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Boundary value problems and variational inequalities

BRRKE Elteyr (Hisako Watanabe)

1. Introduction and notations

Let 2 be a bounded open set in R™ (n > 2). We consider the obstacle
problem for a quasilinear elliptic operator of second order in {2 as follows:

(1.1) L = —div A(z,u, Vu) + B(z,u, Vu).

Here A (resp. B) 1s a vector (resp. scalar) valued function defined .on
2xRx R® and the functions A and B are assumed to satisfy the following
inequalities:

|A(z,u, w)] < a(wfP™! +|ul?~F +1),

|B(z, u, w)| < b(|w|?™" + [u]?~F + 1),
w- Az, u, w) +uB(z,v.w) > c|wl? — ca(|u]? +1),
(Alz,u,w1) — Alz,u,ws)) - (w1 —w2) >0 (wy # w2)

forallz € 2, v € R and wy, wy € R*, where a, b, c; p are positive real
numbers satisfying p > 1 and ¢z 1s a nonnegative real number.

It has been known that for each continuous function f on 82 and a
function ¢ on {2 satisfying

/ 718, ,(A(t))dt < +oo
.

there exists a solution u € Wlt’f(.Q) to the obstacle problem with boundary
data f, where

Alt)={y € 2 ¥(v) > t}.
The obstacle problem is to find a function € W,2?(§2) such that

loc

w > ¢ on {2 except for a subset of {2,

v = f weakly on 882



and

[ 420, Vo) Vewy+ [ Blu,ulw), Valw)otu)dy > 0

for all ¢ € C(12) satisfying ¢ > ¢ —u on 2 except for a subset of 2.
In this paper we will prove the existence of a weak solution to the obsta-
cle problem for (possibly) non-bounded boundary function f. To consider

boundary functions which value oo, we must distinglish functions not up

to a set of n-dimensional Lebesgue measure zero, but up to & more fine
set, for example, a set of By ,-capacity zero.
Recall that for s > 1 the Bessel capacity By, with order 1 is defined by

Bi,(E) =inf{||g|l;;9 € L’(R"), > 0,G1*g > 1 on F}

for a subset £ of R™. If a property holds on a subset X of R® except for
a set of By ,-capacity zero, we say that it holds By ,-q.e. on X. In the
case § = p we use simply "q.e.” instead of "By ,-q.e.”. ‘

To distinglish functions up to a set of By ,-capacity zero, we construct a
family of functions defined on 82, which contains all continuous functions
and the restrictions of all Bessel potentials Gy * g (¢ € L*(R*)) to 842,
where G 1s the Bessel function with order 1, i.e.,

_ 1 1 *® 7r|x|2 t (1-n)/2 1
Gi(z) = W@/; exp(— . )exp(—a-)t . -t—)dt.

Recall that the Founer function of G; 1s equal to

1
(1 + 4nz|2)172

Let us define, for each extended real-valued function f on 842,
Y1,6(f) =inf{llglls; 9 € L' (R"), 92> 0, Grxg > |f| on 882}

Furthermore, denote by B(vy;,,) the family of all Borel measurable func-
tions on 842 such that vy, ,(f) < +co. We remark that B(vyy,) D C(812),
where C(842) is the family of all continuous real-valued functions on 842.

We denote by £(v,,) the family of all f € B(7y,,) such that
Y1,6(f = ;) — 0 (j — o0) for some {f;} C C(82).

It is well-known that, if 1 < p < n and v € WL?(§2), then

1
(1.2) lim —— o(y)dy
=0 IB(:E,T)' B(z,r)
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exists (as a real number) for all ¢ € 2 except for a set £ with By ,(E)
= 0, where B(z,r) is the ball with center ¢ and radius » and |B(z,r)|
stands for the volume of the ball B(z,r) (cf.[FZ]). For each v € W17 (2)
we denote by v* the function defined by (1.2) q.e. on {2.

Under these notations we will prove the following theorem.

