, b \rho) : (a, b) \in \sigma\}
\]

Proposition 2.10. For any \(P \)-congruence \(\rho \) on \(S(P) \), \(\rho_{\text{max}} / \rho \) is the maximum idempotent-separating \(P \)-congruence on \(S(P)/(\rho) \).

Let \(\Lambda \) be the lattice of all \(P \)-congruences on \(S(P) \). Define a relation \(\Theta \) on \(\Lambda \) as follows: for any \(\rho, \sigma \in \Lambda \),
\[
\rho \Theta \sigma \quad \text{if and only if} \quad tr \rho = tr \sigma.
\]
It immediately follows from Theorems 2.2 and 2.6 that \(\rho \Theta \), the \(\Theta \)-class containing \(\rho \in \Lambda \), is the interval \([\rho_{\text{min}}, \rho_{\text{max}}]\) of \(\Lambda \).

Proposition 2.11 ([6, Theorem 5.1]). If \(P \)-congruences \(\rho \) and \(\sigma \) on \(S(P) \) are \(\Theta \)-equivalent, then \(\rho \sigma = \sigma \rho \). Therefore, for any \(\rho \in \Lambda \), \(\rho \Theta \) is a complete modular subsemilattice of \(\Lambda \).

Proposition 2.12. Let \(\xi \in \Lambda \), and let \(\Gamma \) be the lattice of all idempotent-separating \(P \)-congruences on \(S(P)/(\xi_{\text{min}}) \). Then the mapping \(\rho \rightarrow \rho / \xi_{\text{min}} \) is a complete isomorphism of \(\xi \Theta \) onto \(\Gamma \).

3. **\(P \)-congruence pairs.** Let \(\xi \) be an equivalence on \(E \). Then \(\xi \) is called a normal equivalence on \(E \) if it satisfies the following conditions: for any \(a \in S(P) \) and \(e, f, g, h, i, j, k \in \)}
E,

(a) if \(e \not\in \xi f \) and \(aea^+ \in E \) for some \(a^+ \in V_p(a) \),
then \(aea^+ \in afa^+ \).

(b) if \(e \not\in \xi f \), \(g \not\in \xi h \) and \(eg, fh \in E \), then \(eg \not\in \xi fh \).

(c) if \(\Box \not\in (e\xi)(f\xi) \cap E \subset h\xi \), \(\Box \not\in (f\xi)(g\xi) \cap E \subset i\xi \) and
\(\Box \not\in (e\xi)(i\xi) \cap E \subset j\xi \) [\(\Box \not\in (h\xi)(g\xi) \cap E \subset k\xi \)],
then \(\Box \not\in (h\xi)(g\xi) \cap E \) [\(\Box \not\in (e\xi)(i\xi) \cap E \)] and \(j \not\in k \).

Let \(\xi \) be a normal equivalence on \(E \). Define a partial
binary operation \(\cdot \) on \(E/\xi \) as follows: for any \(e, f, g \in E \),
\(e\xi \cdot f\xi = g\xi \), where \(\Box \not\in (e\xi)(f\xi) \cap E \subset g\xi \).

It is easy to verify that the partial binary operation \(\cdot \) is
well-defined. The partial groupoid \(E/\xi \) satisfies the
following:

\((w) \) if \(e\xi \cdot f\xi, f\xi \cdot g\xi \) and \(e\xi \cdot (f\xi \cdot g\xi) \)
\([(e\xi \cdot f\xi) \cdot g\xi] \) are
defined in \(E/\xi \), then \((e\xi \cdot f\xi) \cdot g\xi \) \([e\xi \cdot (f\xi \cdot g\xi)] \) is
defined in \(E/\xi \) and \((e\xi \cdot f\xi) \cdot g\xi = e\xi \cdot (f\xi \cdot g\xi) \).

