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On an \mbox{\boldmath $\varepsilon$}-optimal policy in dynamic
programming with a finite horizon

新潟大学理学部 田中謙輔 (Kensuke Tanaka)

1 Abstract

In this paper, a dynamic programming with a finite horizon is investigated. In many
cases, the concept of an optimal policy is introduced and, then, the existence of the optimal
policy is shown. But, in order to show the existence of the optimal pohcy, we need to
assume the stronger condition such that an action space is compact. Here, excluding the
compact property of the action space and applying Ekeland’s theorem, we shall study the
characterization of an $\epsilon$-optimal policy on the dynamic programming.

2 Formulation of dynamic programming with a fi-
nite horizon

A dynamic decision model is specified by a set of seven elements

$(S, A, F, q, r, N, v)$ , (1)

where

1. $S=\{1,2,3, \cdots\}$ is a countable set, the set of states of the decision system.

2. $A$ is a Polish (i.e., complete, separable, metric) space, namely, the action space.

3. $F$ is a multifunction which assigns to each state $i\in S$ a non-empty feasible set of
actions $F(i)\subset A$ .

4. $q$ is a transition probability on $S$ given each $i\in S$ and $a\in F(i),i.e.,$ $q(j|i, a)$ is a
probabihty of a state $j$ for each $i\in S$ and $a$ E $F(i)$ and a Borel measurable function
with respect to $a\in F(i)$ for each state $i,j\in S$ .

5. $r(i, a)$ is a real-valued function, $S\cross Aarrow R$ , the one-step loss function.

6. $N$ is a positive integer, a terminal stage number.

7. $v$ is a real-valued function on $S,$ $Sarrow R$ , a terminal loss function on the stage $N$ .
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In the specification, we should note that the feasible set of actions $F(i)$ depends on a
state $i\in S$ and $q(\cdot|i, a)$ is independent of the times.

Then, a policy is defined as a finite sequence $(f_{1}, f_{2}, \cdots, f_{N-1})$ , each element $f_{n}$ of which
is a decision function from $S$ into $A$ such that $f_{n}(i)EF(i)$ for each $iES$ . Thus, each
decision function indicates an action to use for each $iES$ . We assume that we use only
such policies on the decision system. Throughout this paper, the class of all policies is
denoted by $\pi$ Thus, the dynamic decision system is interpreted as follows. If a policy
$\pi=(f_{1}, f_{2}, f_{3}, \cdots, f_{N-1})$ is employed, at the decision time $n,$ $n=1,2,3,$ $\cdots,$ $N-1$ , we
observe the state of the decision system and classify it to a possible state $x_{n}\in S$ . So, we
choose an action $h(x_{n})\in F(x_{n})$ by the decision function $f_{n}$ . As a result of the choice
$a_{n},$ $a_{n}=f_{n}(x_{n})$ , we will incur a loss $r(x_{n}, a_{n})$ . Then, the decision system moves to a new
state $x_{n+1}\in S$ according to transition probability $q(. x., a.)$ . After that, the process of
the dynamic decision system is developed from $x_{n+1}$ up to the terminal stage $N$ and, at
the terminal stage $N$ , we will incur a loss $v(x_{N})$ . So, given an initial distribution $p(\cdot)$ on
$S$ and any policy $\pi$ together with transition probability $q$ , we define a probability $p_{n}^{\pi}$ on
the state space $S$ at each time $n$ (see K.Hinderer [7, p.80] in detail). Thus, the expected
loss at each time $n$ is given by

$E_{\pi}[r(x_{n}, a_{n})]= \sum_{i\in S}r(i, f_{n}(i))p_{n}^{\pi}(i)$
. (2)

So, if a policy $\pi=(f_{1}, f_{2}, \cdots, f_{N-1})$ is employed, the total expected loss is given by

$I(\pi)$ $=$ $\sum_{n=1}^{N-1}E_{\pi}[r(x_{n}, a_{n})]+E_{\pi}[v(x_{N})]$ (3)

$=$ $\sum_{n=1}^{N-1}\sum_{i\in S}r(i, f_{n}(i))p_{n}^{\pi}(i)+\sum_{i\in S}v(i)p_{N}^{\pi}(i)$. (4)

Then, we consider a basic minimization problem (P) for the dynamic decision system:

(P) minimize $I(\pi)$ subject to T.

