FIXED POINT SETS OF S¹-ACTIONS ON THE SPACES WHOSE RATIONAL COHOMOLOGY RINGS ARE EVENLY GRADED

阪大理 河野 進 (Susumu Kôno)

1. Introduction

Let $G = S^1$ be the circle group, and X a connected finite G-CW-complex whose rational cohomology ring is evenly graded; that is

$$(1.1) \quad \operatorname{H}^*(X; \ \mathbb{Q}) \ \cong \ \mathbb{Q}[x_1, \cdots, x_n] / (\phi_1, \cdots, \phi_m),$$

where $\deg x_i = 2k_i \ge 2$ $(1 \le i \le n)$ and ϕ_i are homogeneous elements. We establish a method of determining the possibilities of the rational cohomology type of the fixed point set of G on X (Theorem 3.7). The method is an application of that originated and improved by K. Hokama in [2] and [4] respectively. Combining Theorem 3.7 with a result of V. Puppe in [5] (Theorem 3.8), the problem of existence for connected finite G-CW-complex whose rational cohomology ring is evenly graded is reduced to an algebraic one. We apply the result to three cases (Theorems 4.1, 4.2 and 4.3). A result of G. E. Bredon [1] applied to the case

$$x \sim_{\oplus} s^{2m} \times s^{2n}$$

is improved slightly (Theorem 4.1). In the final section, we construct G-CW-complexes which give examples in Theorems 4.2 and 4.3 except for the case (4).

2. Preliminaries

Let R (resp. aR) be the polynomial ring $\mathbb{Q}[t,x_1,\cdots,x_n]$ (resp. $\mathbb{Q}[x_1,\cdots,x_n]$), where deg t = 2, deg $x_i=2k_i$ (1 \leq i \leq n) and $1 \leq k_1 \leq \cdots \leq k_n$. Let ${}^a\colon R \longrightarrow {}^aR$ denotes the ring homomorphism defined by

$$a_{F(x_1,\dots,x_n)} = F(1,x_1,\dots,x_n)$$

for every $F \in R$, and $h: {}^{a}R \setminus \{0\} \longrightarrow R$ a map defined by

$$h_{f(t,x_{1},\cdots,x_{n})} = t^{\delta(f)/2} f(x_{1}/t^{k_{1}},\cdots,x_{n}/t^{k_{n}})$$

for every $f \in {}^aR \setminus \{0\}$, where $\delta(f)$ denotes the total degree of f. For any ideal J in R, we set ${}^aJ = ({}^aF|F \in J)$. Let $\phi_i \in {}^aR$ and $f_i \in R$ be homogeneous elements $(1 \le i \le m)$, and suppose

- (I) $f_i(0, x_1, \dots, x_n) = \varphi_i(x_1, \dots, x_n)$ $(1 \le i \le m).$
- (II) $\dim_{\mathbb{Q}} {}^{a}R/(\varphi_{1}, \cdots, \varphi_{m}) < \infty.$

Assume that ${}^aR/(\phi_1, \cdots, \phi_m)$ has a basis $M = \{[y_i] | 1 \le i \le h\}$ over \mathbb{Q} , where y_i is a homogeneous element $(1 \le i \le h)$, $y_1 = 1$ and $0 = \deg y_1 \le \cdots \le \deg y_h = 2N \ge 2k_n$. Then we have the following lemma.

Lemma 2.1. (1) The $\mathbb{Q}[t]$ -module $\mathbb{R}/(f_1,\cdots,f_m)$ is generated by M.

- (2) The Q-module ${}^{a}R/{}^{a}(f_{1}, \dots, f_{m})$ is generated by M.
- (3) The following conditions are equivalent:
 - i) If $tf \in (f_1, \dots, f_m)$, then $f \in (f_1, \dots, f_m)$,
- ii) $R/(f_1, \dots, f_m)$ is a free $\mathbb{Q}[t]$ -module with a basis M,
- iii) $\dim_{\mathbb{Q}} {}^{a}R/{}^{a}(f_{1}, \dots, f_{m}) = \dim_{\mathbb{Q}} {}^{a}R/(\varphi_{1}, \dots, \varphi_{m}) = h.$

Proof. (1) Let $f(t,x) \in R$ be a homogeneous element of positive degree. Then, by the assumption

$$f(0,x) = \sum_{i=1}^{h} a_i y_i + \sum_{j=1}^{m} k_j (x) \phi_j (x)$$

for some $a_i \in \mathbb{Q}$ $(1 \le i \le h)$ and $k_j(x) \in \mathbb{Q}[x]$ $(1 \le j \le m)$. This implies that

$$f(t,x) - \sum_{i=1}^{h} a_i y_i - \sum_{j=1}^{m} k_j(x) f_j(t,x) = tg(t,x)$$

for a homogeneous element $g(t,x) \in R$. It is shown by the induction with respect to $\deg f(t,x)$ that

$$g(t,x) = \sum_{i=1}^{h} h_i(t)y_i + \sum_{j=1}^{m} g_j(t,x)f_j(t,x)$$

for some $h_i(t) \in \mathbb{Q}[t]$ $(1 \le i \le h)$ and $g_j(t,x) \in \mathbb{R}$ $(1 \le j \le m)$. Then we have

$$f(t,x) = \sum_{i=1}^{h} (a_i + th_i(t))y_i + \sum_{j=1}^{m} (k_j(x) + tg_j(t,x))f_j(t,x).$$

(2) Let $f(x) \in {}^{a}R \setminus \{0\}$ be a polynomial. It follows from (1) that we have

$${}^{h}f(t,x) = \sum_{i=1}^{h} h_{i}(t)y_{i} + \sum_{j=1}^{m} k_{j}(t,x)f_{j}(t,x)$$

for some $h_i(t) \in \mathbb{Q}[t]$ $(1 \le i \le h)$ and $k_j(t,x) \in \mathbb{R}$ $(1 \le j)$

 \leq m). Then we have

$$f(x) = \sum_{i=1}^{h} h_i(1)y_i + \sum_{j=1}^{m} k_j(1,x)^a f_j(x).$$

(3) Suppose i) and $\sum_{i=1}^{h} h_i(t)y_i \in (f_1, \dots, f_m)$. Then $\sum_{i=1}^{h} h_i(0)y_i \in (\phi_1, \dots, \phi_m),$

and hence $h_i(0) = 0$ $(1 \le i \le h)$. Suppose that $h_i(t) = tg_i(t)$ $(1 \le i \le h)$. Then

$$t\sum_{i=1}^{h} g_{i}(t)y_{i} = \sum_{i=1}^{h} h_{i}(t)y_{i} \in (f_{1}, \dots, f_{m}),$$

and hence $\sum_{i=1}^{h} g_i(t)y_i \in (f_1, \dots, f_m)$. It is shown by the induction with respect to the degree of $\sum_{i=1}^{h} h_i(t)y_i$ that $g_i(t) = 0$ $(1 \le i \le h)$. Then $h_i(t) = 0$ $(1 \le i \le h)$. Thus in implies ii).

