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FIXED POINT SETS OF SI-ACTIONS ON THE SPACES WHOSE
RATIONAL COHOMOLOGY RINGS ARE EVENLY GRADED
PR WmE (Susumu Kona)

1. Introduction

Let G = S1 be the circle group, and X a connected
finite G-CW-complex whose rational cohomology ring is evenly
graded; that is
(1.1 HYX; ) 2 RIxp, -0, x 1/, 0 ),
where deg X, = 2ki 2 2 (1 £1i £ n) and oi are homogeneous
elements. We establish a method of determining the possibili-
ties of the rational cohomology type of the fixed point set of
G on X (Theorem 3.7). The method is an application of that
originated and improved by K. Hokama in [2] and [4] respective-
ly. Combining Theorem 3.7 with a result of V. Puppe in [51
(Theorem 3.8), the problem of existence for connected finite
G-CW-complex whose rational cohomology ring is evenly graded is
reduced to an algebraic one. We apply the result to three cases
(Theorems 4.1, 4.2 and 4.3). A result of G. E. Bredon [11]
applied to the case

X ~q SZm % SZn

is improved slightly (Theorem 4.1). In the final section, we

construct G-CW-compleXes which give examples in Theorems 4.2

and 4.3 except for the case (4.
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2. Preliminaries

Let R (resp. aR) be the polynomial ring @[t,xl,"',xn]

{resp. BIx,,***,X_1), where deg t = 2, deg x. = 2k, (1 £ 1
1 n i i
a'

<£n) and 1 £k, £ +++ £ k . Let R — 2R denotes the ring

1 = n

homomorphism defined by

a
( = PRGN
F‘Xl’ ,xn) F(l,xl, ,xn)
for every F € R, and h: aR\{O} —— R a map defined by

K k
hect,x ,ove,xy = 29020 s Lol e M
1 n 1 n

for every f € aR\{O}, where &8(f) denotes the total degree of

a5 = (°F|F € J). Let ¢,

f. For any ideal J in R, we set

€ aR and fi € R be homogeneous elements (1 £ i £ m), and

suppose
( = < i £
(I fi(O,xl, ,xn) wi(xl, ,xn) (1 £1 £ m.
. a
(11 dlm@ R/(wl, ,¢m) < .

Assume that aR/(w1,~‘~,¢m) has a basis M = {[yilll £ i £ h}
over &, where yi is a homogeneous element (1 £ i £ h), Yy
=1 and 0 = deg Yy £+ £ deg vy, = 2N 2 2kn. Then we have

the following lemma.

Lemma 2.1. (1) The G&L[tl-module R/(f1,~'-,fm) is
generated by M.

(2) The H-module 2R/%(t -,f ) is generated by M.

1° m

(3 The following conditions are equivalent:

iy If tf € (f_,+-+,f >, then f € (f,, -+ ,f ),
1 m 1 m

ii R/(fl,"~,f ) is a free H[tl-module with a basis M,

m

C. . a, & . ag . S
iiio dlmﬁ R/ (fl’ ,fm) = dlmg R/(wl, P h.
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Proof. (1) Let f{(t,x) € R be a homogeneous element of
positive degree. Then, by the assumption
_ <h m
£(0,x) = Zi=1 a;y, + ijl kj(x)wj(x)
for some a;, € fh (1 £i £ h) and kj(x) € PIx] (1 £ j £ m).
This implies that
h m
- - = {
fOt, 0 = 20 ayy; - 270 kO f (8, x) = tglt,x)
for a homogeneous element g{(t,x) € R. It is shown by the
induction with respect to deg f(t,x) that
_ sh m
gCt,x) = 20 hy(Dy, + 3L g, (4,0 f,(t,%)
for some hi(t) € RItl] (1 £ i £ h) and gj(t,x) € R (1 £
£ m). Then we have
_ <h m
fot,x) = 27 ) (aj+thy (b)yy + 20 )k Govtg, (4,300, (4, x).
(2) Let f(x) € aR\{O} be a polynomial. It follows from

(1) that we have

h
1

for some hi(t) € Qrtl1 (1 £ i £ h) and kj(t,x) € R (1 £ j

_ <h m
fOt,x) = 20 ) h(Dyy + Z0_ 0k (30, (4, %0

£ m). Then we have

m

h a,
= (
f(x) §i=1 hi(l)yi + 2j=1 kj(l,x) tj\x).

+,f ). Then

. h
(3) Suppose i) and 2i=1 h,(tyy, € «f,, m

h
{ o o .

and hence hi(O) =0 (1 £1 £ h). Suppose that hi(t) = tgi(t)
(1 £ i £ h). Then

h . sh ,
t2,2, & (v, = 2/ h, (try, € «f

and hence 2? gi(t)yi € (fl,"',f ). It is shown by the

=1 m

induction with respect to the degree of 2?: hi(t)yi that

1
gi(t) =0 (1 £1i £ h). Then hi(t) =0 (1 £1 £ h). Thus i)

implies ii).
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Suppose that f(t,x) € R be a homogeneous element such

that tf(t,x) € (f +,f Y and f(t,x) is not contained in

1’ m

1."',fm). By the assumption,
_ <h m
f(0,x) = zi=1 a,y, + 2j=1

for some a; €0 (1 =£1i <5 h) and kj(x) € RIxl (1 £ j £ m.

