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A CONVERGENCE BALL FOR MULTISTEP SIMPLIFIED
NEWTON-LIKE METHODS

Xiaojun CHENt and Tetsuro YAMAMOTO®t

Abstract: In this paper, we give a convergence ball for
multistep simplified Newton-like methods for solving
nonlinear equations with nondifferentiable operator, which
describes exactly the relation between the multistep
simplified number and the convergence domain, and contains
known convergence balls for several iterative methods as
special cases.
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Let f and g be operators in a domain D of a Banach space
X, and consider the equation

F(x)=f(x)+g(x)=0, _ (1)

where f 1s Frechet differentiable in an open convex set

DOCD, while the differentiability of g is not assumed.

In this paper, we consider m-step simplified Newton-like
method starting from XOGDO

XK O_xK - KK 11 a Ky IR (kK 11y gy,

k+1 _k,m
X =X

, k20, (2)
for solving the equation (1), where A(x) denotes a linear
operator which approximates f'(x). Observe that if m=1,
then (2) reduces to the usual Newton-like iteration

LK AE IR xK), k2o, (3)
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which includes the simplifed Newton-like method

xHLoxK AR (x9), k2o, (4)
with a constant linear operator A. The sequence {xo’l}§=1

(m=+w) with A=A(x0) also defines the simplified Newton-
like method.

Dénoting by x* a solution of (1), we say that the open

ball B(X*,r) with center x* and radius r is a convergence
ball for (2), 1if the 1iteration (2) starting from any

XOEB(X*,P) converges to the solution x*.

The convergence for 1iteration (2) with g=0 has been
considered in much literature, and the existence for local
convergence domain was shown in [1;Theorem 10.2.4 and NR
10.2-2]. Here, we give a local convergence ball, which
describes exactly the relation between the step-number m
and the convergence domain, and contains known convergence
balls(Rall[2] and Rheinboldt[3]) for several iterative

methods as special cases.

We assume that there exist a solution X*ED0 of the

equation (1), constants r>0, g>0, w>0 and a nonsingular
linear operator P, such that for x,y € B(X*,F)CDO, A(x)_1
exists and

Ia(x) " tpli<q

1

JA(x) “F(x)llsn

Pt (e (x)-A(y)) IIsKlIx-y]l+c

1P (g (x)-g(y)) lIsellx-yll.
Define the sequence {tk i} by

- P ¢ = -
tk,O_O’ tk’i—q(ztk’i_1+c+e)tk,i_l+nk, i=1,..,m+1,k=0,1,...

n.=n, (kz1).

0 e tko1,me1 Yk-1.m

Obviously, the sequence {t i} satisfies

k,

<
T i3 11

121



122

Theorem 1. Under the above notation and assumptions, we

take a number t* such that

» . - -
t 2min {mix tk,m—l’ 2r}.
- If b=q(%t*+c+e)<1, and if we put r= Zé%:hl' then the ball

B(x*,r), with r= min { r, r } is a convergence ball of the
iteration (2) with any m and

|ka+l_ k,m

x* =11 P s (allxB-x* 1 +b) B K -x* [ <@ xE-x*Il,  (5)

where = %5 and D=aHx0-x*H+b<1.

Corollary 1. Assume that there exists a solution X*GD0 of

the equation (1), A(x*)_1 exists and for any XEDO, the
following hold:
la(x*)"Leer (x)-A(y)) IsKlIx-yll+c (8)

lax®) " Hax)-ax*)) lIsLlx-x*l+d

lax®) Lg(x)-g(x*)) lIsellx-x* ||
p=c+d+e<l.
Then:

(i) The ball B(x*,r)CDO with r=2(1-p)/(3K+2L) is a

convergence ball for the iteration (2) with any m and

1 L=l x5 Call - x* 1 b) - 0™ xS 1

where a=(3K)/(2(1-Lr-d)), b=(c+e)/(1-Lr-d) and P= al/x°-
x*||+b<1.

(i1) The ball B(x",r)CD with r=2éi;L) is a convergence

ball for the iteration (3) and

k+1l _#) . 1 Ky k__* k__»
|Ix X llggr=g ( glIx -x"ll+cre) lIx-x71I.

Remark 1. If we replace the condition (8) by

lacx®) "L eer (x)-ax*)) lI=KlIx-x*||+c,



then the assertion (i) of Corollary 1 holds with r=
2(1-p-b)/(K+4L). In fact, we have

P Lee (x*+t (X T-x*))-ax¥)) |l
<Pl eer (x* st (X -x*) ) -a D I1+IP T ax®)y -a ) I,

so that, replacing xo’l and xO in the proof of Theorem 1

by Xk’1 and xk, respectively, we obtain
1 x g (R Tox Ml L X -x [ rdre XK T-x* |

This means that the constants a and b in Corollary 1 may
be replaced by a=q(K/2+L) and b=qp, respectively. Then we

have ar+b<1.