Suppose that $f(t,x) \in R$ be a homogeneous element such that $tf(t,x) \in (f_1,\cdots,f_m)$ and f(t,x) is not contained in (f_1,\cdots,f_m) . By the assumption,

$$f(0,x) = \sum_{i=1}^{h} a_i y_i + \sum_{j=1}^{m} k_j(x) \phi_j(x)$$

for some $a_i \in \mathbb{Q}$ $(1 \le i \le h)$ and $k_j(x) \in \mathbb{Q}[x]$ $(1 \le j \le m)$. If $a_i = 0$ $(1 \le i \le h)$, then

$$f(t,x) - \sum_{j=1}^{m} k_{j}(x) f_{j}(t,x) = tg(t,x)$$

for some $g(t,x) \in R$. Then g(t,x) is not contained in (f_1,\cdots,f_m) and $t^2g(t,x) \in (f_1,\cdots,f_m)$. Thus there exists $f(t,x) \in R$ and a positive integer N_1 such that $t^{N_1}f(t,x) \in (f_1,\cdots,f_m)$ and [f(0,x)] has non-zero component with respect to the basis M. Suppose that

$$f(0,x) - \sum_{i=1}^{k} a_i y_i \in (\phi_1, \dots, \phi_m)$$

for some integer k with $1 \le k \le h$ and $a_i \in \mathbb{Q}$ $(1 \le i \le k)$ with $a_k \ne 0$. Then $R/(f_1, \cdots, f_m, f)$ is generated by $M \setminus \{[y_k]\}$ over $\mathbb{Q}[t]$, and ${}^aR/{}^a(f_1, \cdots, f_m, f)$ is generated by $M \setminus \{[y_k]\}$ over \mathbb{Q} . Since

 $a(f_1,\cdots,f_m,f)=a(f_1,\cdots,f_m,t^{N_1}f)=a(f_1,\cdots,f_m),$ this implies that $\dim_{\mathbb{Q}}aR/a(f_1,\cdots,f_m)\leq h-1$. Hence iii) does not hold. Thus iii) implies i).

Suppose that $\sum_{i=1}^k a_i y_i \in {}^a(f_1, \cdots, f_m)$ for some k with $1 \le k \le h$ and $a_i \in {}^a(1 \le i \le k)$ with $a_k \ne 0$. Then

$$\sum_{i=1}^{k} a_i t^{N_1 - (\text{deg } y_i)/2} y_i \in (f_1, \dots, f_m)$$

for some integer $N_1 \ge \deg y_k$. Hence ii) does not holds. Thus ii) implies iii). This completes the proof of (3).

Let $\{(c_1^{(\alpha)},\cdots,c_n^{(\alpha)})|1\leq\alpha\leq k\}$ be a set of rational zero points of the ideal $a(f_1,\cdots,f_m)\subset aR$; that is, $c_i^{(\alpha)}\in a$ and $f_i(1,c_1^{(\alpha)},\cdots,c_n^{(\alpha)})=0$ $(1\leq i\leq m,\ 1\leq \alpha\leq k)$. For $1\leq i\leq m$ and $1\leq j\leq k_i$, $g_{i,j}\in R$ denotes either 0 or a homogeneous element of degree $2N_0$ with $N_0\geq N$ and $g_{i,j}(1,c_1^{(\alpha)},\cdots,c_n^{(\alpha)})=0$ $(1\leq \alpha\leq k)$. Let S (resp. a) be the polynomial ring

 $\mathbb{Q}[\{t\} \ \cup \ \{x_{i,j} \ | \ 1 \leq i \leq n, \ 1 \leq j \leq k_i\}]]$ (resp. $\mathbb{Q}[\{x_{i,j} \ | \ 1 \leq i \leq n, \ 1 \leq j \leq k_i\}]$), where $\deg x_{i,j} = 2j$ ($1 \leq i \leq n, \ 1 \leq j \leq k_i$) and $\deg t = 2$. Consider homomorphisms $J_{\alpha} \colon R \longrightarrow S \quad (\text{resp.} \ ^{a}J_{\alpha} \colon \ ^{a}R \longrightarrow \ ^{a}S) \quad \text{defined by}$ $J_{\alpha}(f) = f(t,c_{1}^{(\alpha)}t^{k_{1}} + \sum_{j=1}^{k_{1}}x_{1,j}t^{k_{1}-j}, \cdots, c_{n}^{(\alpha)}t^{k_{n}} + \sum_{j=1}^{k_{n}}x_{n,j}t^{k_{n}-j})$ (resp. $^{a}J_{\alpha}(f) = f(c_{1}^{(\alpha)} + \sum_{j=1}^{k_{1}}x_{1,j}, \cdots, c_{n}^{(\alpha)} + \sum_{j=1}^{k_{n}}x_{n,j})) \quad (1 \leq \alpha \leq k).$ Denote by I_{α} the ideal generated in ^{a}S by the coefficients of $J_{\alpha}(f_{i})$ ($1 \leq i \leq m$) and $J_{\alpha}(g_{i,j}) - x_{i,j}t^{k_{n}-j}$ ($1 \leq i \leq n$, $1 \leq j \leq k_{i}$) with respect to t. Set $q_{\alpha} = J_{\alpha}^{-1}(I_{\alpha}S)$ ($1 \leq \alpha \leq k$). Consider the induced homomorphisms

Lemma 2.2. Let α be an integer with $1 \le \alpha \le k$.

- (1) The graded group ${}^aS/I_{\alpha}$ equals to zero in the degrees > 2N.
- 2) The ideal q_{α} is primary with the radical

$$\sqrt{q_{\alpha}} = (x_1 - c_1^{(\alpha)} t^{k_1}, \dots, x_n - c_n^{(\alpha)} t^{k_n}).$$

(3) The ideal ${}^aq_{\alpha}$ coincides with ${}^aJ_{\alpha}^{-1}(I_{\alpha})$, and ${}^aj_{\alpha}$ induces an isomorphism ${}^a\tilde{j}_{\alpha}\colon {}^aR/{}^aq_{\alpha}\xrightarrow{\cong} {}^aS/I_{\alpha}.$

Proof. (1) Let $g(x_{i,j}) \in {}^{a}S$ be a homogeneous element. Set $f = g(g_{i,j}^{N_0(j-1)}) \in R$, where

 $g_{i,1} = x_i t^{N_0 - k_i} - c_i^{(\alpha)} t^{N_0} - \sum_{j=2}^{k_i} g_{i,j}$ (1 \leq i \leq n).

It follows from the definition that $J_{\alpha}(f)$ is congruent to (N₀-1)(deg g)/2 (mod $I_{\alpha}S$). By Lemma 2.1 (1) there exist $h_i(t) \in \mathbb{Q}[t]$ $(1 \le i \le h)$ and $k_i(t,x) \in \mathbb{R}$ $(1 \le i \le m)$ with

 $f = \sum_{i=1}^{h} h_i(t)y_i + \sum_{i=1}^{m} k_i(t,x)f_i(t,x).$ Then $gt = \sum_{i=1}^{h} h_i(t)J_{\alpha}(y_i)$ (mod $I_{\alpha}S$), the degree with respect to $\{x_{i,j}\}$ of which is at most 2N. If deg g > 2N, then $g \in I_{\alpha}$.

- (2) It follows from (1) that $\sqrt{I_{\alpha}} = (x_{i,i})$. This implies that $\sqrt{I_{\alpha}S} = (x_{i,j})$, and $I_{\alpha}S$ is a primary ideal. Since q_{α} is the inverse image of $I_{\alpha}S$ by a ring homomorphism J_{α} , we obtain (2).
- (3) Suppose that $f \in {}^{a}q_{\alpha}$. Choose $F \in q_{\alpha}$ with ${}^{a}F = f$. Then, the coefficients of $J_{\alpha}(F)$ with respect to tare contained in I_{α} , and the sum of which is equal to ${}^{a}J_{\alpha}(f)$ = $a(J_{\alpha}(F))$. This implies that $f \in aJ_{\alpha}^{-1}(I_{\alpha})$. Conversely, suppose that $f \in {}^{a}J_{\alpha}^{-1}(I_{\alpha})$ and $f \neq 0$. Then ${}^{a}(J_{\alpha}({}^{h}f))$ = ${}^{a}J_{\alpha}(f) \in I_{\alpha}$. Since I_{α} is a homogeneous ideal and the set of the coefficients of $J_{\alpha}(^{h}f)$ with respect to t coincides to that of the homogeneous components of ${}^{a}J_{\alpha}(f)$, we have $J_{\alpha}({}^{h}f)$ $\in I_{\alpha}S$. This implies that $f \in q_{\alpha}$, and $f = a(f) \in q_{\alpha}$. Thus we obtain the first part of (3) and a monomorphism ${}^a\widetilde{j}_{\alpha}$: ${}^aR/{}^aq_{\alpha}$ \longrightarrow ${}^{a}S/I_{\alpha}$. It follows from the proof of (1) that ${}^{a}j_{\alpha}$ is also an epimorphism. This completes the proof of (3). q.e.d.

