<table>
<thead>
<tr>
<th>Title</th>
<th>Some Problems in Formal Language Theory Known as Decidable are Proved EXPTIME Complete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kasai, Takumi; Iwata, Shigeki</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1992), 796: 8-21</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1992-07</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/82765</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
<tr>
<td>Institution</td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
Some Problems in Formal Language Theory Known as Decidable are Proved EXPTIME Complete

Takumi Kasai* and Shigeki Iwata†

Abstract
Some problems in formal language theory are considered and shown deterministic exponential time complete. They include the problems for a given context-free language L, a regular set R, a deterministic context-free language L_D, to determine whether $L \subset R$, and to determine whether $L_D \subset R$.

1 INTRODUCTION

A number of complete problems for deterministic exponential time have been presented. Since Chandra and Stockmeyer [1] established the notion of alternation in 1976, many authors have shown complete problems for deterministic exponential time by using of alternation. Most of these problems were related to combinatorial games. [2, 5, 6, 7, 8]

We consider in this paper several problems in the formal language theory and show that the problems are deterministic exponential time complete. They were already known as decidable. Let L be a context-free language, R a regular set, L_D a deterministic context-free language. The problems we consider include the ones to determine whether $L \subset R$, and whether $L_D \subset R$.

In order to prove that the concerned problems are deterministic exponential time-hard, we use the pebble game problem [5], which was already shown complete for deterministic exponential time, and we establish the polynomial-time reduction from the pebble game problem.

We write λ to denote the empty string, and $|x|$ to denote the length of a string x. Let Σ_k denote the set $\{[1], [2], \ldots, [k]\}$. See [4] for definitions of deterministic finite automata (dfa) $M = (Q, \Sigma, \delta, q_0, F)$ except that the transition function δ is given by a partial function from $Q \times \Sigma$ to Q. See also [4] for definitions of nondeterministic finite automata (nfa), regular set, context-free grammar (cfg), context-free language (cfl), deterministic context-free language (dcfl), deterministic pushdown automaton (dpda), Turing machine, polynomial time, and polynomial-time reducibility.

The Dyck language D_k of k balanced parenthesis is the one generated by the cfg $G = (\{S\}, \Sigma_k, P, S)$, where P is the set of productions of the forms

$$S \rightarrow SS \mid \lambda \mid [i, S]; \ (1 \leq i \leq k).$$

*Department of Computer Science, University of Electro-Communications, Chofu, Japan
†Information Science Laboratory, Tokai University, Hiratsuka, Japan
For a cfg G, let $L(G)$ denote the language generated by G, and for an automaton or a machine M, $L(M)$ denote the language accepted by M. Whenever we say “given a cfl L, …”, we assume that a cfg G, $L(G) = L$, is given, and in particular when we say “given a dcl L, …”, a dpda M, $L(M) = L$ is assumed. When we say “given a regular set R, …”, it always means that an nfa M, $L(M) = R$ is given.

EXPTIME is the class of sets accepted by 2^n^k time bounded deterministic Turing machines for some k. A language L is called EXPTIME complete if L is in EXPTIME, and L' is polynomial-time reducible to L for any L' in EXPTIME.

A pebble game [5] is a quadruple $G = (X, R, S, t)$ where:

1. X is a finite set of nodes,
2. $R \subseteq \{ (x_a, x_b, x_c) | x_a, x_b, x_c \in X, x_a \neq x_b, x_b \neq x_c, x_c \neq x_a \}$ is called a set of rules,
3. S is a subset of X, and
4. $t \in X$ is called the terminal node.

At the beginning of a pebble game, pebbles are placed on all nodes of S, and we call the placement the initial pebble-placement. A move of the game is as follows: if pebbles are placed on x_a, x_b, but not on x_c, and $(x_a, x_b, x_c) \in R$, then a player can move a pebble from x_a to x_c in his turn. The game is played by two players, and each player alternately applies one of the rules of G to move a pebble. The winner is the player who can first put a pebble on the terminal node, or who can make the other player unable to move.

The first player has a forced win (or winning strategy) from a pebble-placement in G if there is a winning game-tree for the first player, whose root is labeled with the pebble-placement. The winning game-tree of G for the first player (game-tree for short) is the tree, nodes of which are labeled with pebble-placements, or WIN, where WIN means that the second player is already unable to move, thus the first player wins the game. We sometimes confuse a node of the game-tree with its label. A level of a node in the tree is the length of the path from the root to the node. The level of the root is zero. A depth of the game-tree is the maximum level among the nodes of the tree. Any node v of the even level in the tree is labeled with a pebble-placement for the first player’s turn to move, and has exactly one child v, where v is obtained by an application of a rule of the game to v. Any non-leaf of the odd level is labeled with a pebble-placement for the second player’s turn, and has exactly m children, where m is the number of the rules of the game. For $1 \leq j \leq m$, the j-th child of v is labeled with a pebble-placement obtained by an application of the j-th rule r_j of the game to v if r_j is applicable; and with WIN if r_j is not applicable to v. Every leaf of the game-tree is labeled either with WIN or with a pebble-placement in which the first player wins.