Theorem. Letl <p<n,p<s< n—”_%, [ € L(n,e) and ¢ be a real-
valued function on 2 such that |[¢| < Gy x g on §2 for some g € L*(R*)*.
If

Lmsup ¥(y) < +o0 and limsup ¢ (y) < f(v)

¥z y—rx

for all ¢ € 82. Then there exists a function u € W,lo’f(Q) having the
following properties:

(1) u > ¢ ge. on 2,

(i) If ¢ € WLP(R2), supp ¢ C 2 and ¢" > ¢ — u q.e. on 2, then

/O [A(y, u(y), Va(y)) - Vo(y) + By, u(y), Vals))$()}dy > 0.

(1) w = f on 882 in the following sense: .
Let T be a function on {2 such that it is lower semi-continuous on 2\ K
for some compact subset K of 2 and

T g€ WY (), 7> f+6 on 882 for some § > 0.

Then (v — 7)T € Wh2(£2). Further, let X be a function on 2 such that it

is upper semicontinuous on 2\ K for some compact subset K of 2 and
Ma€Wh(2), X< f-6

for some § > 0 on 8§2. Then (v — A)~ € WL2(§2).

2. Properties of vy,

In this section we study the properties of vy ,. It is easy to see that the

functional 7y, has the following properties similar to those of the upper
integral.

Lemma 2.1. Let s > 1. Then the functional v1, has the following
properties:

(c1) 1,6(f) = 1,0 (14D,

(c2) v1,6(bf) = by, o(f) for b€ RY,



(c3) £j 2 0= 7,302, £i) S 2521 7,6 ()
(ca) 71,s(xE) = B1,,(E)Y/* for E C R™.

Using Lemma 2.1, we can show the follwing lemma.

Lemma 2.2. (i) Ifv1,,(f) < +o0, then the set {z € 812; |f(x)| = +o0}
is of By ,-capacity zero.

(1) If v1,,(f —9) =0, then f = g By ,- g.e. on 8{2.

Lemma 2.8. Let g be a nonnegative function in L*(R"). Then the
Bessel potential Gy * g belongs to L(v1,,).

Proof. We can assume that g is nonnegative. Set

g; =min{g, j} and h; =g —g;.

Noting G; € L}(R*™), we see that Gy * g; is continuous on 82. Since
|G1 % g — Gy % gj| < Gy *h; and ||hjll, — 0 as § — co, we have the
conclusion. Q.ED

Lemma 2.4. The set £ of the restrictions of all Lipschitz functions on
§2 to 82 is dense in L(y,,).

Proof. We can choose a nonnegative function h = Gy *g (g € L*(R™)T)
such that A > 1 on 8£2. Since £ i1s uniformly dense in C(82), it is dense
in £(v1,,)- Q.ED.

Noting that

G1(y) = O(e™1¥!) for some ¢ >0 as |y] — oo,

we can easily show the following lemma.

Lemma 2.5. Let p, s be posstive real numbers satisfying 1 < p < 8 and
E be a relatively compact subset of R*. If By ,(E) =0, then By ,(E) = 0.

For a function f defined on R™ we define
m,6(f) = mni{||fll:; g € L'(R*)*; G1xg > |f| on R*}

It is easy to see that this functional v, , also has the properties in Lemmas
2.1 and 2.2 in which 8(2 is replaced by R™.

Lemma 2.6. Let {f;} be a sequence of functions on R™ such that
Y1,(f;) = 0 (j = 00). Then there exists a subsequence {gr} of {f;} such
that gz — 0 pointwisely By ,-q.e. on R™,
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Proof. Choose a subsequence {gi} of {f;} satisfying
(2.1) Z 2k’)’1,:(9k+1 — gi) < +oo.
k=1
To show that {gx} is the desired subsequence, set
E =UfZ{z € R% gk ()| = +oo}.
Then we have By ,(E£) =0 by Lemmas 2.1 and 2.2. Further set

Of = {z ER*\ E; |ge1(z) — gi(z)] > 27F}

and

O =UR,0. and Fr =R"\ (Ox UE).
Setting go = 0 and noting that
k-1
o= (0 - 00
i—=0
on R*\ E, we see that {gi} converges to 0 on U2, F;. We put
From

o0 o0
xor £ _xor < 2lgit1 — gil
i=k i=k

and Lemma 2.1 we deduce

[o o]
Y,e(x0:) £ 27,0 (gi41 — 94)-
i=k
On account of (2.1) we have

71,:(X0)¢) —0 (k - OO)

and hence vy ,(xg,) = 0. Therefore we see by Lemma 2.1 that

B, (EUE,)Y* =y ,(xpuE,) =0 and {g&} converges to 0 on
R\ (FUE,).