In order to state the next lemma, we set

Lemma 2.3. (1) j is surjective in the degrees \geq 2N.

- (2) aj is an epimorphism.
- (3) $\sum_{\alpha=1}^{k} \dim_{\mathbb{Q}} {}^{a}S/I_{\alpha} \leq h$.
- $(4) \quad \sum_{\alpha=1}^{k} \operatorname{dim}_{\widehat{\mathbb{Q}}} {}^{a} R / {}^{a} q_{\alpha} \leq h.$
- $(5) \quad (f_1, \cdots, f_m) \subset \bigcap_{\alpha=1}^k q_{\alpha}.$
- (6) $a(f_1, \dots, f_m) \subset \bigcap_{\alpha=1}^k a_{\alpha}$
- (7) The following conditions are equivalent:
- i) j is a monomorphism,
- ii) ^aj is an isomorphism,
- iii) $\sum_{\alpha=1}^{k} \operatorname{dim}_{\mathbb{Q}} {}^{\alpha} \operatorname{S/I}_{\alpha} = h$,
- iv) $\sum_{\alpha=1}^{k} dim_{\mathbb{Q}} a_{\mathbb{R}}/a_{\alpha} = h$,
- $(f_1, \dots, f_m) = \bigcap_{\alpha=1}^k q_{\alpha}$
- v_i) $a_{(f_1, \dots, f_m)} = \bigcap_{\alpha=1}^k a_{\alpha}$.

If this is the case, the set of zero points of the ideal ${}^a(\,{\bf f}_1\,,\,\cdots,\,{\bf f}_m^{}) \,\subset\, {}^aR \quad \text{coincides with} \quad \{(\,{\bf c}_1^{\,(\alpha)}\,,\,\cdots,\,{\bf c}_n^{\,(\alpha)}\,)\,|\,1\,\leq\,\alpha\,\leq\,k\}\,.$

Proof. (1) We show that for each α ($1 \le \alpha \le k$) and homogeneous element $g \in {}^aS$, there exist a homogeneous element $f \in R$ and an integer N_1 with $0 \le N_1 \le \max\{0, N^-(\deg g)/2\}$, $J_{\beta}(f) \in I_{\beta}S$ ($\beta \ne \alpha$) and $J_{\alpha}(f)^-gt^{N_1} \in I_{\alpha}S$. If $\deg g > 2N$, then f = 0 and $N_1 = 0$ satisfies the above condition. Let $\deg g = 2\ell \le 2N$, and set

$$\begin{split} F_1 &= g(g_{i,j}t^{N_0(j-1)}) \cdot \pi_{\beta \neq \alpha} \cdot (x_{i(\beta)} - c_{i(\beta)}^{(\beta)}t^{k_{i(\beta)}})^{N+1}, \\ \text{where } g_{i,1} &= x_it^{N_0-k_i} - c_i^{(\alpha)}t^{N_0} - \sum_{j=2}^{k_i} g_{i,j} \quad (1 \leq i \leq n) \text{ and } \\ i(\beta) & \text{is an integer with } c_{i(\beta)}^{(\beta)} \neq c_{i(\beta)}^{(\alpha)} \quad (\beta \neq \alpha). \quad \text{Then we have} \\ J_{\beta}(F_1) &\in I_{\beta}S \quad (\beta \neq \alpha) \text{ and} \end{split}$$

 $J_{\alpha}(F_1) \equiv \operatorname{ct} \qquad \qquad g + \sum_{i=0}^{N(\alpha)-1} \operatorname{t}^{l(N_0-1)+i} \qquad \qquad g_i \pmod I_{\alpha}S),$ where $N(\alpha) = \sum_{\beta \neq \alpha} (N+1)k_{i(\beta)}, \ 0 \neq c \in \mathbb{Q}, \ g_i \in {}^{a}S \pmod I_{\alpha}S),$ and $\deg g_i > 2l$ if $g_i \neq 0$. Set $N_2 = \max\{N, lN_0+N(\alpha)\}$. It follows from the inductive hypothesis that there exists a homogeneous element $F \in R$ of degree $2N_2$ with $J_{\beta}(F) \in I_{\beta}S$ $(\beta \neq \alpha)$ and $J_{\alpha}(F)-\operatorname{gt}^{N_2-l} \in I_{\alpha}S.$ By Lemma 2.1 (1) there exist $h_i(t) \in \mathbb{Q}[t]$ $(1 \leq i \leq h)$ and $k_i(t,x) \in R$ $(1 \leq i \leq m)$ with $F = \sum_{i=1}^h h_i(t)y_i + \sum_{i=1}^m k_i(t,x)f_i(t,x).$

Set $\sum_{i=1}^{h} h_i(t)y_i = ft^{N_2^{-N}}$, where $f \in R$ is a homogeneous element of degree 2N. Then, we have $J_{\beta}(f) \in I_{\beta}S$ $(\beta \neq \alpha)$ and $J_{\alpha}(f)-gt^{N-\ell} \in I_{\alpha}S$. Thus (1) is proved by the induction with respect to $(\deg g)/2$.

- (2) In the proof above, $a_{j([af])} = [g]$. This implies (2).
- (3) It follows from (2) and Lemma 2.1 (2) that we have $\sum_{\alpha=1}^k \dim_{\mathbb{D}} {}^aS/I_{\alpha} \leq \dim_{\mathbb{D}} {}^aR/{}^a(f_1,\cdots,f_m) \leq h.$
- (4) is a direct consequence of (3) and Lemma 2.2 (3).
- (5) and (6) are immediate from the definition.
- (7) It is evident that i) is equivalent to v), ii) is equivalent to vi), iii) is equivalent to iv) and v) is equivalent to vi).

Suppose i). Then $R/(f_1, \dots, f_m)$ is a torsionfree

Q[t]-module $(\oplus_{\alpha=1}^k S/I_{\alpha}S)$ is a free Q[t]-module). It follows from Lemma 2.1 (3) and ii) that

 $h = dim_{\mathbb{Q}} {}^{a}R/{}^{a}(f_{1}, \dots, f_{m}) = \sum_{\alpha=1}^{k} dim_{\mathbb{Q}} {}^{a}S/I_{\alpha}.$

Thus i) implies iii).

Suppose iii). It follows from (2) and Lemma 2.1 (2) that $h \geq \dim_{\mathbb{Q}} {}^aR/{}^a(f_1,\cdots,f_m) \geq \sum_{\alpha=1}^k \dim_{\mathbb{Q}} {}^aS/I_\alpha = h.$ This implies that $h = \dim_{\mathbb{Q}} {}^aR/{}^a(f_1,\cdots,f_m) \text{ and } {}^aj \text{ is an isomorphism.}$ Thus iii) implies ii). This completes the proof of (7).

3. Equivariant cohomology rings

Let X be a connected finite G-CW-complex whose rational cohomology ring is evenly graded; that is, there exists an isomorphism

 $(3.1) \quad i(X)\colon \mathbb{Q}[x_1,\cdots,x_n]/(\phi_1,\cdots,\phi_m) \longrightarrow \operatorname{H}^*(X;\mathbb{Q}),$ where $\deg x_i = 2k_i \geq 2$ $(1 \leq i \leq n)$ and ϕ_i is a homogeneous element $(1 \leq i \leq m)$. Let $\tau\colon \operatorname{EG}\times_G\mathbb{C} \longrightarrow \operatorname{BG}$ be the complex line bundle associated to a universal G-bundle $\operatorname{EG} \longrightarrow \operatorname{BG}.$ Then we have

(3.2) $H^*(BG; \mathbb{Q}) \cong \mathbb{Q}[t]$, where $t \in H^2(BG; \mathbb{Q})$ is the Euler class of τ .