Now, we apply the result to the m-step simplified Newton

method starting from XOED0

R S LI L i AN S MR 1¢ SRS W P ") (9)
xk+1=xk’m, kz0
for solving the nonlinear equation
f(x)=0. (10)

Then we have the following result.

Corollary 2. (i)Let f'(x*) be nonsingular. If f' satisfies

e (x*) e (x)-£ (x*)) l1=klIx-x"1l, x€D,
then the ball B(X*,r)CD0 with r=§% is a convergence ball
for the iteration (9) with any m, and

k+1 k,m_

=t -x*1=]lx x* | sa™| K- x*(m*
where a=3K/(2(1-Kr)).

(ii) (Rheinboldt[3]) If

e (x") "He ()= () IsKlIx-yll,  x,¥€D,

then the ball B(X*,P)CD with r=2/(3K) is a convergence

0
ball for Newton's method

K e (K ex®y, k20,
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Remark 2. Rall[2] gave a convergence ball for Newton's

method B(x*,r)CD0 with r=(1—(J§)_1)/K, where Kantorovich's

hypotheses are satisfied. This result can be extended to
multistep simplified Newton method. In fact, if we assume

1

that f'(x*)— exists and put P=f'(x*), A(x)=f'(x), g(x)=0,

in Theorem 1, then we can prove that for any XGB(X*,r),

l£' (x) " Le' (x*)1lsq=1/(1-Kr),

1

£ (x) "1 (x) llsn=(r-Er?) / (1-Kr)

and Kqgns % (also see [2]). Furthermore, we define a

sequence {tk,m} by

tk+1,0=tk,m’ tk+1,1=tk,m+1’
Then from the proof of Theorem 1 we see that the sequence

k,1

{tk i} is a majorant sequence for {x }, that is, (6)

holds. Since {tk m} converges to the smallest root of the

equation t=q%t2+n, as k-2x, with any m, we can conclude

from (6) that {xk’l} converges to a solution x" of (10),

that 1is, the ball B(x*,r) is a convergence ball for the
multistep simplified Newton method (9) with any m.

Furthermore, we note that both convergence balls

B(x*,2/(5K)) (with any m) and B(x*,2/(3K)) (with m=1)
contain Rall's ball.

Remark 3. The above discussion 1implies the semilocal
convergence for the multistep simplified Newton method

under Kantorovich's conditions: If there is an XO such

that f'(xo)—l exists, Hf'(xo)_l(f'(X)—f'(y))HéKHX-YH and
h=Kn$%, where n=Hf'(x0)_1f(xo)H, then the multistep

simplified Newton method starting from x0 converges to a
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K

. * i *
Furthermore, we have error estimates ||x —Xk’lﬂét -t

solution x° of (10) and x €B(x ,t*), t*=

k,i’

. . * k.1 *
which include the usual error estimates ||x -x '"||St -t 1
for Newton's method (m=1), where the sequence {tk i} is

defined by
Pty 1)

k1T $7(t,)
k=0,1,...

o, ¢t =n, t i=2,...,m+1

to,0" Cy, "
tk+1’0=tk, ’ tk+l,1=tk,m+1’
and ¢(t)=gt -t+n.

Example 1. We use the example in [2] to illustrate that

N B

the ball B(x*,r),r=2/(3K) is not a convergence ball for
the multistep simplified Newton method with m>1.

We consider the equation F(x)=f(x)=%(x2—x*2

) in Rl,

where x'#0. Then we have Hf'(x*)—l(f'(x)—f'(y))H <Kl||x-yl|

with K= 1 Take X0=lx*,then X*—XO

* ' 3

0, #* 0 1 0 = 0 _ = *# * 0 2
X -X =X - —= (X +x )(X -X )-X =X -X =5=.
0 3K
2x
If m=1, we have

15051

xl’l—x*=x1— —lI (x1+x*)(x1—x*)—x*=

2x

Hence {xk} converges to x" because of the convexity of f.
If m=2, then

~2x*-2_ and
37 3K

b=

(x*—xl).

ulj=

x0r 2 g% g0 L (001 (x0T -x*
2X
=—3(x0’1—x )=-2x*,
and
1 .0,2
X =X =-X#*

That is, {xk} converges to -x". Since the behaviour of the
sequence {Xk} depends continuously on xo, the above result
implies that if m>1, XOGB(X*,Z/(3K)) and XO is

sufficiently close to x*/3, then we have X1=XO’mEB(—
X*,Z/(5K)). Hence {Xk} converges to -x* by Corollary 2 and

B(x*,r), r=2/(3K) 1is not a convergence ball for the
iteration (9).
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