3 The existence of an e-optimal policy in the dy-
namic system

In order to show that there exists at least an $\epsilon$-optimal pohcy, let $M(S)$ be the set of all
real-valued functions, bounded from below, on $S$ . We impose some assumptions on $F,$ $q,$ $r$ ,
and $v$ as follows.

(A1) $F$ is a closed-valued multifunction from $S$ into $A$ , that is, $F(i)$ is a closed subset
in $A$ for each $i\in S$ .

(A2) The loss function $r$ is a real-valued function, $S\cross Aarrow R$ , bounded from below
on $S\cross A$ , and, for each $i\in S,$ $r(i, a)$ is a lower semi-continuous (l.s. $c$ . ) with respect to
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$a\in F(i)$ , that is, for any convergent sequence of actions $\{a_{k}\},$ $k=1,2,$ $\cdots$ , in $F(i)$ such
that $\rho(a_{k}, a)arrow 0$ as $karrow\infty$ ,

$\lim_{karrow}\inf_{\infty}r(i, a_{k})\geq r(i, a)$ for each $i\in S$,

where $\rho$ is the metric on the action space $A$ .

(A3) For any $u\in M(S)$ and $i\in S$ ,

$\sum_{j\in S}u(j)q(j|i, a)$

is a l.s. $c$ . function with respect to $a$ E $F(i)$ .

(A4) $v\in M(S)$ .

Now, let $D$ denote the set of all feasible decision functions $f$ : $Sarrow A$ , such that
$f(i)EF(i)$ for each $iES$. We define, for each $f\in D$ , an operator $T(f)$ on $M(S)$ as
follows: for each $u\in M(S)$ and $i\in S$ ,

$T(f)u(i)=r(i, f(i))+ \sum_{j\in S}u(j)q(j|i, f(i))$ . (5)

Then, if a policy $\pi=(f_{1}, f_{2}, f_{3}, \cdots, f_{N-1}),f_{n}ED,$ $n=1,2$ . $\cdots,$ $N-1$ , is employed, the
total expected loss $I(\pi)(i)$ with an initial state $i\in S$ can be rewritten as

$I(\pi)(i)=T(f_{1})T(f_{2})\cdots T(f_{N-1})v(i)$ . (6)

So, in order to show the existence of an e-optimal pohcy, first we use the following lemma.

Lemma 3.1 Let $U$ be a complete metric space and $G:Uarrow R$, l.s.c. function, bounded
from below. Then, for any $\epsilon>0$ , there is some point $u^{*}\in U$ such that

$G(u^{*}) \leq\inf_{u\in U}G(u)+\epsilon$

and, for all $u\in U$ ,
$G(u)\geq G(u^{*})-\epsilon d(u^{*}, u)$ ,

where $d$ is the metric on $U$.

The proof of the lemma is easily derived by Ekeland’s theorem (see [7] and [7] in detail ).

Lemma 3.2 For any $\epsilon>0,$ $u\in M(S)$ and $i\in S$ , there is some action $a^{*}\in F(i)$ such
that

$T(a^{*})u(i) \leq\inf_{a\in F(i)}T(a)u(i)+\epsilon$ (7)

and, for all actions $a$ E $F(i)$ ,

$T(a)u(i)\geq T(a^{*})u(i)-\epsilon\rho(a^{*}, a)$ . (8)
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Proof. Since, from $(A1),F(i)$ is a closed set, $F(i)$ is complete for each state $i$ . Further,
from (A2) and (A3), it follows that, for each $i\in S,$ $T(a)u(i)$ is l.s. $c$ . on $F(i)$ and bounded
from below on $S\cross A$ . So, using Lemma 3.1, we can easily show the result of the lemma.

Theorem 3.1 For any $\epsilon=$ $(\epsilon_{1}, \epsilon_{2}, \cdots , \epsilon_{N-1}),$ $\epsilon_{n}>0,$ $n=1,2,$ $\cdots,$ $N-1$ , and any
policy $\pi=(f_{1}, f_{2}, \cdots, f_{N-1})E\pi$ , there exists an $\epsilon$-optimal policy $\pi=(f_{1^{*}}, f_{2^{*}}, \cdots, f_{N-1}^{*})$

such that

$I(\pi)$ $\geq$ $I( \pi^{*})-\sum_{n=1}^{N-1}\epsilon_{n}E_{\pi}[\rho(f_{n}^{*}(x_{n}), f_{n}(x_{n}))]$ (9)