Let $\pi\colon X_G=EG\times_GX\longrightarrow BG$ be the associated bundle with fiber X, and i: $X\longrightarrow X_G$ the inclusion of a fiber. The equivariant cohomology ring of X is defined by $H_G^*(X;\ \mathbb{Q})$

 $= \operatorname{H}^*(X_G; \ \mathbb{Q}). \quad \text{The induced homomorphism} \quad \pi^* \colon \operatorname{H}^*(\operatorname{BG}; \ \mathbb{Q})$ $\longrightarrow \operatorname{H}^*_G(X; \ \mathbb{Q}) \quad \text{gives a} \quad \mathbb{Q}[t] \text{-algebra structure to} \quad \operatorname{H}^*_G(X; \ \mathbb{Q}).$ $\text{Then} \quad \operatorname{H}^{\operatorname{odd}}_G(X; \ \mathbb{Q}) \cong 0 \quad \text{and the sequence}$ $(3.3) \quad 0 \longrightarrow \operatorname{H}^{2i}_G(X; \ \mathbb{Q}) \xrightarrow{t} \operatorname{H}^{2i+2}_G(X; \ \mathbb{Q}) \xrightarrow{i^*} \operatorname{H}^{2i+2}(X; \ \mathbb{Q}) \longrightarrow 0$ is exact. Choose $a_i \in \operatorname{H}^*_G(X; \ \mathbb{Q})$ with $i^*(a_i) = i(X)([x_i])$ $(1 \leq i \leq n). \quad \text{Then} \quad \operatorname{H}^*_G(X; \ \mathbb{Q}) \quad \text{is generated by} \quad (a_i \mid 1 \leq i \leq n)$ as a $\mathbb{Q}[t]$ -algebra. Let $I(X_G) \colon R \longrightarrow \operatorname{H}^*_G(X; \ \mathbb{Q}) \quad \text{be the}$ $\mathbb{Q}[t]$ -algebra homomorphism defined by setting $I(X_G)(x_i) = a_i$ $(1 \leq i \leq n). \quad \text{Choose a homogeneous element} \quad f_i \in R \quad \text{with}$ $I(X_G)(f_i) = 0 \quad \text{and} \quad f_i(t,x_1,\cdots,x_n) = \phi_i(x_1,\cdots,x_n) \quad (1 \leq i \leq m). \quad \text{The proof of following lemma is similar to that of}$ [3, Lemma 2.2].

Lemma 3.4. The kernel of $I(X_G)$ coincides with the ideal (f_1,\cdots,f_n) of R and $I(X_G)$ induces an isomorphism $i(X_G)\colon R/(f_1,\cdots,f_m) \longrightarrow H_G^*(X;\ \mathbb{Q}).$

Let $F=X^G$ be the fixed point set of the G-action on X with connected components F_1 , \cdots , F_k . Let

$$j: F_G = BG \times F \longrightarrow X_G$$

be the inclusion map. Then the sequence

 $(3.5) \quad 0 \longrightarrow \operatorname{H}_{G}^{*}(X; \mathbb{Q}) \xrightarrow{j^{*}} \operatorname{H}_{G}^{*}(F; \mathbb{Q}) \longrightarrow \operatorname{H}^{*+1}(X/G, F; \mathbb{Q}) \longrightarrow 0$ is exact. For $1 \leq \alpha \leq k$, let $\operatorname{p}_{\alpha} \colon (\operatorname{F}_{\alpha})_{G} \longrightarrow \operatorname{F}_{\alpha}$ be the projection to the second factor. Then we have an isomorphism $\iota_{\alpha} \colon \mathbb{Q}[\operatorname{tl}] \otimes \operatorname{H}^{*}(\operatorname{F}_{\alpha}; \mathbb{Q}) \longrightarrow \operatorname{H}_{G}^{*}(\operatorname{F}_{\alpha}; \mathbb{Q})$

defined by setting $\iota_{\alpha}(h \otimes a) = hp_{\alpha}^{*}(a)$ for every $h \in \mathbb{Q}[t]$

and $\mathbf{a} \in H^*(\mathbf{F}_{\alpha}; \mathbb{Q})$. For $1 \leq i \leq n$, set $\mathbf{j}^*(\mathbf{a}_i) = \sum_{\alpha=1}^k (\mathbf{c}_i^{(\alpha)} \mathbf{t}^{k_i} + \sum_{j=1}^{k_i} \mathbf{t}^{k_i-j} \mathbf{p}_{\alpha}^*(\mathbf{a}_{i,j}^{(\alpha)})),$ where $\mathbf{a}_{i,i}^{(\alpha)} \in H^{2j}(\mathbf{F}_{\alpha}; \mathbb{Q})$ and $\mathbf{c}_{i}^{(\alpha)} \in \mathbb{Q}$ $(1 \leq \alpha \leq k)$.

Lemma 3.6. (1) For $1 \le \alpha \le k$, $H^*(F_{\alpha}; \mathbb{Q})$ is generated by $(a_{i,j}^{(\alpha)}|1 \le i \le n, \ 1 \le j \le k_i).$ (2) $(c_1^{(\alpha)}, \cdots, c_n^{(\alpha)}) \ne (c_1^{(\beta)}, \cdots, c_n^{(\beta)})$ if $\alpha \ne \beta$.

Proof. Suppose $a \in H^*(F_\alpha; \mathbb{Q})$. It follows from the exactness of the sequence (3.5) that there exist an integer $N_1 \ge 0$ and an element $f \in R$ such that $j^*(I(X_G)(f)) = t^{N_1}p_\alpha^*(a)$. By the isomorphism ℓ_α , we see that there exist a polynomial $g \in {}^aS$ such that $g(a_{i,j}^{(\alpha)}) = a$. This completes the proof of (1).

In the proof above, set a = 1. Then we have

$$f(1,c_1^{(\alpha)},\cdots,c_n^{(\alpha)}) = 1$$

and $f(1,c_1^{(\beta)},\cdots,c_n^{(\beta)})=0$ if $\beta\neq\alpha$. This completes the proof of (2).

For $1 \leq \alpha \leq k$, let $I(F_{\alpha}) \colon {}^{a}S \longrightarrow H^{*}(F_{\alpha}; \mathbb{Q})$ be the ring homomorphism defined by setting $I(F_{\alpha})(x_{i,j}) = a_{i,j}^{(\alpha)}$ $(1 \leq i \leq n, 1 \leq j \leq k_{i})$, and $I((F_{\alpha})_{G}) \colon S \longrightarrow H^{*}_{G}(F_{\alpha}; \mathbb{Q})$ a $\mathbb{Q}[t]$ -algebra homomorphism defined by $I(F_{\alpha})$ and ι_{α} . Choose $N_{0} \geq N$ and $\iota_{j} \in {}^{a}R$ $(1 \leq i \leq n, 1 < j \leq k_{j})$ such that

$$I((F_{\alpha})_{G})(J_{\alpha}(g_{i,j})) = t^{N_{0}-j}p_{\alpha}^{*}(a_{i,j}^{(\alpha)}) \quad (1 \leq \alpha \leq k).$$

For $1 \le \alpha \le k$, let I_{α} be the ideal generated in aS by the coefficients of $J_{\alpha}(f_i)$ $(1 \le i \le m)$ and $J_{\alpha}(g_{i,j}) - x_{i,i} t^{N_0-j}$

(1 \leq i \leq n, 1 \langle j \leq k_i) with respect to t, and set q_{α} = $J_{\alpha}^{-1}(I_{\alpha}S)$.

