<table>
<thead>
<tr>
<th>Title</th>
<th>A Note on Hayden's Theorem (GROUPS AND COMBINATORICS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Atsumi, Tsuyoshi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1992), 794: 161-168</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1992-06</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/82729</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
A Note on Hayden’s Theorem

Tsuyoshi Atsumi

The Case a finite Group G acts on Code.

1. Definitions from Coding Theory

Yoshida [5] showed that there is a generalization of MacWilliams identity [3] to codes with group action. We use ideas from [1] to give an elementary proof to Yoshida’s identity in a special case.

Let V be the vector space \mathbb{F}_q^n, where \mathbb{F}_q is the field with q elements. From now on we assume that G is a finite permutation group on the coordinates of V and $|G|$ is prime to q. Then we can define a natural action of G on V as follows: If $v = (v_1, \ldots, v_n)$ and $g \in G$, we let $vg = (x_1, \ldots, x_n)$ where for $i = 1, \ldots, n$, $x_i = v_{ig^{-1}}$. In this way V becomes an FG-module. A G-code is an FG-submodule of V. As in [1], the operator θ is defined by

$$\theta = \frac{1}{|G|} \sum_{g \in G} g.$$

Here we note that $C_V(G) = V\theta$ and $\theta^T = \theta$ (see [1]).

Let C_1, \ldots, C_t be the orbits of the coordinates of V under the action of G. Let m_i be the orbit length of C_i. Define \overline{C}_i as the vector of V which has 1 as its entry for every point of C_i and 0 elsewhere. (This definition of the \overline{C}_i’s is slightly different from that in the proof of Theorem 4.3 in [1]). Then each of $\overline{C}_1, \ldots, \overline{C}_t$ is in $U = V\theta$ and every element u of $U = V\theta$ is of the form

$$u = \sum_{i=1}^t x_i \overline{C}_i.$$

This basis $\{\overline{C}_1, \ldots, \overline{C}_t\}$ of U is a key to our proof of Yoshida’s result. Yoshida weight of a vector $u = \sum_{i=1}^t x_i \overline{C}_i$ in U denoted $wy(u)$ is defined as the number of non-zero x_i. So if G consists of the identity element, e, alone, then Yoshida weight $wy(u)$ of a vector u is the ordinary weight $|u|$. If $a = \sum_{i=1}^t a_i \overline{C}_i$ and $b = \sum_{i=1}^t b_i \overline{C}_i$ are any two vectors in U, then inner product $(a, b)_G$ of a and b is defined by

$$(a, b)_G = a_1 b_1 + \cdots + a_t b_t. \tag{1}$$

Let D be a vector subspace of $U = V\theta$. D_\perp is the dual of D in U with respect to the inner product (1). (Notice that if G consists of the identity element, e, alone, then $D_\perp^{\{e\}}$ is the ordinary dual D_\perp of D in V.)
We describe a weight enumerator of a vector subspace \(D \) of \(U = V\theta \). The weight enumerator \(W_D(x, y) \) of \(D \) is defined by

\[
W_D(x, y) = \sum_{u \in D} x^{t-w(y(u))} y^{w(y(u))}.
\]

Clearly if \(G \) is trivial, that is, \(G = \{e\} \), then this weight enumerator becomes the ordinary weight enumerator. For notation and terminology, we will refer the following book and paper: [3] for coding theory; [5] for codes with group action.

2. G-Codes

We have the following theorem which is a special case of Yoshida’s result [5].

Theorem 1. If \(C \) is a G-code, then

\[
W_{C^\perp\theta}(x, y) = \frac{1}{|C\theta|} W_{C\theta}(x + (q-1)y, x-y).
\]

If \(G \) is trivial, that is, \(G = \{e\} \), then our theorem is the ordinary MacWilliams theorem [3. pp146]

In order to prove Theorem 1 we need the following proposition.