$=$ $I( \pi^{*})-\sum_{n=1}^{N-1}\epsilon_{n}\sum_{j\in S}[\rho(f_{n}^{*}(j), f_{n}(j))p_{n}^{\pi}(j)$ (10)

Proof. For any policy $\pi=(f_{1}, f_{2}, \cdots, f_{N-1})$ and the initial distribution $p$ , it follows
from (6) that

$I( \pi)=\sum_{1\in S}T(f_{1})T(f_{2}),$ $\cdots,$ $T(f_{N-1})v(i)p(i)$ . (11)

So, from (11), $I(\pi)$ is successively constructed by the operator $T$ . From Lemma 3.2, it
follows that there exists a decision function $f_{N-1}^{*}\in D$ such that, for each $i\in S$ ,

$T(f_{N-1}^{*})v(i) \leq\inf_{f}T(f)v(i)+\epsilon_{N-1}$

and, for all $fED$ ,

$T(f)v(i)\geq T(f_{N-1}^{*})v(i)-\epsilon_{N-1}\rho(f_{N-1}^{*}(i), f(i))$ . (12)

Thus, applying the Lemma 3.2 to $T(f)T(f_{N-1}^{*})v(i)$ , we obtain a decision function
$f_{N-2}^{*}\in D$ such that $t$

$T(f_{N-2}^{*})T(f_{N-1}^{*})v(i) \leq\inf_{f}T(f)T(f_{N-1}^{*})v(i)+\epsilon_{N-2}$ ,

and, for all $f\in D$ ,

$T(f)T(f_{N-1}^{*})v(i)\geq T(f_{N-2}^{*})T(f_{N-1}^{*})v(i)-\epsilon_{N-2}\rho(f_{N-2}^{*}(i), f(i))$ . (13)

Then, since $T$ is a monotone operator, combining (12) with (13), we obtain for the given
policy $\pi=(f_{1}, f_{2}, \cdots, f_{N-1})$ ,

$T(f_{N-2})T(f_{N-1})v(i)$ $\geq$ $T(f_{N-2})T(f_{N-1}^{*})v(i)$

$-\epsilon_{N-1}E_{f_{N-2}}[\rho(f_{N-1}^{*}(x_{N-1}), f_{N-1}(x_{N-1}))|x_{N-2}=i]$

$\geq$ $T(f_{N-2}^{*})T(f_{N-1}^{*})v(i)-\epsilon_{N-2}\rho(f_{N-2}^{*}(i), f_{N-2}(i))$

$-\epsilon_{N-1}E_{f_{N-2}}[\rho(f_{N-1}^{*}(x_{N-1}), f_{N-1}(x_{N-1}))|x_{N-2}=i]$ (14)

Applying Lemma 3.2 to (14) repeatedly, we obtain

$I( \pi)(i)\geq T(f_{N-2}^{*})T(f_{N-1}^{*})\cdots T(f_{N-1}^{*})v(i)-\sum_{n=1}^{N-1}\epsilon_{n}E_{\pi}[\rho(f_{n}^{*}(x_{n}), f_{n}(x_{n}))|x_{1}=i]$ (15)
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Thus, multiplying both sides of (15) by the initial distribution $p$ , and then, sumnuing
with respect to $i$ on $S$ , we have

$I( \pi)\geq I(\pi^{*})-\sum_{n=1}^{N-1}\epsilon_{n}E_{\pi}[\rho(f_{n^{*}}(x_{n}), f_{n}(x_{n}))]$ .

which completes the proof of the theorem.

Remark. From the theorem, there exists an $\epsilon$-optimal policy $\pi=(f_{1^{*}}, f_{2^{*}}, \cdots, f_{N-1}^{*})E$

$\pi$ such that, for any policy $\pi=$ $(f_{1}, f_{2}, --, f_{N-1})$ and any $\epsilon=(e_{1}, e_{2}, \cdots, \epsilon_{N-1}),$ $\epsilon_{n}>$

$0,$ $n=1,2,$ $\cdots,$ $N-1,$ (10) holds. So, we define a function $H$ : $\piarrow R$ , as follows

$H( \pi)=I(\pi)+\sum_{n=1}^{N-1}\epsilon_{n}E_{\pi}[\rho(f_{n}^{*}(x_{n}), f_{n}(x_{n}))]$

Then, $H(\pi)$ attains the minimum at $\pi^{*}$ and $H(\pi^{*})=I(\pi^{*})$ .
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