Theorem 3.7. Let α be an integer with $1 \le \alpha \le k$. Then we have

(1) The kernel of the homomorphism $I(F_{\alpha})$ coincides with I_{α} , and $I(F_{\alpha})$ induces the isomorphism $i(F_{\alpha}) \colon {}^aS/I_{\alpha} \longrightarrow H^*(F_{\alpha}; \ \mbox{\mathbb{Q}})$.

(2) $(f_1, \dots, f_m) = \bigcap_{\alpha=1}^k q_{\alpha}$ is the reduced primary

decomposition, where $\sqrt{q_{\alpha}} = (x_1 - c_1^{(\alpha)} t^{k_1}, \dots, x_n - c_n^{(\alpha)} t^{k_n})$.

(3) $g_{i,j}(1,c_1^{(\alpha)},\dots,c_n^{(\alpha)}) = 0 \quad (1 \le i \le n, 1 < j \le k_i).$

Proof. By the definition, we have $I(F_{\alpha})(I_{\alpha}) = 0$. Let $f \in \text{Ker } I(F_{\alpha})$ be a homogeneous element. By Lemma 3.6 (2), there is an integer $i(\beta)$ with $c_{i(\beta)}^{(\beta)} \neq c_{i(\beta)}^{(\alpha)}$ for each $\beta \neq \alpha$. Set

 $g = f(g_{i,j}^{N_0(j-1)}) \cdot \pi_{\beta \neq \alpha}(x_{i(\beta)} - c_{i(\beta)}^{(\beta)} t^{k_{i(\beta)}})^{N_1},$

where N_1 is an integer such that $H^i(F; \mathbb{Q}) = 0$ for $i \geq 2N_1$ and $g_{i,1} = x_i t^{N_0-k_i} - c_i^{(\alpha)} t^{N_0} - \sum_{j=2}^{k_i} g_{i,j}$ $(1 \leq i \leq n)$. Then we have $j^*(I(X_G)(g)) = 0$, and hence $g \in (f_1, \cdots, f_m)$. The coefficient of the highest degree with respect to t in the polynomial $J_{\alpha}(g)$ is congruent to a multiple of f by some non-zero constant $(\text{mod }I_{\alpha})$. This implies that $f \in I_{\alpha}$. This completes the proof of (1).

Since $\dim_{\mathbb{Q}} {}^aS/I_{\alpha} = \dim_{\mathbb{Q}} H^*(F_{\alpha}; \mathbb{Q}) < \infty$, we have $\sqrt{I_{\alpha}}$ = $(x_{i,j})$, and hence I_{α} is a primary ideal. It follows that $I_{\alpha}S$ is also a primary ideal and $\sqrt{I_{\alpha}S} = (x_{i,j})$. By the definition, q_{α} is a primary ideal with the radical

 $(x_1 - c_1^{(\alpha)} t^{n_1}, \cdots, x_n - c_n^{(\alpha)} t^{n_n}). \quad \text{Since } j^* \quad \text{is a monomorphism, we}$ have $(f_1, \cdots, f_m) = \bigcap_{\alpha=1}^k q_\alpha. \quad \text{This completes the proof of } (2).$ Since $g_{i,j}(1, c_1^{(\alpha)}, \cdots, c_n^{(\alpha)}) \in \mathbb{Q} \quad \text{is equal to the}$ coefficient of $t^{N_0} \quad \text{of the polynomial} \quad J_{\alpha}(g_{i,j}) - x_{i,j} t^{N_0 - j}$ and $I_{\alpha} \neq {}^a S, \text{ we have } g_{i,j}(1, c_1^{(\alpha)}, \cdots, c_n^{(\alpha)}) = 0. \qquad q.e.d.$

By Lemma 2.3, it is easy to see that we can assume $N_0 = N$. According to [5] and Lemma 2,3, we have the following theorem.

Theorem 3.8 (V. Puppe [5]). Let $f_i \in R$ and $\phi_i \in {}^aR$ ($1 \le i \le m$) be homogeneous elements that satisfy (I) and (II). Let $\{(c_1^{(\alpha)}, \cdots, c_n^{(\alpha)}) | 1 \le \alpha \le k\}$ be a set of rational zero points of the ideal ${}^a(f_1, \cdots, f_m) \subset {}^aR$. For $1 \le i \le n$ and $1 < j \le k_i$, $g_{i,j} \in R$ denotes either 0 or a homogeneous element of degree 2N and $g_{i,j}(1,c_1^{(\alpha)}, \cdots, c_n^{(\alpha)}) = 0$ ($1 \le \alpha \le k$). Set I_{α} as in the section 2 ($1 \le \alpha \le k$). If one of the properties i)-vi) of (7) of Lemma 2.3 is satisfied, then there is a finite G-CW-pair (X, F) and $\mathbb{Q}[t]$ -algebra isomorphisms $i(X_G): R/(f_1, \cdots, f_m) \longrightarrow H_G^*(X; \mathbb{Q})$

and $i((F_{\alpha})_G): S/I_{\alpha}S \longrightarrow H_G^*(F_{\alpha}; \mathbb{Q})$ $(1 \le \alpha \le k)$, such that $F = X^G$ with connected components F_1, \dots, F_k and the following diagram commutes:

4. Applications

Applying Theorems 3.7 and 3.8 to corresponding cases, we obtain the following theorems.

Theorem 4.1. Let $X \sim_{\mathbb{Q}} S^{2m} \times S^{2n}$ be a finite G-CW-complex, $1 \le m \le n$. Then one of the following possibilities must occur:

- (1) $F \sim_{\oplus} s^{2q} \times s^{2r}$, $m \ge q$, $n \ge r$.
- (2) $F \sim_{\mathbb{Q}} P^3(2q)$, $1 \le q \le n/2 < m$ or $1 \le q \le m/2 \le n/4$.
- (3) $F \sim_{\oplus} (point + P^2(2q)), 1 \leq q \leq n/2 < m.$
- (4) $F \sim_{\mathbb{Q}} s^{2q} + s^{2r}$, $n \geq q$, $n \geq r$.

Conversely, each type of (1)-(4) can be realized by the fixed point set of a G-CW-complex.

Theorem 4.2. Let $X \sim_{\mathbb{Q}} HP(2) \# CP(4)$ be a finite G-CW-complex. Then one of the following possibilities must occur:

- (0) F $\sim_{\mathbb{Q}} x$.
- (1) $F \sim_{\mathbb{Q}} CP(2) \# CP(2) + S^2$.
- (2) $F \sim_{\oplus} F_1 + 2 \text{ points},$

where $H^*(F;\mathbb{Q})\cong\mathbb{Q}[x_1,x_2]/(x_1x_2,x_2^2-\alpha x_1^2)$, $0\neq\alpha\in\mathbb{Q}$ and $\deg x_1=\deg x_2=2$.

- (3) F ∼_{⟨□} CP(3) + 2 points.
- (4) $F \sim_{\oplus} CP(2) + CP(2)$.
- (5) $F \sim_{(i)} CP(2) + S^{2k} + point (k \le 2)$.
- (6) $F \sim_{\hat{\mathbb{Q}}} S^{2k} + S^{2m} + 2 \text{ points} \quad (k \leq 2, m \leq 1).$

Conversely, each type of (1)-(6) can be realized by the fixed point set of a G-CW-complex.