‘3. Boundedness of solutions

QED.



For an open subset £2, # @ of 2 we denote by A({2,,-) the mapping
Whe(2,) — Wh($2,)'
defined by
(A(82,, ), w)

= [ {A0,90), V9(0) - Vo) + B, 9(6), Vo))

The following theorem is fundamental.

Theorem A ([MZ, Theorem 3.1]). Let p < s and §2, be a nonempty
open subset of 2, € =+ or — and v,  be functions in WH2(82,) such that
(v—mn)* € W;2({2,) and

(A(2,,v), —e(v — 7)7} 2 0.

Then

1/»
—~ 9
(v = 2)llwrr(a,) <c+e (1 +/ (|In]* + Z lgflp)dy) ’
n — ;
o j=1

where ¢ 15 a constant independent of v, 7.

It 1s well-known that for each s > 1
Wh'(R") = {G1*g; g € L*(R")}

and

1
(3.1) M”Q”- < NG * gllwrsm) £ Mliglls,

where M 1s a constant independent of g (cf. [S, Theorem 3 on p.135]).

Lemma 3.1. Let f be a Lipschitz function on 2 such that |f| < G1x g1
for some gy € LP(R®)t. Furthermore, let ¢ be a real-valued function on
§2 such that

(3.2) limsup ¥(y) < f(z)—§
y—x,y€02

for all € 382 and for some 6 > 0, and

|¥| < Gy % go for some g, € L*(R™)*.
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Then there exists a function u € WH?(2) such that w has the properties:
(1) v > g.e. on §2,
(i) If ¢ € WHP(2) and ¢* > ¥ — u g.e. on §2, then

/Q [A(y, u(y), Vuly)) - Vé(y) + By, u(y), Vuly))d(y)}dy > 0.

(i) w — f € WHP(02), )
(iv) If n (resp. X) is a function on 2, such that it is lower (resp.
upper) semicontinuous on 2\ K for some compact subset K of {2 and

n € WhE(2) (resp. X € WHP(£2)), n(y) > f(y) (resp. My) < f(y)) for
ally € 892, then (u —n)t € WhE(2) (resp. (u — )~ € Wh?(2)).
Proof. Set
K={veWh?(2); v— f € WH?(2), v* > % qe. on 2}.

We claim that K 1is not empty. Indeed, noting that Gy * ¢, 1s lower

semicontinuous, we can choose, by the aid of (3.2), an open set {2, such

that 2, C §2 and

¥(y) < f(y) forally€ 2\ 2.

Choose a Lipschitz function A such that

supph C 2, h=1lonf2,, 0<Ah<LI1,

and define
#(y) = h(y)w(y) + (1 — h(y) f(y),

where w = (1 * g,. We note that supp h stands for the closure of the set
{y; h(y) #0}. Then ¢* > ¥ q.e. on 2 and ¢ — f = h(w — f) € Wh?(02).
Therefore we see that ¢ € K.

The family KX is a convex closed subset of W12((2) and hence weakly
closed. The mapping A(£2,:) from Wh?(2) to WH?(2) is pseudomono-
tone by Theorem 3.9 in [MZ]. Furthermore we see that

(A(2,v),v —v,)
|l w.e o)

as ||v]|lwi.r2) — oo (v € K). It follows from Theorem 8.2 on p.247 in [L]
thai there exists u, € K such that

(A(2,u,),v —u,) > 0 forall v € K.



Setting v = u}, we will show that u is the desired function. It is obvious

that (i) and (iv) hold. To show (ii), let ¢ be a function in Wr?(§2) such
that
$* > 9 —wu q.e on 2.

From u — f € WH?(£2) and ¢ +u — f € WH?((2), it follows that

(A(£2,u),¢) 2 0.

Finally, to show (v), let 7 be a lower semicontinuous function on {2 in
WLE((2) such that n > f on 802. Since f —5 < 0 outside a compact subset
of 2 and v — f € WHP(2), we have

(w—m)*t € WP(2).

Similarly we can show that (u — X\)™ € Wh?((2). QED.