kK.(x L (X)
J )(pJ

If a; = 0 (1 £1i<£h), then

m
f(t,x) - 2. K. (x)f. (t,x) = tg(t,x)
zJ=1 J Jj &

for some g(t,x) € R. Then g(t,x) is not contained in

c+,f ) and tgg(t,x) € (f

1,‘ m 1,~'~,fm). Thus there exists

N
f(t,x) € R and a positive integer N1 such that t 1f(t,x)

€ (f ',fm) and [f(0,x)] has non-zero component with

ot
respect to the basis M. Suppose that

f(0,x) - 2];=1 aiyi € (Qpl,“‘,@m)

for some integer k with 1 £ k £ h and a, €eh (1 £1i£K)

with ak # 0. Then R/(fl,"~,fm,f) is generated by M\{[yk])

over QCtl, and °2R/2(f

10 fgef) is generated by MN([y, 1}

opver ®. Since

a _ a ... 1 _ a
| (fl, ,fm,f) = (fl’ ,fm,t f) = (fl, ,fm),
this implies that dimQaR/a(f1,~'~,fm) < h-1. Hence iii) does
not hold. Thus iii) implies i).
Suppose that Zk a.y, € 3(f,,--+,f ) for some Kk with
i=1 i71i 1’ ' m

1 £ k £h and a, €L (1 £1i £ k) with ay # 0. Then
N,-(deg y.)/2
k 1 i
2i=1 a t y, € (f, )

for some integer N1 2z deg yk. Hence ii) does not holds.
Thus ii> implies iii). This completes the proof of (3).

q.e.d.
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{ { )
Let {(cia),-'~,cﬁa’)|1 = o £ k} be a set of rational zero
. . a . a . P .
points of the ideal (fl,'~~,1m; C "R; that is, Ci € 1 and
o) (o) , . . .
fi(l,c1 yrrtsCl y =0 (1 £1<m 1l Lo £ k. For 121
£n and 1 < j £ ki’ g, ; € R denotes either 0 or a
homogeneous element of degree 2Nn with NO 2 N and
{ { )

&; j(l,cl‘a),“-,cr‘]a’) = 0 (1 £ o £ k). Let S (resp. 45) be

the polynomial ring

Qreer v (x, j|1 $i<n, 1£j<K)}]

3

(resp. f&[{xi jll £if£n, 15 j< k;}1), where deg x, i c 2]

b

(1 £i£n, 12 j £ ki) and deg t = 2. Consider homomorphisms

J,: R — S (resp. aJa: 3R — @35) defined by
k, k k,-j k_ k k-]
(o) 1 1 1 (o) n n n .
Lt +§j=1x1,jt , et j=1Xn,jt }
) k k
a N . D 1 L. Ao n
(resp. “J ¢f) = f(c1 +zj=1X1,j’ ' ey +ZJ.=1Xn’j
a

Denote by Ia the ideal generated in S by the coefficients

Ja(f) = f(t,c

Yy (1 £ o £ k).

N, -]
0
Yy (1 £ 1 £ g, -x. .t - £ 1 £n,
of Ja(fi’ 1 £1i £ m and Ja g1,3) xl,Jt (1 £ i £n
-1

. . - ; 1<
1 < j £ ki) with respect to t. Set qa Ja ‘IaS) (1 £ ¢«

£ k). Consider the induced homomorphisms

Jai R/(fl,'°‘,fm) — S/IaS
and aj : aR/a(f

a
“ e < < .
o 1 ,fm) —_ S/Ia (1 £ ¢ £ k)

Lemma 2.2. Let o be an integer with 1 £ o £ k.

(1> The graded group aS/_IOE equals to zern in the degrees > 2N.
2y The ideal qa is primary with the radical
. k k
—_— . {00) 1 o) n
- - . e - )
/qa (x,-¢y t o, X “Co t .
, » a IR s a, -1 . . a.
{3 The ideal qa coincides with Ja (Ia,, and Ja
induces an isomorphism 2 : %R/%q —— %s/1

o o o’
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Proof. (1) Let g(xi J.) € aS be a homogeneous element.
N,Gi-1)
Set f = g(gi jt - ) € R, where
N.-Kk. N K.
0 i (o) 0 i [ ,
- - - (1 £ i £ ).
8 1 x;t c, Tt 2j=2 8 ; 1 <£i<n

It follows from the definition that Ja(f) is congruent to

(N,-1)(deg g})/2
gt ~ {mod IaS)' By Lemma 2.1 (1) there exist

hi<t>e*£¢[t] (1 £ i £ h) and ki(t,x,\eR (1 £ 1 £ m) with

_ <h m X
f =27, hjty, + 20 kK (t,x0f (t,x).
(NO-I)(deg g)/2 h
Then gt is congruent to Ei=1 hy (4)J (y.)

(mod IaS), the degree with respect to {xi j} of which is at

most 2N. If deg g > 2N, then g € Ia'
{2) It follows from (1) that JT; = (xi j). This implies

i,j)’ and IaS is a primary ideal. Since qa

is the inverse image of IaS by a ring homomorphism J

that /IaS = (X

o ve

obtain (2).