Theorem 4.3. Let $X \sim_{\mathbb{Q}} HP(2)$ # (-CP(4)) be a finite G-CW-complex. Then one of the following possibilities must occur:

- (0) $F \sim_{\hat{\mathbb{Q}}} X$.
- (1) $F \sim_{\oplus} s^2 \times s^2 + s^2$.
- (2) $F \sim_{\oplus} F_1 + 2 \text{ points},$

where $H^*(F;\mathbb{Q}) \cong \mathbb{Q}[x_1,x_2]/(x_1x_2,x_2^2+\alpha x_1^2)$, $0 \neq \alpha \in \mathbb{Q}$ and $\deg x_1 = \deg x_2 = 2$.

- (3) $F \sim_{0} CP(3) + S^{2k} (k \le 2)$.
- (4) $F \sim_{(1)} CP(2) + CP(2)$.
- (5) $F \sim_{\mathbb{Q}} CP(2) + S^{2k} + point (k \leq 2)$.
- (6) $F \sim_{\emptyset} s^{2k} + s^{2m} + s^{2n}$ $(k \le 2, m \le 1, n \le 1).$

Conversely, each type of (1)-(6) can be realized by the fixed point set of a G-CW-complex.

5. Construction of S^1 -CW-complexes

Finally we construct some G-CW-complexes which give examples in the Theorems 4.2 and 4.3. Set $S^{11} = \{(\mathbf{u}_1 + \mathbf{j} \mathbf{v}_1, \mathbf{u}_2 + \mathbf{j} \mathbf{v}_2, \mathbf{u}_3 + \mathbf{j} \mathbf{v}_3) \in (\mathbb{C} \oplus \mathbf{j} \mathbb{C})^3 | \sum_{i=1}^3 (|\mathbf{u}_i|^2 + |\mathbf{v}_i|^2) = 1 \}$ and $S^3 = \{\mathbf{x} + \mathbf{j} \mathbf{y} \in \mathbb{C} \oplus \mathbf{j} \mathbb{C} | |\mathbf{x}|^2 + |\mathbf{y}|^2 = 1 \}.$ Then $\mathrm{HP}(2)$ is defined as the orbit space S^{11}/S^3 , where the S^3 -action on S^{11} is defined by

$$(\mathbf{u_1}\!+\!\mathbf{j}\,\mathbf{v_1}\,,\mathbf{u_2}\!+\!\mathbf{j}\,\mathbf{v_2}\,,\mathbf{u_3}\!+\!\mathbf{j}\,\mathbf{v_3})\cdot(\mathbf{x}\!+\!\mathbf{j}\,\mathbf{y})$$

 $= (\mathbf{u}_1 \mathbf{x} - \overline{\mathbf{v}}_1 \mathbf{y} + \mathbf{j} (\mathbf{v}_1 \mathbf{x} + \overline{\mathbf{u}}_1 \mathbf{y}), \mathbf{u}_2 \mathbf{x} - \overline{\mathbf{v}}_2 \mathbf{y} + \mathbf{j} (\mathbf{v}_2 \mathbf{x} + \overline{\mathbf{u}}_2 \mathbf{y}), \mathbf{u}_3 \mathbf{x} - \overline{\mathbf{v}}_3 \mathbf{y} + \mathbf{j} (\mathbf{v}_3 \mathbf{x} + \overline{\mathbf{u}}_3 \mathbf{y}))$ for every $(\mathbf{u}_1 + \mathbf{j} \mathbf{v}_1, \mathbf{u}_2 + \mathbf{j} \mathbf{v}_2, \mathbf{u}_3 + \mathbf{j} \mathbf{v}_3, \mathbf{x} + \mathbf{j} \mathbf{y}) \in S^{11} \times S^3$. For each $(\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3) \in \mathbb{Z}^3$, $\Psi(\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3) \colon G \times \mathsf{HP}(2) \longrightarrow \mathsf{HP}(2)$ denotes the G-action on $\mathsf{HP}(2)$ defined by

```
\Psi(\mathbf{c}_{1}^{},\mathbf{c}_{2}^{},\mathbf{c}_{3}^{})\,(z,[\mathbf{u}_{1}^{}\!+\!\mathbf{j}\mathbf{v}_{1}^{},\mathbf{u}_{2}^{}\!+\!\mathbf{j}\mathbf{v}_{2}^{},\mathbf{u}_{3}^{}\!+\!\mathbf{j}\mathbf{v}_{3}^{}])
             = [z^{c_1}u_1 + jz^{-c_1}v_1, z^{c_2}u_2 + jz^{-c_2}v_2, z^{c_3}u_3 + jz^{-c_3}v_3]
for every (z,[u_1+jv_1,u_2+jv_2,u_3+jv_3]) \in G \times HP(2). Set
       D_{1}^{8} = \{[u_{1} + jv_{1}, u_{2} + jv_{2}, u_{3} + jv_{3}] \in HP(2) | |u_{1}|^{2} + |v_{1}|^{2} > 1/2\},
       S_1^7 = \{[u_1 + jv_1, u_2 + jv_2, u_3 + jv_3] \in HP(2) | |u_1|^2 + |v_1|^2 = 1/2\}
and S_0^7 = \{(u_1 + jv_1, u_2 + jv_2) \in (\mathbb{C} \oplus j\mathbb{C})^2 | \sum_{i=1}^2 (|u_i|^2 + |v_i|^2) = 1 \}.
Let h_1: S_1^7 \longrightarrow S_{\alpha}^7 be the homeomorphism defined by
          h_1([u_1+jv_1,u_2+jv_2,u_3+jv_3])
= (1/(u_1\overline{u}_1 + v_1\overline{v}_1))(u_2\overline{u}_1 + \overline{v}_2v_1 + \mathbf{j}(v_2\overline{u}_1 - \overline{u}_2v_1), u_3\overline{u}_1 + \overline{v}_3v_1 + \mathbf{j}(v_3\overline{u}_1 - \overline{u}_3v_1))
for every [u_1 + jv_1, u_2 + jv_2, u_3 + jv_3] \in S_1^7. Set
   \Sigma^7 = \{(r_1z_1, r_2z_2, r_3z_3, r_4z_4) | \sum_{i=1}^4 r_i = 1, r_i \ge 0, z_i \in S^1\}.
Let f_{\alpha}: S_{\alpha}^{7} \longrightarrow \Sigma^{7} be the homeomorphism defined by
               f_q(u_1 + jv_1, u_2 + jv_2) = (u_1/s, v_1/s, u_2/s, v_2/s)
for every (\mathbf{u}_1 + \mathbf{j}\mathbf{v}_1, \mathbf{u}_2 + \mathbf{j}\mathbf{v}_2) \in S_q^7 with s = \sum_{i=1}^{2} (|\mathbf{u}_i| + |\mathbf{v}_i|).
                S^9 = \{(w_0, w_1, w_2, w_3, w_4) \in \mathbb{C}^5 | \sum_{i=0}^4 | w_i |^2 = 1 \},
and S^1 = \{z \in \mathbb{C} | |z|^2 = 1\}. Then CP(4) is defined as the
orbit space S^9/S^1, where the S^1-action on S^9 is defined by
                 z \cdot (w_0, w_1, w_2, w_3, w_4) = (zw_0, zw_1, zw_2, zw_3, zw_4)
for every (z, w_0, w_1, w_2, w_3, w_4) \in S^1 \times S^9. For each
(a_0, a_1, a_2, a_3, a_4) \in \mathbb{Z}^5, \Phi(a_0, a_1, a_2, a_3, a_4) : G \times CP(4) \longrightarrow CP(4)
denotes the G-action on CP(4) defined by
               Φ(a<sub>0</sub>,a<sub>1</sub>,a<sub>2</sub>,a<sub>3</sub>,a<sub>4</sub>)(z,[w<sub>0</sub>,w<sub>1</sub>,w<sub>2</sub>,w<sub>3</sub>,w<sub>4</sub>])
                  = [z^{a_0} w_0, z^{a_1} w_1, z^{a_2} w_2, z^{a_3} w_3, z^{a_4} w_4]
for every (z,[w_0,w_1,w_2,w_3,w_4]) \in G \times CP(4). Set
              D_2^8 = \{[w_0, w_1, w_2, w_3, w_4] \in CP(4) | ||w_0||^2 > 1/2\},
               S_2^7 = \{[w_0, w_1, w_2, w_3, w_4] \in CP(4) | ||w_0||^2 = 1/2\}
```

and $S_c^7 = \{(w_1, w_2, w_3, w_4) \in \mathbb{C}^4 | \sum_{i=1}^4 | w_i |^2 = 1 \}$. Let $h_2 \colon S_2^7 \longrightarrow S_c^7$ be the homeomorphism defined by