4, Proof of Theorem

Let us prove Theorem. Suppose that f € £L(v,,). On account of Lemma
2.4 we can choose a sequence {f;} of Lipschitz functions on 2 and a
sequence {g; } of functions in L*(R™)" such that

|7 = #il < Gixgj on 82 |lgill <277.

Since v,,(G1 * gj) — 0, we can choose, by Lemma 2.6, a subsequence
{G1 % hi} converges pointwisely to 0 Bi,-qe. on R" Therefore, by
Lemma 2.5, it converges to 0 q.e. on {2. Noting that

limsup $(y) < 7(2) < Gy # ha(2) + £;,(2)

yx

for all @ € 882, we define

$i(y) = ¥(y) = Crxha(y) —27F if Gy ki (y) < +oo
and
Yi(y) = — sup |f;,(2)] =1 otherwise.
z€AN

Then we have
limsup ¥4 (3) < £;,(2) — 27*.

y—
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Pick h,, ' € L*(R™)T such that

Gi*h, > |flon 802, Gyxh' >1on 8.

If we set
(4.1) h=h +ihk”
k=0
then
(4.2) il F1<|fl +Crxh +Grxh! <Grxh
on 8{2.

We denote by uy the solution u in Lemma 3.1 corresponding to f = f;,
and ¢ = ¢;. Let 12, be an arbitrary subset of {2 such that 2, C 2.
To show that

{llugllwr.z(a,)}

1s uniformly bounded, let us take a Lipschitz function 5 such that
suppn C 2, n=1onf2, 0<p<1.
Further, take g € LP(R®)7 satisfying |[¢| < Gy g on §2 and define
B(y) = n(¥)Gr* g(y) + (1 —n(y))Gr*h(y),

¢(y) = 9(y)B(y) — (1 —n(y))G1 * h(y)

fory € £2. Then ¢ € WH2(§2). Applying the Sobolev inequality and (3.1),
and noting that s < *%, we obtain

v N [ 188
/nlﬂ(?i” +jE:1/r;|8yj (y)Pdy < +o0
and
- 8¢
/; 16(s)] +!§:1ﬁ /n I3 )y < +oo.

Note that

(4.3) (us — @) 202> —ur qe on 2.



By the aid of (4.2) we have
fin—=1>2—-Gixh=¢ ondf.

From Lemma 3.1, (iv) we deduce (uy — ¢)~ € WH2({2), which and (4.3)
lead to

(A(‘Qz '“’k): (uk - ¢)—) 2 0.
Therefore we obtain, by Theorem A,

H(wr — &)~ llws.e(a)

1/p
<ot ( [rwr+% [ |§y¢f(y)|my)

and hence

(4.4) (s = B llwrosan)

1/p
Lo [ 09
5c+c(fn 6(9)| +§/ﬂl5§]—(y)|w) :

On the other hand, since '
5 +1<Gish<f ondf
we have (ug — B)* € WP(£2). Moreover, if us(y) < A(y), then
—(ue = B)(y) =0 > ¥ely) —ur ()
for qee. y. L ui(y) > A(y), then
—(us = 0)*(9) = Bly) — waly) > ¥aly) — ue(y)
for q.e. y. Therefore we have
{(A(82, up), = (ur — g)fy>o0
by Lemma 3.1, (ii). This and Theorem A lead to

(4.5) I(zx = B)Fllws.n(a)

1/p
e (188 i
SC+C(/QIﬂ(y)I +)§/ﬁ|5€;(y)l dy) :
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Thus we see by (4.4) and (4.5) that

{ller = Bllwr.z(a,)}
and hence
{lluzllwroga,)}

is uniformly bounded for every open set {2, satisfying §2, C {2. Therefore
we can choose a subsequence {ug,} and w € WP(£2) such that for every

" open set {2, satisfying §2, C {2 the sequence {uy,} converges weakly to w

in WbH?(£2,). Since identity mapping is a compact operator from Wh?(£2,)
to L?(2,), we may suppose that {ug,} converges strongly to w in LP({2,).
We note that

ugp = uy > ¥ q.e. on §2, klim Yy =1 q.e. on §2.
— 00

Since there exists a subsequence of convex combinations of the functions
#y, which converges strongly to w in WbH?((2,), we conclude that

(4.6) w* > q.e. on {2

Moreover, by the same method as in the proof of Lemma 4.5 in [MZ]
we can show that

up — w strongly in WhH?(82,).