(3) Suppose that f € aqa. Choose F € qa with aF = f.

Then, the coefficients of Ja(F) with respect to t are

contained in Ia’ and the sum of which is equal to aJ (£f)

o0
= a(Ja(F)). This implies that f € a_l(la)' Conversely,
a h

-1
{
o ‘Ia) and f # 0. Then (Ja( £))

aj

suppose that f € aJ

= aJa(f) € Ia’ Since Ia is a homogeneous ideal and the set of

the coefficients of J (hf) with respect to t coincides to

o
that of the homogeneous components of aJa(f), we have Ja(hf)

€ 1,S. This implies that hy € q,, and f = achey ¢ aqa. Thus

we obtain the first part of (3> and a monomorphism a}a: o
-_ aS/’Ia. It follows from the proof of (1) that a}a is also

an epimorphism. This completes the proof of (3). q.e.d.
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In order to state the next lemma, we set
i=ef i R/E,,c,f ) — o s/1s
=1 "o’ 1’ *"m’ =1 o
a. _ .k a. , a,,a . ; k a
and j = ®a=1 Iyt R/ (fl‘ ’fm’ _— $a=1 S/Ia’

Lemma 2.3. (1) j 1is surjective in the degrees 2 2N.

a

(2) J is an epimorphism.
k . a
( <
(3) 2a=1 dimg “S/I, £ h.
k . a,  ;a
N <
(4) 2., dimy “R/%q, £ h.
(5) (f K

1’ =1 -

a
(6) (fl’ ,fm) cn

"',fm) cn

Kk a

a=1 ¢

o
(7) The following conditions are equivalent:
i) j is a monomorphism,

.. a. . . .
ii> j is an isomorphism,

i) 22:1 dimy, *$/1, = h,
iv) 3k dimy *R/%q = h,
vy e f ) = ”§=1 Ay
vi) a(fl""’fm) = ng=1 a,,-
If this is the case, the set of zero points of the ideal

. . . (o) (o)
-, f ) C aR coincides with ({((c¢ L ol

.. K < <
1 n N ey 11 £ o £ kY.

Proof. (1) We show that for each o (1 £ o £ Kk and

homogeneous element g € aS, there exist a homogeneous element

f € R and an integer N with O £ N, £ max {0, N-(deg g)/2},

1 1
Nl
{ - .
JB(f) € IBS (8 # o) and Ja(f) gt € IaS. If deg g > 2N,
then f = 0 and N1 = 0 satisfies the above condition. Let

deg g = 29 £ 2N, and set
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N (j-1) K.
0 8 i(B) N+1
- gig. . My (X, . -Ch
Fl g gl,Jt ’ = Xi(8) Cl(B)t ) '
N.-K. N k

0 i (ay, 0O i . .

= - - {1 £ <
where g 1 x; t c, 't 2j=2 &i . ; (1 £ i £ n) and

. . . . (8) (o) ) .
i(B) 1is an integer with Ci(B) e Ci(B) (B #'a). Then we have
JBLFI) € IBS (8 # o) and
Q(NO—1)+N(a) NCety-1 Q(NO-1)+i
Jy(Fy) = ct g+ 2i.g t g, (mod I S),
where N(o) = 2 (N+D k.
B !

and deg g, > 29 if &; # 0. Set N, = max (N, QNO+N(a)}. It

g,r 0 FcER, g € 4 (0 £ i1 < N

follows from the inductive hypothesis that there exists a

homogeneous element F € R of degree 2N2 with JB(F) € IBS
Nz—Q

(B # o) and Ja(F)—gt € Ias. By Lemma 2.1 (1) there exist

hi(t) € Urtl (1 £ i £ h) and ki(t,x) € R (1 £1i £ m) with

_ <h m
Fo=2ioy hoyy + 20
- N, -N
Set zi=1 hy(t)y, = ft “ , where f € R is a homogeneous

kK. (t,x)f, (t,x).
i i

element of degree 2N. Then, we have JB(f) € IBS (8 # o) and
Ja(f)—gtN‘Q € IaS. Thus (1) is proved by the induction with
respect to (deg g)/2.
(2> In the proof above, aj([af]) = [gl. This implies (2).
(3 It follows from (2) and Lemma 2.1 (2) that we have

zk

. a . a a
qey dimp °S/1, = dimg “R/7(H

1,”‘,fm) £ h.
(4> is a direct consequence of (3) and Lemma 2.2 (3).
(5) and (6) are immediate from the definition.
(7) It is evident that i) is equivalent to v), ii) is
equivalent to vi), iii) is equivalent to iv) and v} is
equivalent to vi).

Suppose i}. Then R/(f fm) is a torsionfree

IR
1
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QL tI-module (®§=1 S/Ias is a free ©L[tl-moduled. It follows

from Lemma 2.1 (3) and ii) that
-— 3 a a * * @ —-—
h = dimy “R/%(f,, £ ) = >
Thus i) implies iii).

Suppose iii). It follows from (2) and Lemma 2.1 (2) that

. ay,a . kK . a -
h 2 dimy “R/%CE,,--,f ) 2 2 ) dimy “S/1, = h.
This implies that h = dimp aR/a(f1,°~~,fm) and 2j is an
isomorphism. Thus iii) implies ii). This completes the proof
of (7). qg.e.d.