The pebble game problem is, given a pebble game G, to determine whether there is a winning strategy for the first player from the initial pebble-placement in G.

Theorem 1.1 [5] The pebble game problem is EXPTIME complete.

Example 1.1 Consider the following pebble game $G = (X, R, S, t_5)$, where $X = \{x_1, x_2, x_3, x_4, x_5\}$, $S = \{x_1, x_2, x_3\}$, $R = \{r_1, r_2, r_3, r_4\}$, and $r_1 = (x_1, x_2, x_4), r_2 = (x_2, x_1, x_4), r_3 = (x_3, x_4, x_2), r_4 = (x_2, x_4, x_5)$.
begin
1) Let $G, L = L(G)$ be a cfg, and let $M, R = L(M)$ be an nfa.
2) Construct a dfa M' such that $L(M') = \Sigma^* - L(M)$.
3) Construct the cfg G' as in Lemma 2.1 such that $L(G') = L(G) \cap L(M')$.
4) Use polynomial time algorithm to determine whether $L(G') = \phi$.
5) If $L(G') = \phi$ then $L \subset R$ else $L \not\subset R$.
end

Fig. 2.1 Algorithm to determine whether $L \subset R$

If the first player applies r_1 to move a pebble from x_1 to x_4, the second player then applies r_4 to move a pebble from x_2 to x_5 and the second player wins the game. Suppose that the first player first applies r_2 to move a pebble from x_2 to x_4. Then the only rule for the second player to apply is r_3 to move a pebble from x_3 to x_2. Then the first player applies r_4 to move a pebble from x_2 to x_5 and wins the game. Thus the first player has a forced win in G.

2 COMPLETE PROBLEM

Lemma 2.1 For a cfg G and an nfa M, we can construct a cfg G' such that $L(G') = L(G) \cap L(M)$ within polynomial time.

Proof. Let $G = (V, \Sigma, P, S)$ and $M = (Q, \Sigma', \delta, \{q_0\}, F)$. Without loss of generality, we assume that $\Sigma = \Sigma'$, and that G is in Chomsky normal form. Let $G' = (V', \Sigma', P', S')$, $V' = \{[q, X, p] \mid q, p \in Q, X \in V \} \cup \{S\}$. P' contains

$$
\begin{cases}
[q, X, p] \rightarrow a & \text{if } X \rightarrow a \in P \text{ and } p \in \delta(q, a), \\
[q, X, p] \rightarrow [q, A, q'][q', B, p] & \text{if } X \rightarrow AB \in P \text{ for } q, q', p \in Q,
\end{cases}
$$

and $S' \rightarrow [q_0, S, q_f]$ for $q_f \in F$.

By induction, we can prove that for $q, p \in Q, X \in V, w \in \Sigma^*$

$$
[q, X, p] \xrightarrow{\gamma} w \text{ if and only if } X \xrightarrow{\gamma} w \text{ and } p \in \delta(q, w).
$$

Thus

$$
S' \xrightarrow{\gamma} [q_0, S, q_f] \xrightarrow{\gamma} w \text{ if and only if } S \xrightarrow{\gamma} w \text{ and } q_f \in \delta(q_0, w).
$$

The number of productions in G' is polynomial to the length of G and M. Thus the construction of G' can be performed within polynomial time. □

Next we present an algorithm in Fig.2.1 to determine whether $L \subset R$ for a given cfl L and a regular set R.

Lemma 2.2 Given a cfl L and a regular set R, the algorithm shown in Fig.2.1 determines whether $L \subset R$ within exponential time.

Proof. In line (2), apply an usual algorithm, for example p.22 of [4], to obtain a dfa M_1 such that $L(M) = L(M_1)$, and exchange the accepting states and the non-accepting states of M_1 to obtain M'', which accepts the complement of R. Note that the time
for the construction of M' needs exponential time, since the number of states of M_1 is exponential compared with that of M.

In line (4), apply the CYK algorithm [9] for example.
In total, our algorithm runs in exponential time to determine whether $L \subset R$.

Consider the following problem P_1:

Given: a cfl L, and a regular set R.
To determine whether: $L \subset R$.

Theorem 2.1 P_1 is EXPTIME complete.

Proof. Since EXPTIME is closed under complementation, it is sufficient to show that the problem P_1':

Given: a cfl L, and a regular set R.
To determine whether: $L \not\subset R$.

is EXPTIME complete. By Lemma 2.2, P_1' is solvable within exponential time.

To show that P_1' is EXPTIME hard, we establish that the pebble game problem is polynomial-time reducible to P_1'. Let $G = (X, \tilde{R}, S, z_n)$ be a pebble game. We construct a cfg G and an nfa M within polynomial time such that there is a forced win for the first player in G if and only if $L(G) \not\subset L(M)$.