Let \(K \) be a weakly closed full \(\mathcal{P} \)-subset of \(S(P) \) and \(\xi \) a
normal equivalence on \(E \). Then the pair \((\xi, K) \) is called a \(\mathcal{P} \)-
congruence pair for \(S(P) \) if its satisfies the following
conditions: for any \(a, b, c \in S(P), c^+ \in V_p(c), e, f, g \in E \) and \(q \in P \),

\((C1) \) \(a \in K \) implies \(a^+ a \xi a^+ a a \) for any \(a^+ \in V_p(a) \),

\((C2) \) \(aefb \in K \) and \(e\xi \cdot f\xi = (a^+ a)\xi \) for some \(a^+ \in V_p(a) \)
imply \(ab \in K \),

\((C3) \) \(ab^+ \in K \) and \(ab^+ \xi b^+ a a^+ \), \(b^+ b \xi b^+ b a^+ a \) for some
\(a^+ \in V_p(a) \) and \(b^+ \in V_p(b) \) imply \(aqb^+ \in K \) and
\(aqa^+ \xi bqb^+ aq^+, b^+ qb \xi b^+ q b a^+ a q a \).
(C4) $a, b \in K, a^* \xi e^*a^*, e^* \xi a^*a^*, a^*a \xi a^*e^*a, e^*e \xi e^*a^*e, b^*b \xi f^*f^*b, f^*f \xi f^*f b^*b$ and $e^*f \xi f$ for some $a^* \in V_\mathcal{P}(a), b^* \in V_\mathcal{P}(b), e^* \in V_\mathcal{P}(e)$ and $f^* \in V_\mathcal{P}(f)$ imply $ab \in K$,

(C5) $aq \in K$ and $aa^* \xi qaa^*, q \xi qa^*a$ for some $a^* \in V_\mathcal{P}(a)$ imply $cac^* \in K$.

For any \mathcal{P}-congruence pair (ξ, K) for $S(\mathcal{P})$, define a relation $\kappa(\xi, K)$ on $S(\mathcal{P})$ as follows:

$$\kappa(\xi, K) = \{(a, b) : ab^* \in K \text{ and } a^* \xi bb^*a^*, bb^* \xi a^*bb^*, a^*a \xi a^*ab^*b, b^*b \xi b^*ba^*a \text{ for some any } a^* \in V_\mathcal{P}(a) \text{ and } b^* \in V_\mathcal{P}(b)\}.$$

Now we can determine \mathcal{P}-congruences on $S(\mathcal{P})$ by \mathcal{P}-congruence pairs.

Theorem 3.1. For any \mathcal{P}-congruence pair (ξ, K) for a \mathcal{P}-regular semigroup $S(P)$, $\kappa(\xi, K)$ is a \mathcal{P}-congruence on $S(P)$ such that $\text{tr}\kappa(\xi, K) = \xi$ and $\text{ker}\kappa(\xi, K) = K$. Conversely, for any \mathcal{P}-congruence ρ on $S(P)$, $(\text{tr}\rho, \text{ker}\rho)$ is a \mathcal{P}-congruence pair for $S(P)$ and $\rho = \kappa(\text{tr}\rho, \text{ker}\rho)$.

Let \mathcal{A} be the set of \mathcal{P}-congruence pairs for $S(P)$. Define an order \prec on \mathcal{A} by

$$(\xi_1, K_1) \prec (\xi_2, K_2) \text{ if and only if } \xi_1 \subset \xi_2, K_1 \subset K_2.$$

Corollary 3.2. The mappings
\[(\xi, K) \rightarrow \kappa(\xi, K), \quad \rho \rightarrow (\text{tr}_\rho, \ker \rho)\]
are mutually inverse order-preserving mappings of \(A\) onto \(A\) and of \(A\) onto \(A\), respectively. Therefore, \(A\) forms a complete lattice.

References

CODEC Co., Ltd.
2-11, Taira, 1-chome, Miyamae-ku, Kawasaki, 216 Japan
and
Department of Mathematics
Shimane University
Matsue, Shimane, 690 Japan