3. Equivariant cohomology rings

Let X be a connected finite G-CW-complex whose rational
cohomology ring is evenly graded; that is, there exists an
isomorphism
(3.1) (X0 DIxp, v, x 1/(@ 00,0 ) — H (X5 ),
where deg X, = 2ki 2 2 (1 £1i £ n) and ¢i is a homogeneous
element (1 £ i £ m). Let t: EG X L — BG be the complex
line bundle associated to a universal G-bundle EG — BG.
Then we have
(3.2) H*(BG; @) = Q[t], where t € H2(BG; £) is the Euler

class of <t.

Let nrm: XG = EG XG X — BG be the associated bundle with

fiber X, and i: X — XG the inclusion of a fiber. The

equivariant cohomology ring of X is defined by HZ(X; £
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= H*(X_.; ©). The induced homomorphism n*: H*(BG;

G’
(X3

odd(
G

— H gives a WH[tl-algebra structure to

[T

) 2 0 and the sequence

Then H X

t H%i+2

G
2Kk,
i

G

* o I
Hi (X5 &)

(3.3) 0 — Hél(x; ) (X: ) H

. - . ok
is exact. Choose ai € H (X; &)y with i (ai)

(1 £ 1 £ n). Then is generated by

as a ®H[tl-algebra.

f[tl-algebra homomorphism defined by setting

{1 £1i £ n). Choose a homogeneous element fi €

I(X.)(fi) = O and

G
< m).

fi(t,x -,xn) = wi(xl,"',x

e

The proof of following lemma is similar to

[3, Lemma 2.2].

{
I‘XG)

induces an

Lemma 3.4. The kernel of

1,‘~',fn) of R and I(XG>

i(XG): R/(f1,°'

%

G ).

(X,

‘,fm) — H

G

Let F = X be the fixed point set of the

with connected components Fl’ s, Fk‘ Let

j: FG = BG X F & XG

Then the sequence

be the inclusion map.

i
(3.5) 0 — Hz(x; 0y —- Hé‘(F; 0 — vl xsa,

is exact. For 1 £ o = k, let pa: (Fa)G — Fa

projection to the second factor. Then we have an

t : R{tl ® H*(F s By —— H*(F iA))

o o G o’

hp *(a)

defined by setting o

{(h ® =
la h a)

21+2(X

{a,
1

I (X,

coincides with the

G-

for every

(AD}
* -
HG(X, (NI

— 0

D

i(X)([Xi])

1 £i £ n)

Let 1(X;): R — Hé(X; ) be the

Y(X.,) = a,.

i i
with

) (1 £ 1

that of

ideal

isomorphism

action on X

F; &y — 0
be the

isomorphism

h € Bt}
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and a € H*(Fa; B). For 1 £ i £ n, set
k. k. k.-J
. _ <k I i i £ ()
PTCagy = 2o ten Tt e 2t Py (25 37705
3 { ) _
where aga; € HZJ(Fa; £y and ci € (1 £ £ k).

Lemma 3.6. (1) For 1 £ o £ Kk, H*(Fa; ) is generated by

{afagll <i<n, 15 j<Kk.}.

( { {B) .
(2) (c‘“),-~-,c;“)> = (clB),--~,c;B ) if o = B.

Proof. Suppose a € H*(Fa; . It follows from the

exactness of the sequence (3.5) that there exist an integer N1

N
2 0 and an element f € R such that j*(I(XG)(f)) =t 1pa*(a).

By the isomorphism za, we see that there exist a polynomial g

€ aS such that g(aiaﬁ) = a. This completes the proof of (1).
In the proof above, set a = 1. Then we have
f<1,c{“),o-~,c(“)) =1
n
(RS
and f(l,c{B),°°~,CAB)) =0 if B # «. This completes the
proof of (2). q.e.d.

For 1 £ o £ k, let I(Fa): aS —_ H*(Fa; L) be the ring

homomorphism defined by setting I(Fa)(xi j) = aia; {1 £i1 £n,
* - -
< j £ . o D 1 _
1 £ = ki), and I((Fa)G)’ S — HG(Fd’ Ly a 4L[tl-algebra
homomorphism defined by I(Fa) and Ly Choose NO 2 N and
g ;€ R (1 £i<n, 1< j<s k,) such that
N,-1J
0 * o)

(( y) = < o £ k).