Putting « = w*, we will show that u is the desired function. The
assertion (i) follows from (4.6). To show (ii), suppose that ¢ € Wh?({2),
supp ¢ C K and

" >v—u q.e on 2.

Take an open set {2, such that supp ¢ C 2, C 2, C § and choose &
Lipschitz function 7 on §2 such that

suppr C 2, r=1onf,, 0<7r<1.

We define
b =0+ 1(u— uk‘.)+.
We note that
qf;’: =¢" +u— u:‘, > '(bk‘- — Ug; q.€. On 2, N {'U» > uk,'}

and
i =¢" 2% —u2dr —uf g on LN {u <ugl).



On account of Lemma 3.1, (i) we have
(A(82,,u1,;),¢:) >0 for each s.
Since
ug, — u strongly in Wh?(2,)

and
$i — ¢ strongly in WhH?((2,),

we see that
(A(52,,u),¢) 20

and hence

(A(2,4),9) > 0.
Next, to show (iii), denote by E the set

{z € 882; |f(z)| =+}U{z € aﬂ;k]im Gy * hi(z) # 0}.
Then v, ,(xg) =0 and

(4.7) klim fio(@)=f(e) forz€dR\E.

Suppose that 7 is a function on {2 such that it is lower semicontinuous
on 2\ K for some compact subset K of 2 and 7 € Wh*(2), 7 > f+ 6
on 882 for some & > 0. Since

limsup¥(y) < +co0 and imsup¥(y) < f(z)

for all « € 842, there is an open set {2y satisfying {7 C §2 and

P(y) <r(y) forally € 2\ §2.

Take a Lipschitz function 7 such that
supp 7 C 2, n=1lonfH, 0<p<1

and define
Vo = (Gl * h)’l,

where A 1s the function defined in (4.1).

Let us show that (v —r)* € Wb2(2). Since supp v, C §2 and v, €
Wh2((2), it suffices to show that (v — 7 — #,)t € WI?2). From the
inequality .

Jie <T74+v,+G1xhy on 82
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and lemma 3.1 we deduce
(ug — (r+ v, + Grx k)T € WhHe(2).
We will show that
{(ue = (7 +vo + Gr* b)) Vllwrr ()}
1s uniformly bounded. We claim that
—(ug = (T +vo+Gr*hg))T > ¢ —up  qee on 2.
Indeed we have
—(up = (T v+ Crr b)) > —(ug — (r + v, +Grw b)) > $i —up
q.e. on 2N {uy > 7+ v, +G1xhi} and
—~(ug = (740 +CG1* )T =0> ¥ —uy

q.e. on 2N {u <7+ v, + Gy * ht}. Therefore, from Lemma 3.1, (ii) it
follows that

(A(R2,u4), —(ug — (7 + v, + Grxhy))T) > 0.
Using Theorem A and (3.1), we have

[[(uk = (7 + v + G1 % hk))+|lW1'P(ﬂ) La

1/»
i o
+ ¢ /!(T+00+G1*hk)l’+2/I—(T+UO+G1*hk)lpdy
”? j=1 n ay!

1/p

- 8
<ep+ecM / (r+v,)|* + f —(r +v,)|?d
2 2 nI | ; nlayj( I Y

Thus we see that

{l(ue — (7 + vo + G % 2g)) Fllwrp(a) }

15 uniformly bounded. We note that for every open set (2, satisfying
2 C 2, {us,} converges to u strongly in WH2((2,) and

Gy * &g lwris(a,) £ Mk ll, — 0



as t — 0o. Using Lemma 4.6 in [MZ], we conclude that (v — (7 + v,))t €
W}h?(§2) and hence (v — )t € Wh?((2).

Finally, suppose that ) is a function on 2 such that it is upper semi-
continuous on {2\ K for some compact subset K of {2 and A € Wh?(12),
AL f—256on 882 In this case we can also show directly, without the aid
of v,, that (u — X)~ € WL2(2). Thus we see that (iii) also holds. This
completes the proof. : : Q.ED.
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