 $\begin{array}{c} \mathbf{h}_2([\mathbf{w}_0,\mathbf{w}_1,\mathbf{w}_2,\mathbf{w}_3,\mathbf{w}_4]) = (\mathbf{w}_1/\mathbf{w}_0,\mathbf{w}_2/\mathbf{w}_0,\mathbf{w}_3/\mathbf{w}_0,\mathbf{w}_4/\mathbf{w}_0) \\ \text{for every } [\mathbf{w}_0,\mathbf{w}_1,\mathbf{w}_2,\mathbf{w}_3,\mathbf{w}_4] \in \mathbf{S}_2^7. \quad \text{Let } \mathbf{f}_c\colon \mathbf{S}_c^7 \longrightarrow \Sigma^7 \quad \text{be the homeomorphism defined by} \end{array}$

for every $(r_1z_1, r_2z_2, r_3z_3, r_4z_4) \in \Sigma^7$. Now we set

 $X = X(d_1, d_2, d_3, d_4; b_1, b_2, b_3, b_4)$

 $= \Sigma^7 \cup_{\mathbf{f_q(d_1,d_2,d_3,d_4)}} (\mathsf{HP(2)} \setminus \mathsf{D_1^8}) \cup_{\mathbf{f_c(b_1,b_2,b_3,b_4)}} (\mathsf{CP(4)} \setminus \mathsf{D_2^8}),$

where $f_q(d_1,d_2,d_3,d_4)$ (resp. $f_c(b_1,b_2,b_3,b_4)$) is the composition

 $f(d_1,d_2,d_3,d_4) \circ f_q \circ h_1 \colon S_1^7 \longrightarrow \Sigma^7$

 $(\text{resp. } f(b_1,b_2,b_3,b_4) \circ f_c \circ h_2 \colon S_2^7 \longrightarrow \Sigma^7). \quad \text{Suppose} \quad d_1(c_2-c_1) \\ = b_1(a_1-a_0), \ d_2(-c_2-c_1) = b_2(a_2-a_0), \ d_3(c_3-c_1) = b_3(a_3-a_0) \quad \text{and} \\ d_4(-c_3-c_1) = b_4(a_4-a_0). \quad \text{Then} \quad X \quad \text{has the } G\text{-action compatible} \\ \text{with} \quad \Psi(c_1,c_2,c_3) \mid (\text{HP}(2) \backslash D_1^8) \quad \text{and} \quad \Phi(a_0,a_1,a_2,a_3,a_4) \mid (\text{CP}(4) \backslash D_2^8); \\ \text{that is, } X \quad \text{has a} \quad G\text{-CW-complex structure.} \quad \text{It is easy to see} \\ \text{that we have}$

$$\begin{split} & \text{H*}(\text{X; } \mathbb{Z}) \;\cong\; \mathbb{Z}[\text{x}_1,\text{x}_2]/(\text{x}_1\text{x}_2,\text{d}_1\text{d}_2\text{d}_3\text{d}_4\text{x}_2^2+\text{b}_1\text{b}_2\text{b}_3\text{b}_4\text{x}_1^4,\text{x}_2^3,\text{x}_1^5)\,. \\ & \text{If } & \text{b}_1\text{b}_2\text{b}_3\text{b}_4\text{d}_1\text{d}_2\text{d}_3\text{d}_4 = -\text{n}^2 \quad (\text{resp. b}_1\text{b}_2\text{b}_3\text{b}_4\text{d}_1\text{d}_2\text{d}_3\text{d}_4 = \text{n}^2) \; \text{for some positive integer } \text{n, then we have } \text{X} \sim_{\mathbb{Q}} \text{HP}(2) \; \# \; \text{CP}(4) \end{split}$$

(resp. X $\sim_{\mathbb{Q}}$ HP(2) # (-CP(4)). Thus we obtain following examples.

[(4.2)(1)] If $c_1 = c_2 = c_3 = c \neq 0$, $a_1 = a_3 = a_0$, $a_2 = a_4 = a_0 - 2c$, $d_i = 1$ (1 $\leq i \leq 4$), $-b_1 = b_2 = b_3 = b_4 = 1$, then we have

X = HP(2) # CP(4) and $X^G = CP(2) \# CP(2) + S^2$.

[(4.2)(3)] If $c_1 = 5c \neq 0$, $c_2 = 4c$, $c_3 = 13c$, $a_i = a_0-6c$ (1 \leq i \leq 4), $d_i = 6$ (1 \leq i \leq 4), $b_1 = 1$, $b_2 = 9$, $b_3 = -8$ and $b_4 = 18$, then we have

 $X \sim_{\oplus} HP(2) \# CP(4)$ and $X^G = CP(3) + S^0$.

X = HP(2) # CP(4) and $X^G = CP(2) + S^4 + point.$

[(4.2)(5) k=1] If $c_1 = c_2 = 0$, $c_3 = c \neq 0$, $a_1 = a_2 = a_0$, $a_3 = a_4 = a_0 - c$, $d_i = (-1)^i b_i = 1$ (2 \leq i \leq 4) and $d_1 = b_1 = 1$, then we have

X = HP(2) # CP(4) and $X^G = CP(2) + S^2 + point.$

[(4.2)(5) k=0] If $c_1 = c_2 = 0$, $c_3 = c \neq 0$, $a_1 = a_2 = a_0$, $a_3 = a_0 + c$, $a_4 = a_0 - c$, $d_i = b_i = 1$ (2 \leq i \leq 4) and $d_1 = -b_1$

= 1, then we have

X = HP(2) # CP(4) and $X^{G} = CP(2) + 3$ points.

[(4.2)(6) k=2, m=1] If $c_1 = 2c \neq 0$, $c_2 = c_3 = 0$, a_1-c $= a_3-c = a_2+c = a_0$, $a_4 = a_0+16c$, $2d_i = (-1)^i b_i = 2$ (1 \leq i \leq 3), $d_4 = 8$ and $b_4 = -1$, then we have

 $X \sim_{\mathbb{Q}} HP(2) \# CP(4)$ and $X^G = S^4 + S^2 + S^0$.

[(4.2)(6) k=2, m=0] If $c_1 = 2c \neq 0$, $c_2 = c_3 = 0$, a_1+c_2

= $a_2-c = a_3+2c = a_4+8c = a_0$, $d_i = 1$ (1 \leq i \leq 3), $d_4 = 4$, b_1

= $-b_2$ = 2 and b_3 = b_4 = 1, then we have

 $X \sim_{\mathbb{Q}} HP(2) \# CP(4)$ and $X^G = S^4 + 4$ points.

[(4.2)(6) k=m=1] If $c_1 = c_2 = c \neq 0$, $c_3 = 0$, $a_1 = a_0$, $a_2 = a_0 + 2c$, $a_3 = a_4 = a_0 - c$, $d_i = 1$ (1 $\leq i \leq 4$) and $b_1 = -b_2 = b_3 = b_4 = 1$, then we have

X = HP(2) # CP(4) and $X^G = S^2 + S^2 + 2$ points.