I“Fa)G)(Ja(gi,j ) t pa (ai,j) (1l £ 0 £ Kk
For 1 £ 0 £ Kk, let Ia be the ideal generated in ag by the

NO-J

coefficients of J_(£f.) (1 £1 £m) and J _<(g. .) - x. .t
(54 1 [24 1,3 1,]
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(1 £1 £n, 1< j £ kiB with respect to t, and set 9y

Theorem 3.7. Let o be an integer with 1 £ a £ k. Then

we have
(1Y The kernel of the homomorphism I(Fa) coincides with Ia’
. . . . : . . a / *{» . in
and I{Fa) induces the isomorphism I(Fa). S’Ia — H ‘Fa’ ) .
. k .
{2 .o = 3 - .
(27 (fl, ,fm) na=1 qa is the reduced primary
Kk .k
C . — (o) 1 o) n
~ = - .« o -
decomposition, where /qa (xp=cp b, X me Tt )
(o) (o) .
Y { ¢ .0 } o= < < j < . .
(3) gi,j‘l’cl , ,cn 0 (1 £1L£n, 1< j= kl)

Proof. By the definition, we have I(Fa)(Ia) = 0. Let f

€ Ker I(Fa) be a homogeneous element. By Lemma 3.6 (2), there

(8) (o) 8

is an integer 1(8) with Ci(B) = Ci(B) for each = o, Set

NpGi-1) (8)

K. N
_ . _ P8y, 1
g = flg; ;t Y M (X5 (817 Ci (8) )
N

t

’

is an integer such that H'«(F; &) = 0 for i 2 2N
N.-k N K.
_ 0 i _ (o), 0 _ i
Ei,1 = %t ¢t 2j=2 &,

we have j*(I(X

where 1

{1 £1 £ n). Then

Y(g))y = 0, and hence g € (f

G 10 oy

coefficient of the highest degree with respect to t in the

polynomial Ja(g) is congruent to a multiple of f by same

non-zero constant {mod Ia). This implies>that f € Ia’ This

completes the proof of (1).

. a % B _
i - = im. { N ©
Since dlmk S/Ia dxmu H ‘Fa’ L) < o, we have /Ia
= (x.1 j), and hence Ia is a primary ideal. 1t follows that
IaS is also a primary ideal and JIaS = (xi j}’ By the

definition, qa is a primary ideal with the radical
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{ n { n
(xl—cia)t 1,~~~,xn—cﬁa)t ny. Since j* is a monomorphism, we
k .
PSP Y = 3
have (fl, ’fm’ na:l qa. This completes the proof of (2.
. i) (o). " .
Since g. .{(1,c , v ,C ) € & is equal to the
1,1] 1 n
No NO-J
coefficient of t ° of the polynomial Ja(gi j) - X, jt
a ) o)y ., (@), _
and Ia # S, we have gi,j‘l’cl , ' Co ) 0. qg.e.d.
By Lemma 2.3, it is easy to see that we can assume N, = N.

0

According to [5] and Lemma 2,3, we have the following theorem.

a

Theorem 3.8 (V. Puppe [5]1). Let fi € R and @, € “R

{1 £ i £ m) be homogeneous elements that satisfy (I) and (II).

{ {
Let {(Cia),"~,cﬁa)>tl < o £ k) be aset of rational zero
points of the ideal a(f1,°",fm) c ®R. For 1 <£i<n and
1 < j £ Ki’ gi ; € R denotes either 0 or a homogeneous
(o) (o), _ ,
element of degree 2N and gi J.(l,cl ,-'-,cn y = 0 (1 £ «o
£ k). Set Ia as in the section 2 (1 £ o £ K». If one of the

properties i)-vi) of (7) of Lemma 2.3 is satisfied, then there

is a finite G-CW-pair (X, F) and #[tl-algebra isomorphisms

*
G

fo i o N < <
S/IaS —_— HG‘Fa’ By (1 £ o £ k), such that F

P(X 0 R/(fl""’fm) — H.(X; )

G
and 1((Fa)G):
= XG with connected components Fl’ R Fk and the following

diagram commutes:

. J k ,
{ o e —_————
R/CE v ) ® 2y S/14S
. k
{ )
ll.XG) i l®a_11( Fa)G
* ) j k %* oA
HG(X, 1) - $a=l HG(Fa’ IND)
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4. Applications
Applying Theorems 3.7 and 3.8 to corresponding cases, we

obtain the following theorems.

Theorem 1.1. Let X ~; 8°™ x s°™ be a finite G-Cu-

complex, 1 £ m £ n. Then one of the following possibilities

must occur:

{1y F ~i qu X Szr, m=24q, n=2r.
3

2y F ~p, P (20), 1 2q=n/2<m or 1=qgs=m/2%n/4.

{3) F ~D (point + P2(2q)), 1 <

2r

q
(1) F ~,_ s2% 4+ 5 n=2gq, n=2r.

Conversely, each type of (1)-(4) can be realized by the

fixed point set of a G-CW-complexXx.

Theorem 4.2. Let X ~p HP(2) # CP(4) be a finite G-CW-
complex. Then one of the following possibilities must occur:
0y F ~0 X.

(1) F ~p CP(2) # CP(2) + S°.

(2 F ﬂv@ F1 + 2 points,

5 * o ) ~ 2_ 2 s
where H (F;H) = @[xl,le/(xlxz,x2 ox, ), 0 # o € & and
deg x1 = deg x2 = 2.

{(3) F ﬁvﬂ CP{(3) + 2 points.

(4) F ”Vﬁ CP(2) + CP(2).

(8) F ~ CP(2) + s’k 4 point (k £ 2).

6) F ~. s°K + 82™ L 5 points (k£ 2, m£ 1),

Conversely, each type of (1)-(6) can be realized by the

fixed point set of a G-CW-complex.
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Theorem 4.3. Let X ~ HP(2) # (-CP(4)) be a finite G-
CW-complex. Then one of the following possibilities must occur:

(0) F ~p X.

