Burnside rings of quantum groups (GROUPS AND COMBINATORICS)

Author(s)

高嶋，研

Citation

数理解析研究所講究録 (1992), 794: 73-78

Issue Date

1992-06

URL

http://hdl.handle.net/2433/82738

Type

Departmental Bulletin Paper

Textversion

publisher

Kyoto University
Burnside rings of quantum groups

北大理(M2) 高橋 研
(Ken Takashima)

Burnside ringは、有限群やコンパクトリー群に対して定義され、有限群論、トポロジーにおいて重要な役割を果たしています。それを「量子群(Hopf algebra)に対しても定義してみることとはできないだろうかと考えてみた」というのがここでのお話です。結局、全く立たなかったのですけど、一つの問題提起をお考え下さい。

まずは定義を。

定義 kを体、Cをk-ベクトル空間とする。

Cはk-coalgebraである。

\[
\begin{align*}
\text{linear maps } & \quad \Delta: C \to C \otimes C , \quad \varepsilon: C \to k \\
& \text{次の図式が可換になるようなものが存在する:}
\end{align*}
\]

\[
\begin{align*}
C \otimes C & \xrightarrow{\Delta} C \otimes C \\
\otimes \Delta & \quad \Delta \otimes \text{id}_C \\
C & \xrightarrow{\Delta} C \otimes C \\
\end{align*}
\]

\[
\begin{align*}
\text{id}_C \otimes \Delta & \quad \Delta \otimes \text{id}_C \\
\text{id}_C \otimes \varepsilon & \quad \varepsilon \otimes \text{id}_C \\
\end{align*}
\]

\[
\begin{align*}
C \otimes C & \xrightarrow{\Delta} C \otimes C \\
\otimes \Delta & \quad \Delta \otimes \text{id}_C \\
C & \xrightarrow{\Delta} C \otimes C \\
\end{align*}
\]
定義 \mathbb{K}-ベクトル空間H は Hopf algebra である。$
abla$

(i) H は（単位元を持ち結合的な）\mathbb{K}-algebra
である。

(ii) H は\mathbb{K}-coalgebra であり、Δ, ε は algebra homomorphism である。

(iii) anti algebra hom $S: H \to H$

\[S(a_i b_i) = \varepsilon(x) \cdot 1 = \prod a_i S(b_i) \]

たとえば、$x \in H, \Delta(x) = \prod a_i \otimes b_i$

Hopf algebra の例としては、群環、代数群の座標環、代数の“量子群の座標環” と呼ばれる $A(G_q(n))$ 等（[11,12]）がある
が、$A(G_1)$ については特に（代数）群と平行した理論の展開
がなされているようなので、Hopf algebra にも Burnside ring
が定義できるかも知れないとの簡単な最初を手掛けてみたのだが、
私の手には余りなした。

定義はこちらで申しわけありませんが、

定義 G を有限群、S を有限 G-集合の同型類全体が S で
なれる集合とするとき、S は disjoint union と cartesian product
により半環になる。G の Burnside ring とは、この半環の
universal ring といえども、\(\Omega(G) \) である。

具体的に \(H \) 以下のように書くもの：

\[S \text{ を baseとする free abelian group の tensor algebra } \]
\[T(S) \text{ とする。このとき,} \]

\[\Omega(G) \cong T(S) \left/ \langle [x]+[y]-[x+y], [x][y]-[xy], [-[y]] \rangle \right. \]

\(\Omega(G) \) は abelian group として free で base は

\[\left\{ [g^k] \mid (k) \in C(G) \right\} \quad (\text{CG}) \text{ は Gの部分群の列の全体} \]

である。\(\tau \) 部分群 \(K \), 有限 \(G \)-集合 \(X \) に対し,

\[X^K := \left\{ x \in X \mid ax = x, \forall a \in K \right\} \]

\[\varphi_K(x) := |X^K| \]