[(4.2)(6) k=1, m=0] If $c_1 = c_2 = c \neq 0$, $c_3 = 0$, $a_1 = a_2 + 2c$ = $a_3 - c = a_4 + c = a_0$, $d_i = 1$ (1 $\leq i \leq 4$), $b_i = (-1)^i$ (2 $\leq i \leq 4$) and $b_1 = 1$, then we have

X = HP(2) # CP(4) and $X^G = S^2 + 4$ points.

[(4.2)(6) k=m=0] If $c_1 = c \neq 0$, $c_2 = 2c$, $c_3 = 3c$, a_1-c $= a_2+3c = a_3+2c = a_4+4c = a_0$, $d_i = b_i = 1$ ($i \neq 3$) and $d_3 = -b_3$ = 1, then we have

X = HP(2) # CP(4) and $X^G = 6$ points.

[(4.3)(1)] If $c_1 = c_2 = c_3 = c \neq 0$, $a_1 = a_3 = a_0$, $a_2 = a_4$ = a_0 -2c, $d_i = b_i = 1$ (1 $\leq i \leq 4$), then we have

X = HP(2) # (-CP(4))

and $X^G = CP(2) \# (-CP(2)) + S^2 \sim_{\mathbb{Q}} S^2 \times S^2 + S^2$. [(4.3)(2)] If $c_1 = c_2 = c_3 = c \neq 0$, $a_1 = a_3 = a_2 + 2c = a_4 - a_5$ = a_0 (a(a+2c) \neq 0), d_i = b_i = 1 (i = 1, 2), d_3 = $-b_4$ = 2c and d_4 = $-b_3$ = a, then we have

[(4.3)(3) k=2] If $c_1 = c \neq 0$, $c_2 = c_3 = 0$, $a_i = a_0 - c_1$ (1 \leq i \leq 4) and $d_i = b_i = 1$ (1 \leq i \leq 4), then we have $X = HP(2) \# (-CP(4)) \text{ and } X^G = CP(3) + S^4.$

[(4.3)(3) k=1] If $c_1 = 0$, $c_2 = c_3 = c \neq 0$, $a_i = a_0$ -c (1 \leq i \leq 4), $d_i = 1$ (1 \leq i \leq 4) and $b_i = (-1)^i$ (1 \leq i \leq 4), then we have

X = HP(2) # (-CP(4)) and $X^G = CP(3) + S^2$.

[(4.3)(3) k=0] If $c_1 = 0$, $c_2 = c \neq 0$, $c_3 = 4c$, $a_i = a_0 + 2c$ (1 $\leq i \leq 4$), $d_i = 2$ (1 $\leq i \leq 4$), $b_1 = -b_2 = 1$ and $b_3 = -b_4$ = 4, then we have

 $X \sim_{\mathfrak{D}} HP(2) \# (-CP(4))$ and $X^G = CP(3) + S^0$.

[(4.3)(5) k=2] If $c_1 = 2c \neq 0$, $c_2 = c_3 = 0$, $a_i = a_0-c$ (1 \leq i \leq 3), $a_4 = a_0-16c$, $2d_i = b_i = 2$ (1 \leq i \leq 3), $d_4 = 16$ and $b_4 = 2$, then we have

 $X \sim_{\mathbb{Q}} HP(2) \# (-CP(4))$ and $X^G = CP(2) + S^4 + point.$

X = HP(2) # (-CP(4)) and $X^G = CP(2) + S^2 + point.$

[(4.3)(5) k=0] If $c_1 = c_2 = 0$, $c_3 = c \neq 0$, $a_1 = a_2 = a_0$, $a_3 = a_0 + c$, $a_4 = a_0 - c$ and $d_i = b_i = 1$ (1 $\leq i \leq 4$), then we have

X = HP(2) # (-CP(4)) and $X^G = CP(2) + 3$ points.

[(4.3)(6) k=2, m=n=1] If $c_1 = c \neq 0$, $c_2 = c_3 = 0$, $a_1 = a_3$ = $a_0 + c$, $a_2 = a_4 = a_0 - c$ and $d_i = (-1)^i b_i = 1$ (1 \leq i \leq 4), then we have

X = HP(2) # (-CP(4)) and $x^G = S^4 + S^2 + S^2$.

[(4.3)(6) k=2, m=1, n=0] If $c_1 = 2c \neq 0$, $c_2 = c_3 = 0$, $a_1-c_1 = a_3-c_1 = a_2+c_2 = a_0$, $a_4 = a_0-16c$, $2d_1 = (-1)^1b_1 = 2$ (1 $\leq i \leq 3$), $d_4 = 8$ and $b_4 = 1$, then we have

 $X \sim_{\mathbb{Q}} HP(2) \# (-CP(4))$ and $X^G = S^4 + S^2 + 2$ points.

[(4.3)(6) k=2, m=n=0] If $c_1 = 2c \neq 0$, $c_2 = c_3 = 0$, a_1+c_2 = $a_2-c = a_3+2c = a_4-8c = a_0$, $d_i = 1$ (1 $\leq i \leq 3$), $d_4 = 4$, b_1 = $-b_2 = 2$ and $b_3 = -b_4 = 1$, then we have

 $X \sim_{\mathbb{Q}} HP(2) \# (-CP(4))$ and $X^G = S^4 + 4$ points.

[(4.3)(6) k=m=n=1] If $c_1 = 0$, $c_2 = c_3 = c \neq 0$, $a_1 = a_3$ = $a_0 + c$, $a_2 = a_4 = a_0 - c$ and $d_i = b_i = 1$ (1 \leq i \leq 4), then we have

X = HP(2) # (-CP(4)) and $X^G = S^2 + S^2 + S^2$.

[(4.3)(6) k=m=1, n=0] If $c_1 = c_2 = c \neq 0$, $c_3 = 0$, $a_1 = a_0$, $a_2 = a_0 + 2c$, $a_3 = a_4 = a_0 - c$, $d_i = 1$ (1 \leq i \leq 4) and $-b_1 = -b_2$ $= b_3 = b_4 = 1$, then we have

X = HP(2) # (-CP(4)) and $X^G = S^2 + S^2 + S^0$.

[(4.3)(6) k=1, m=n=0] If $c_1 = c_2 = c \neq 0$, $c_3 = 0$, $a_0 = a_1$ = $a_2 + 2c = a_3 - c = a_4 + c$ and $d_i = (-1)^i b_i = 1$ (1 \leq i \leq 4), then we have

X = HP(2) # (-CP(4)) and $X^{G} = S^{2} + 4 \text{ points.}$

[(4.3)(6) k=m=n=0] If $c_1 = c \neq 0$, $c_2 = 2c$, $c_3 = 3c$, a_1-c $= a_2+3c = a_3-2c = a_4+4c = a_0 \text{ and } d_i = b_i = 1 \quad (1 \leq i \leq 4),$

then we have

X = HP(2) # (-CP(4)) and $X^G = 6$ points.

References

- [1] G. Bredon: Introduction to compact transformation groups,

 Pure and Applied Math. 46, Academic Press, 1972.
- [2] K. Hokama: On the fixed point set of S^1 -actions on $\mathbb{CP}^m \times \mathbb{CP}^n$, Math. J. Okayama Univ. 17 (1975), 181-185.
- [3] K. Hokama and S. Kôno: On the fixed point set of S¹-actions on the complex flag manifolds, Math. J. Okayama
 Univ. 20 (1978), 1-16.
- [4] K. Hokama and S. Kôno: On the fixed point set of S¹actions on the space whose rational cohomology ring is
 generated by elements of degree 2, Math. J. Okayama Univ.
 28 (1986), 191-206.
- [5] V. Puppe: Deformations of algebras and cohomology of fixed point sets, Manuscripta Math. 30 (1979), 119-136.