03

(1) F ~p 8% x s? + 5%

(2) F ﬂvg F1 + 2 points,

where H¥*(F;0) = @[xl,le/(xlxz,x22+ax12), 0 #a € 0 and
deg x1 = deg x2 = 2.

(3) F ~ CP(3) + S2k (k £ 2).

(4) F ~n CP(2) + CP(2).

(6) F ~y CP(2) + s?K + point (k £ 2).

6) F o~y 57K 4 s s® kg2, mg1, 05D,

Conversely, each type of (1)-(6) can be realized by the

fixed point set of a G-CW-complex.

5. Construction of Sl—CW-complexes
Finally we construct some G-CW-complexes which give

examples in the Theorems 4.2 and 4.3. Set

st o= cqupiv uyivy,ugrivg) € (Lo J0PSYau iPeiv ) =
and S° = (x+jy € € ® jClixI%+Iy1%? = 1). Then HP(2) is
defined as the orbit space 811/83, where the Sa—action on
S11 is defined by
(u1+jvl,u2+jv2,u3+jv3)‘(x+iy)
(ulx—71y+j(v1x+ﬁly),u2x—52y+j(v2x+52y),u3x—;3y+j(v3x+ﬁ3y))
for every (u1+jv1,u2+jv2,u3+jv3,x+jy) e s'! x s3. For each
(cy,CysCq) € 23, ?(cl,cz,CB): G X HP(2) — HP(2) denotes the

G-action on HP(2) defined by
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W(cl,cz,cg)(z,[u1+jv1,u2+jv2,u3+jv3])
= [zclulﬂ'z_C vl,202u2+jz-02v2,203u3+jz—03v3]
for every (z,[u1+jv1,u2+jv2,u3+jv3]) € G x HP(2). Set
D} = (LU +5V) Uy +§vy, g vy e_HP<2)||u112+lv1|2 > 1/2),
ST = (Luy+jv ,uy+jvy,ug+jvyl € HP2) [lu 1P+lv 1% = 1/2)
and S; = {(u1+jvl,u2+jv2) € (L @ j€)2|2?=1(|ui12+lvi|2) = 1}.
Let h1: SI e SZ be the homeomorphism defined by
h, (lu, +jv1,u2+jv2,u3+jv i D)
= (1/(ulﬁ1 1vl))(u2u1+v \ +J(v2u1 2 vy),ug 3 1+j(v3ﬁl—-63v1))
for every [u1+Jv1,u2+)v2,u3+jv ]l € SZ. Set
s7 = ((ryz,,r,z,,ry2 )IEJ jFj =1, r; 20, 2, ¢€ sly.
Let fq: SZ — 57 be the homeomorphism defined by
fq(u1+jv1,u2+jv2) = (ul/s,vl/s,uz/s,vz/s)
for every (u;+jv,,u,+jv,) € S; with s = 22 L |+|VJ|) Set
sd = (W W W, Wa,a W, ) € €5|2?=Olwi|2 = 1},
and S! = (z € Cl121% = 1). Then CP(4) is defined as the

orbit space Sg/Sl, where the Sl—action on Sg is defined by

z'(wo,wl,wz,w3,w4) = (zwo,zwl,zw2,2w3,2w4)

1 9
for every (z,wo,wl,wz,wa,w4) € S X S§S°. For each

-5 .
(ao,al,az,as,a4) € 717, O(ao,al,az,aS,a4). G X CP(4) — CP(4)
denotes the G-action on CP(4) defined by

®lay,a),a5,85,a,) (2, [W,, W) Wy, Wa,w, 1)

4
= [zaow zalw zazw zaaw za4w ]
0’ 1’ 2’ 3’ 4
for every (z,[wo,wl,wz,wa,w4]) € G X CP(4). Set
Dg = LWy, W Wy, Wy, W, ] € CP(4)||w0|2 > 1/2},
S7 = (Lwy,wy Wy, wg w1 € CPCA 1w 1% = 1/2)
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~4 4 2 _ .
and S (W) Wy, Wa W) € C lzi=1'wi| = 1). Let h.: S

— SZ be the homeomorphism defined by

h2([w0,w1,w2,w3,w4]) = (wl/wo,wz/wo,wa/wo,w4/w0)

7

7 7
for every [wo,wl,wz,WB,w4] € Sz. Let f SC — Z be the

c:
homeomorphism defined by

fc(wl,wz,w3,w ) = (wl/s,wz/s,wg/s,w4/s)

4
for every (w ,w,,wg,w,) € SZ with s = 2?=1|wjl. For each
(d,,d,,d5,d,) = I, let fd ,d,,d;,d,0: E/ — = be the map
defined by
f(dl,d2,d3,d4)((r121,r222,r323,r4z4))
= (rlzldl,r222d2,r323d3,r424d4)