と定義すると、\(\varphi \) は \(\Omega(G) \times \mathbb{Z} \) への ring hom で定める。

そして、\(\Omega(G) \) に対して、次のようなる完全列が存在する。

\[0 \to \Omega(G) \xrightarrow{\varphi} \prod_{(k) \in C(G)} \left(\mathbb{Z}/\left\langle \left(\prod_{a \in K} \varphi_K(a) \right) \right\rangle \right) \to 0 \]

\[\varphi = \prod_{(k)} \varphi_K \]

これは重要であり、Hopf algebra に対して Burnside ring に対応させたというのよりもこのような完全列（特に \(\Omega(G) \)
の \(\mathbb{Z} \) への埋め込み）が存在してきることだと考えられます。

さらに、Burnside ring は、コンパクトリー群に対しても定義されますが、この場合、有限 \(G \)-集合のかわりに、有限
G - CW複体とする、2つ約分有限G - CW複体X, Y に対し、

\[X \sim Y \text{ かつ } \chi(x^k) = \chi(y^k), \forall k \in \mathbb{G} \text{ かつ Euler 様数} \]

により同値関係を定義し、これによる同値類全体からなる集合を Burnside ring と定義され、base は

\[\{ [\phi(x)], (\phi(x) \text{ は Nuc}(\mathbb{G}) \text{ に対する群の}} \]

同値類全体をとります。すなわち、\(\chi_k(x) = \chi(x^k) \) と定めますと、\(\phi_k([\chi]) : \Sigma(\mathbb{G}) \to \mathbb{Z}_2 \) は環の埋め込みになります。（Burnside ring について詳しくは [3] を御覧下さい）。

このように、Hopf algebra（量子群）に対して Burnside ring を定義するのに、G - 集合に相等するものが、Euler 様数に相当するものが必要である。G - 集合に相当するものは、module coalgebra（作用の coalgebra hom）あるいは、comodule algebra（余作用の algebra hom）でいいのですか。Euler 様数に相当するものどうして定義するかが大きな問題として残ります。すなわち群 SU_q(2) などの場合、等質空間（transitive G-space）で、量子群の高空間（i.e. G_q）として表せないものがある ([4]) ので、Burnside ring が定義できればとして何か base とるかを問錯であります。
最後に、ちょっと特筆すべきですが、次のようなものが考えられますが、それと紹介して終わりにしたいと思います。

\(H: \text{Cocommutative finite dimensional Hopf algebra} \)

\(X \ni \{ \text{f.d. cocom left } H\text{-comodule algebras} \} \)

\(X, Y \in X \) に対し、

\(\text{Map}(X, Y) = \{ X \times Y \text{の } H\text{-comodule alg hom.} \} \)

\(I = \{ x \in X, x \text{i indec} \} \)

\([X] = \{ Y \in \text{Map}(I, X) \mid \text{Map}(I, Y) \}, \forall I \notin I \)

ということがわからました。

3. \(\Psi(I) = \text{Map}(I, X) \) としますと、

\[
\begin{align*}
\Psi(X \otimes Y) &= \Psi(X) \Psi(Y) \\
\Psi(X \oplus Y) &= \Psi(X) + \Psi(Y)
\end{align*}
\]

となります。

\(\Omega^n(H) = \langle [x] \mid x \in X \rangle \) に和と積を

\[
[x] + [y] = [x \otimes y] \\
[x][y] = [x \otimes y]
\]

で定めると、\(\Omega^n(H) \) は可換環になり、\(\Psi \) は \(\Omega^n(H) \) から \(\mathbb{Z} \)への ring hom になります。さらに、次のような完全列が

\[
\cdots \\
\Omega^n(H) \overset{\Psi}{\longrightarrow} \mathbb{Z} \\
\cdots
\]
存在します:

\[0 \rightarrow \Omega^1(H) \xrightarrow{\psi} \prod_{\mathcal{E}} \mathcal{E} \xrightarrow{\tau} \prod_{\mathcal{E}} \mathcal{E} / \mathcal{O}_{\mathcal{E}} \]

\[\psi = \prod\psi \]

文 献

[1] 阿部： ボップ代数，岩波書店

[4] 野海，三町： Quantum Homogeneous Spaces and Spherical Functions，第35回代数シンポジウム報告集