Proposition 1 (Hayden). Let \(V \) be the vector space \(F_q^n \). Assume that \(G \) is a finite permutation group on the coordinates of \(V \) and \(|G|\) is prime to \(q \). If \(C \) is a G-code and

\[
\theta = \frac{1}{|G|} \sum_{g \in G} g,
\]

then

\[
(C\theta)^\perp = \text{Ker}\theta + C^\perp\theta.
\]

Proof. See the proofs of Theorem 4.2 and Corollary 1 in [1].

We will prove Theorem 1. If \(x = \sum_i x_i\overline{C}_i \in C\theta \) and \(y = \sum_i y_i\overline{C}_i \in C^\perp\theta \), by Proposition 1 we have

\[
0 = (x, y) = \sum_i m_i x_i y_i = (x, y')_G,
\]

where \(y' = \sum_i m_i y_i\overline{C}_i \). From this it follows that

\[
(C\theta)^\perp_G \supseteq (C^\perp\theta)M,
\]

where
\[M = \text{diag}(a_1, \ldots, a_n) \quad i = 1, \ldots, n; \]
\[a_i = m_j \quad \text{if} \quad i \in C_j. \]

Next we will show that
\[(C\theta)^\perp_G \subseteq (C^\perp\theta)M. \quad (3) \]

If \(x = \sum_i x_i \overline{C}_i \in (C\theta)^\perp_G \), \(x' = \sum_i (x_i/m_i) \overline{C}_i \) and \(y = \sum_i y_i \overline{C}_i \in C\theta \), we have
\[(x', y) = \sum_i m_i (x_i/m_i) y_i = (x, y)_G = 0. \]

This shows that
\[x' \in (C\theta)^\perp. \quad (4) \]

Since \(x' \in U = V\theta \), (4) and Proposition 1 imply that \(x' \in C^\perp\theta \).

Hence, \(x = x'M \in (C^\perp\theta)M \). Now we proved that
\[(C\theta)^\perp_G \subseteq (C^\perp\theta)M. \quad (5) \]

From (2) and (5) it follows that
\[(C\theta)^\perp_G = (C^\perp\theta)M. \quad (6) \]

Here notice that MacWilliams theorem [3, pp 146] for the ordinary weight enumerator of the code \(C\theta \) in \(U (= V\theta) \) holds in this case, too.

MacWilliams theorem.
\[W_{(C\theta)^\perp_G}(x, y) = \frac{1}{|C\theta|} W_{C\theta}(x + (q-1)y, x - y). \]

Now we will finish the proof of Theorem 1. By the above MacWilliams theorem and (6), we obtain the following.
\[W_{(C^\perp\theta)M}(x, y) = \frac{1}{|C\theta|} W_{C\theta}(x + (q-1)y, x - y). \quad (7) \]

Since \(W_{(C^\perp\theta)M}(x, y) = W_{C^\perp\theta}(x, y) \), it follows from (7) that
\[W_{C^\perp\theta}(x, y) = \frac{1}{|C\theta|} W_{C\theta}(x + (q-1)y, x - y). \]
Remark. Generalizing a result of Thompson, Hayden [1] has proved the following proposition.

Proposition 2. Using the notation of Proposition 1, then with an appropriate orthonormal base for U, (extending F_q if necessary) we have where $(C\theta)^\perp_U$ is the dual in terms of this basis

$$(C\theta)^\perp_U = C^\perp \theta.$$

So our result (6) is a generalization of Proposition 2 in a sense.

The Case a finite Group G acts on Lattice

3. Definitions from Lattice Theory

In [5] Yoshida raised the following problem.

Problem. What can we say about lattices with groups action? Can we define the equivariant version of theta functions?

He showed in [5] that there is a generalization of MacWilliams identity [3] to codes with group action. In this paper we will prove that there is a lattice version of this result. In order to state our theorem we introduce notation and terminology in lattice theory. Let V be the real n-dimensional space \mathbb{R}^n. A lattice Λ [4] is a subgroup of V satisfying one of the following equivalent conditions:

i) Λ is discrete and V/Λ is compact;
ii) Λ is discrete and generates the \mathbb{R}-vector space V;
iii) There exists an \mathbb{R}-basis (e_1, \ldots, e_n) of V which is a \mathbb{Z}-basis of Λ (i.e. $\Lambda = \mathbb{Z}e_1 \oplus \cdots \oplus \mathbb{Z}e_n$).