7
for every (rlzl,r222,r323,r424) € . Now we set

X = X(dl,d2,d3,d4;b1,b2,b3,b4)
7 8 8
= X U (HP(2)\D,) U (CP(4)\D,),
fq(dl’dz’ds’d4) 1 fc(b1’b2?b3'b4) 2
where fq(dl’dz’dg’d4) (resp. fc(bl,bz,bS,b4)) is the
composition
£(d.,d.,d.,d def ch, : S — 37
17227374 q 1° "1
R 7 _
{resp. f(bl’b2’b3’b4) fcoh2. 52 — 2°). Suppose dl(CZ Cl)
= bl(al—ao), d2(—c2—cl) =.b2(a2—a0), d3(c3-c1) = b3(a3—a0) and

d4(-c3—cl) = b4(a4-ao). Then X has the G-action compatible
8)

with W(cl,cz,CS)l(HP(z)\D1

that is, X has a G-CW-complex structure. It is easy to see

8.,
and ¢(a0,al,a2,a3,a4)|(CP(4)\D2),

that we have

* oy ~ 2 4 3 5
H (X; Z) = Z[xl,x2]/(x1x2,d1d2d3d4x2 +b1b2b3b4x1 SRR SRR

= —n2 I .
If bybybgb,d,dydgd, = -n° (resp. b,b,bgb,d d,dgd, = n") for

some positive integer n, then we have X ﬁv® HP(2) & CP(4)
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(resp. X ~, HP(2) # (-CP(4)). Thus we obtain following

N
examples.

[(4.2)(1)1] If Cy = ¢y = c, = ¢ # 0, a; = ag = a,, a,
= aO—2c, di =1 (1 £1 £ 4y, - 1 = b2 = b3 = b4 =1, then
have

X = HP(2) # CP(4) and X° = CP(2) # CP(2) + §2,

[(4.2)¢2)] If ¢, = c, = c3 = c # 0, a1 = ag = a2+2c =
= aO (aa+2c) # 0), di = bi =1 (i =1, 2), d3 = —b4 = 2¢
d4 = b3 = a, then we have

X ﬂv@ HP(2) # CP(4) and XG = F‘1 + SO,
*’..(\9_' 2
where H (F;; ®) = QIx,,x,1/(xX%,,2¢cx, +ax;”) and deg X,
= deg x2 = 2.
[(4.2)(3)1 If c1 = bec # 0, Cy = 4c, Cq = 13c, ai = aO
(1 £i1i £4), d, =6 (1 £ix£4), b, =1, b, =9, b, = -8
i 1 2 3
b4 = 18, then we have
X ﬁvﬂ HP(2) # CP{(4) and XG = CP(3) + SO.
[(4.2)(5) k=2] If c1 = c # 0, 02 = c3 = 0, ai = ao—c
i £ = = = £ i £ =
(1 £1 £ 3), a, aj*c, di b‘1 1 (1 £1 £ 3), d4 1 a
b4 = -1, then we have
X = HP(2) # CP(4) and XG = CP(2) + S4 + point,
[(4.2)(5) k=11 If c1 = c2 = 0, 03 = c # 0, a1 = a2 =
i .

- - - = (- = £ i £ =
aq a, ay=Cs di (-1) bi 1 (2 £1i £ 4) and d1 b1
then we have

X = HP(2) # CP(4) and X° = CP(2) + s% + point.

[((4.2)(5) k=01 If €y = Cy = 0, Cq = c # 0, a; = a2 =

= = - = = < i < = -
a3 a0+c, a4 aO c, di bi 1 (2 £i £ 4) and d1 b
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1, then we have

X = HP(2) # CP(4) and XG = CP(2) + 3 points.
((4.2)(6) k=2, m=11 I£f c1 = 2¢c & 0O, Cp = 03 = 0, al—o
i .
= - = = = = - = <
a3 c a2+c ags ay a0+160, 2di (-1) bi 2 (1 £1i £ 3),
d4 = 8 and b4 = -1, then we have
X ~g HP(2) # CP(4) and x9 = st + 5%+ §0.
[(4.2)Y(6) k=2, m=0) If c1 = 2¢c # 0, 02 = c3 = 0, a1+c
= a,-C = 33+2c = a4+8c = a,, di =1 (1 £i £ 3), d4 = 4, b1
= —b2 = 2 and b3 = b4 = 1, then we have
X ~g HP(2) # CP(4) and x% = s* + 4 points.
[(4.2)(6) k=m=1]1 If €y = ¢Cy =cC #Z 0, cq = 0, a; = ag, a,
= a0+20, 33 =a, = ao-c, di =1 (1 £1 £ 4) and b1 = -b2 = b3
= b4 = 1, then we have
G 2 2 .
X = HP(2) # CP(4) and X =S~ + S™ + 2 points.
[(4.2)(6) k=1, m=01 If c1 = c2 = c # 0, c3 = 0, a1 = a2+20
=a-c=za+c=a,,d. =1 (1 £ig4),5b, =" (2521ig4)
3 4 0 i i
and b1 = 1, then we have
2
X = HP(2) # CP(4) and XG = 8 + 4 points.
[(4.2)(6) kK=m=0]1 If c1 = c # 0, 02 = 2c¢, c3 = 3¢, a,-¢
= a2+3c = a3+2c = a4+4c = aO, di = bi = 1 (i # 3) and d3 = -b3
= 1, then we have
X = HP(2) # CP(4) and X% = 6 points.
[(4.3>(1)1 If c1 = c2 = 03 = c # 0, a1 = a3 = aO, a2 = a4
= a0-2c, di = bi =1 (1 £1i £ 4), then we have
X = HP(2) # (-CP(4))
and XC = CP(2) # (-CP(2)) + §° ~0 s x 52 + g2,
[(4.3)2)]1 If c1 = 02 = 03 = ¢ # 0, a1 = a3 = a2+2c = a4—a



222

= aO (a(a+2c) # 0), di = bi =1 (i =1, 2), d3 = —b4 = 2¢c and
d4 = -b3 = a, then we have
X ~g HP(2) # (-CP(4)) and xG = F, o+ 50,
* . o~ y 2_ 2 7
where H (F,:0Q) = @[xl,le/(x1x2,2cx2 ax, ) and deg X,
= deg x2 = 2.

[(4.3)(3) k=21 If c, =¢ Zz 0, €y, = Cq = 0, a, = a,-c

(1 £1 £ 4) and di = bi =1 (1 £1i £ 4), then we have
X = HP(2) # (-CP(4)) and X° = CP(3) + 8%,

[(4.3)(3) k=11 If c1 = 0, c2 = c3 = c Z 0, ai = aO-c
(1$£i£4,d, =1 1£ig£4 and b, = - g g,
then we have

X = HP(2) # (-CP(4)) and XG = CP(3) + Sz.
[(4.3)(3) k=03 If ¢, =0, ¢, = ¢ # 0, ¢, = 4¢c, a. = a.+2c¢
1 3 i 0
(1 £1 £ 4y, di =2 (1 £1 £ 4), b1 = -b2 =1 and b3 = -b4
= 4, then we have
X ﬁdg HP(2) # (-CP(4)) and XG = CP{3) + SO.

[(4.3)(5) k=2] If Cl = 2¢c # 0, 02 = 03 = 0, ai = ao-c

(1 £1 £ 3), a, = a,-16c, 2d, = b, = 2 (1 £1 £3), d, = 16
4 0 i i 4
and b4 = 2, then we have

X ~g HP(2) # (-CP(4)) and x% = cp2) + s* + point.

[(4.3)(5) k=1] If c1 = c2 = 0, c3 = c &0, a1 = a2 = ao,
a, = a, = a.-c and d. = (-1D'b, =1 (1 £ i £ 4), then we
3 4 0 i i
have

X = HP(2) # (-CP(4)) and X° = CP(2) + $% + point.

[(4.3)(5) k=01 If c1 = 02 = 0, c3 = c#0, a1 = 32 = aO,
a8 = ao+c, a4 = aO—c and di = bi =1 (1 £1i £ 4), then we
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X = HP(2) # (-CP(4)) and X% = CP(2) + 3 points.
[(4.3)Y(6) k=2, m=n=1] If c1 = c #£ 0, c2 = c3 = 0, a1 = a3
i
= = = - = - = < <
a0+c, a2 a4 ao ¢ and di (-1) bi 1 (1 £i1i £ 4), then
we have
X = HP(2) # (-CP(4)) and x° = s? + s? + 52,
[(4.3)(6) k=2, m=1, n=0]1 1If ¢, = 2¢ # 0, Cy = Cq = 0, a,-c¢
= - = = = - = - i =
= a3 c a2+c ags a, a, 16c¢, 2di (-1) bi 2 (1 £1 £ 3,
d4 = 8 and b4 = 1, then we have
X ~q HP(2) # (-CP(4)) and XG = S4 + 82 + 2 points.
[(4.3)(6) k=2, m=n=0] If c1 = 2¢ # 0, 02 = c3 = 0, a1+c
= a,-C = 33+2c = a4—8c = a,, di =1 (1 £i £ 3), d4 = 4, b1
= -b2 = 2 and b3 = -b4 = 1, then we have
X ﬁv@ HP(2) # (-CP(4)) and XG = S4 + 4 points.
[(4.3)(6) k=m=n=1] If ¢, = 0, 02 = 03 = c # 0, a1 = a3
= a0+c, a, = a, = a,-c¢ and di = bi =1 (1 £i £ 4), then we
have
X = HP(2) # (-CP(4)) and XG = 52 + 52 + 82.
[(4.3)(6) k=m=1, n=0] I£f c1 = 02 = c # 0, c3 = 0, a1 = ao,
a, = aO+20, ag = a, = a,-c, di =1 (1 £1i £ 4) and -bl = -b2
= b3 = b4 = 1, then we have
X = HP(2) # (-CP(4)) and X° = s? + s% + 9,
[(4.3)(6) k=1, m=n=0] If c1 = c2 = c # 0, c3 = 0, ag = a1
= a +2c = a,-¢c = a,+¢ and d, = (-1)'b, =1 (1 £1 £ 4), then
2 3 4 i i
we have
X = HP(2) # (-CP(4)) and X° = s% + 4 points.
[(4.3)(6) k=m=n=0] If cp =c z 0, 5 = 2c, Cq = 3c, a,-c
= = - = = = = < i
a2+3c ag 2¢c a4+4c ao and di i 1 (1 £i £ 4,
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then we have

X = HP(2) # (-CP(4)) and X% = 6 points.
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