Let the coordinates of the basis vectors be

$$e_1 = (e_{11}, \ldots, e_{1n}),$$ $$e_2 = (e_{12}, \ldots, e_{2n}),$$ $$\vdots$$ $$e_n = (e_{1n}, \ldots, e_{nn}).$$

The $n \times n$ matrix M with (i, j)-entry equal to e_{ij} is called a generator matrix for Λ. The determinant of Λ is defined to be $\det \Lambda = |\det M|$. Given two vectors $u = (u_1, \ldots, u_n)$,
$v = (v_1, \ldots, v_n)$ of V, their inner product will be denoted by $u \cdot u$ or (u, u). The dual lattice is defined by

$$\Lambda^\perp = \{ u \in \mathbb{R}^n \mid u \cdot v = u_1 v_1 + \cdots + u_n v_n \in \mathbb{Z} \text{ for all } v \in \Lambda \}.$$

The theta series $\Theta_\Lambda(z)$ of a lattice Λ is given by

$$\Theta_\Lambda(z) = \sum_{u \in \Lambda} q^{u \cdot u},$$

where $q = e^{\pi iz}$. Jacobi's formula for the theta series of the dual lattice:

$$\Theta_{\Lambda^\perp}(z) = (\det \Lambda)(i/z)^{n/2}\Theta_\Lambda(-1/z).$$

(8)

The main purpose of this paper is to generalize equation (8) when a finite group G acts on Λ. From now on we assume that G is a finite permutation group on the coordinates of V. Then we can define a natural action of G on V as follows: If $v = (v_1, \ldots, v_n) \in V$ and $g \in G$, we let $vg = (x_1, \ldots, x_n)$ where for $i = 1, \ldots, n$, $x_i = v_{ig^{-1}}$. In this way V becomes an $\mathbb{R}G$-module. A G-lattice is a lattice which is also an $\mathbb{Z}G$-submodule of V. As in [1], the operator θ is defined by

$$\theta = \frac{1}{|G|} \sum_{g \in G} g.$$

Here we note that $V\theta = \{ v \in V \mid vg = v \text{ for all } g \in G \}$ and $\theta^T = \theta$ (see [1]).

Let C_1, \ldots, C_t be the orbits of the coordinates of V under the action of G. Let m_i be the orbit length of C_i. Define \overline{C}_i as the vector of V which has $1/\sqrt{m_i}$ as its entry for every point of C_i and 0 elsewhere. (This definition of the \overline{C}_i's is similar to that in the proof of Theorem 4.3 in [1]). Then each of $\overline{C}_1, \ldots, \overline{C}_t$ is in $V\theta$ and every element u of $V\theta$ is of the form

$$u = \sum_{i=1}^t x_i \overline{C}_i.$$

If $a = \sum_{i=1}^t a_i \overline{C}_i$ and $b = \sum_{i=1}^t b_i \overline{C}_i$ are any two vectors in $V\theta$, then inner product $a \circ b$ of a and b is defined by

$$a \circ b = a_1 b_1 + \cdots + a_t b_t.$$

(9)

Let D be a lattice in $V\theta$. D^\perp_G is the dual of D in $V\theta$ with respect to the inner product (9). The norm of $u \in D$ is $u \circ u$.

We describe the theta series $\Theta_D(z)$ of a sublattice D as follows:

$$\Theta_D(z) = \sum_{u \in D} q^{u \circ u},$$
where \(q = e^{\pi iz} \).

For notation and terminology, we will refer the following book and paper: [4] for lattice theory; [5] for lattices with group action.

4. G-Lattices

We have the following:

Theorem 2. If \(\Lambda \) is a G-lattice and \(\Lambda_0 = \{ r \in \Lambda \mid r\theta \in \Lambda \} \), then

\[
\Theta_{\Lambda_0^\perp}(z) = (\det \Lambda_0 \theta)(i/z)^{n/2} \Theta_{\Lambda_0 \theta}(-1/z).
\]

Note that \(\Lambda_0 \theta = \Lambda \cap \Lambda \theta = \{ v \in \Lambda \mid vg = v \text{ for all } g \in G \} \).

In order to prove Theorem 2 we need the following proposition.

Proposition 3. Let \(V \) be the vector space \(\mathbb{R}^n \). Assume that \(G \) is a finite permutation group on the coordinates of \(V \). If \(\Lambda \) is a G-lattice and \(\Lambda_0 = \{ r \in \Lambda \mid r\theta \in \Lambda \} \), then

\[
(\Lambda_0 \theta)^\perp = \text{Ker} \theta \oplus \Lambda_0^\perp \theta.
\]

Proof. Our proof is similar to the proof of Theorem 4.2 in [1]. We note that \(\Lambda_0 \) is a G-sublattice of G-lattice \(\Lambda \). If \(r \in \Lambda_0 \), \(\hat{r} \in \Lambda_0^\perp \) and \(y \in \text{Ker} \theta^T (= \theta) \), we have

\[
(y\theta^T, r\theta) = (\hat{r}, r \theta^2) = (\hat{r}, r \theta) \in Z,
\]

since \(r\theta \in \Lambda \cap \Lambda \theta \subseteq \Lambda_0 \) and

\[
(y, r\theta) = (y\theta^T, r) = 0 \in Z.
\]

This shows that

\[
\text{Ker} \theta + \Lambda_0^\perp \theta \subseteq (\Lambda_0 \theta)^\perp.
\]

If \(r \in \Lambda_0 \), \(y \in (\Lambda_0 \theta)^\perp \), we have

\[
(y\theta^T, r) = (y, r\theta) \in Z.
\]

So

\[
y\theta^T = y\theta \in \Lambda_0^\perp.
\]

Hence

\[
y = y - y\theta + (y\theta)\theta \in \text{Ker} \theta + \Lambda_0^\perp \theta.
\]
This implies that
\[(\Lambda_0\theta)^\perp \subseteq Ker\theta + \Lambda_0^\perp\theta.\] (11)

(10) and (11) complete the proof of Proposition 3.

We will prove Theorem 2. If \(x = \sum_i x_i \overline{C}_i \in \Lambda_0\theta\) and \(y = \sum_i y_i \overline{C}_i \in \Lambda_0^\perp\theta\), by Proposition 3 we have
\[x \circ y = (x, y) \in Z.\]
So
\[\Lambda_0^\perp\theta \subseteq (\Lambda_0\theta)^\perp.\] (12)

Now take \(x = \sum_i x_i \overline{C}_i \in (\Lambda_0\theta)^\perp\), \(y = \sum_i y_i \overline{C}_i \in \Lambda_0\theta\), and observe
\[(x, y) = x \circ y \in Z.\]
This shows that
\[x \in (\Lambda_0\theta)^\perp.\] (7)

Since \(x \in V\theta\), (13) and Proposition 3 imply that \(x \in \Lambda_0^\perp\theta\). Now we proved that
\[(\Lambda_0\theta)^\perp\subseteq \Lambda_0^\perp\theta.\] (14)

From (12) and (14) it follows that
\[(\Lambda_0\theta)^\perp\subseteq\subseteq \Lambda_0^\perp\theta.\]

Now we will finish the proof of Theorem 2. Jacobi’s formula for the theta series of the dual lattice \((\Lambda_0\theta)^\perp\) in \(V\theta\):
\[\Theta_{(\Lambda_0\theta)^\perp}(z) = (\det\Lambda_0\theta)(i/z)^{n/2}\Theta_{\Lambda_0\theta}(-1/z).\]

Hence \((\Lambda_0\theta)^\perp = \Lambda_0^\perp\theta\) establishes our theorem.

Remark. It is easy to prove that
\[\Lambda/\Lambda_0 \cong \Lambda\theta/\Lambda \cap \Lambda\theta,\]
\[\Lambda_0 = (\Lambda \cap Ker\theta) + (\Lambda \cap \Lambda\theta).\]
References

Department of Mathematics
Faculty of Science
Kagoshima University
Kagoshima 890
Japan