Prior to the construction of M, we construct dfa's M_1, M_2, \cdots, M_n, where n is the number of the nodes of G, such that there is a winning strategy for the first player in G if and only if $L(G) \cap \bigcap_{i=1}^{n} L(M_i) \neq \emptyset$. Then we construct an nfa M, which accepts the complement of $\bigcap_{i=1}^{n} L(M_i)$. Thus $L(G) \cap \bigcap_{i=1}^{n} L(M_i) \neq \emptyset$ is equivalent to $L(G) \not\subset L(M)$.

We will explain briefly how the simulation of G works in G and M_i's. The derivation of G guesses a game-tree of G, that is, what rules of G the first player applies in order to win the game. For the first player's turn to move in the game-tree, a derivation of G guesses a rule which the first player applies to the pebble-placement, while for the second player's turn, derivations in G guess for each rule whether the rule is applicable to the corresponding pebble-placement. The purpose of M_i's is to examine whether the above guesses by G are correct, and whether the derivation is the one for the first player to win the game.

Assume that $X = \{x_1, x_2, \cdots, x_n\}$, and that $\tilde{R} = \{r_1, r_2, \cdots, r_m\}$. We write $
abla_{4m} = \{r_j, \overline{r_j}, a_j, \overline{a_j}, b_j, \overline{b_j}, c_j, \overline{c_j} | 1 \leq j \leq m\}$, where a symbol without bar and the symbol with bar are intended to form a pair of balanced parenthesis in ∇_{4m}. Let $G = (\{U, W, V_1, V_2, \cdots, V_m\}, \nabla_{4m}, P, U)$, where P contains

(1) $W \to V_1 V_2 \cdots V_m$,

and for each rule $r_j = (x_{j1}, x_{j2}, x_{j3}), 1 \leq j \leq m$ of \tilde{R},

(2) $\begin{cases} U \to r_j W \overline{r_j} \quad (j3 \neq n) \\ U \to r_j \overline{r_j} \quad (j3 = n) \end{cases}$,

(3) $V_j \to a_j \overline{a_j} | b_j \overline{b_j} | c_j \overline{c_j}$, and

(4) $V_j \to r_j U \overline{r_j} \quad (j3 \neq n)$.
The nonterminal \(U \) is associated with a pebble-placement for the first player's turn to move, while \(W \) is for the second player. \(V_j \), \(1 \leq j \leq m \), means in the simulation to guess an application of a rule \(r_j \in \mathcal{G} \) to the pebble-placement associated with \(W \). The production rules in (2) are for the simulation of the first player in \(\mathcal{G} \) to select \(r_j \) to move a pebble from \(x_j1 \) to \(x_j3 \). The production \(U \rightarrow r_j W \overline{r_j} \) is the one to denote that the first player applies \(r_j \) and the next turn is the second player, while \(U \rightarrow r_j \overline{r_j} \) denotes for the first player to apply \(r_j \) and wins to put a pebble on \(x_n \). The productions (1),(3),(4) are for the second player's move. (1) is to try every rule \(r_1, r_2, \ldots, r_m \) as the second player's move. (3) is to indicate that \(r_j \) is not a proper rule to make: if a pebble is not on \(x_j1 \) (is not on \(x_j2 \), is on \(x_j3 \)), then \(V_j \rightarrow a_j \overline{a_j} \) \((V_j \rightarrow b_j \overline{b_j}, V_j \rightarrow c_j \overline{c_j})\), respectively) can be applied. (4) is to select \(r_j \) to move. \(V_j \rightarrow r_j \overline{r_j} \) is to apply \(r_j \) and the next turn is the first player.

For \(1 \leq i \leq n, M_i \) keeps track of the existence of a pebble on \(x_i \) in \(\mathcal{G} \). If the state of \(M_i \) is in \(x_i \) \((\overline{x_i})\) then it means that there is \((\text{there is}, \text{respectively})\) a pebble on \(x_i \) in \(\mathcal{G} \). Let \(M_i = (\{x_i, \overline{x_i}\}, \Sigma_{4m}, \delta, q_i, \{q_i\}) \), and \(q_i = x_i \) for \(x_i \in S \), and \(q_i = \overline{x_i} \) for \(x_i \not\in S \). For each \(i \) \((1 \leq i \leq n) \) and \(j \) \((1 \leq j \leq m) \), let \(\delta_i(p_i, x_j) \), \(p_i \in \{x_i, \overline{x_i}\}, x_j \in \{r_j, \overline{r_j}, a_j, \overline{a_j}, b_j, \overline{b_j}, c_j, \overline{c_j}\} \), be the following transition. Assume that \(r_j = (x_j1, x_j2, x_j3) \) is a rule in \(\mathcal{G} \).

If \(i = j1 \) then \(\delta_i(p_i, x_j) \) is the transitions shown in Fig.2.2. If \(i = j2 \) then it is shown in Fig.2.3, and if \(i = j3 \) then it is in Fig.2.4. If \(i \not\in \{j1, j2, j3\} \) then \(\delta_i(p_i, x_j) = p_i \) for each \(p_i \in \{x_i, \overline{x_i}\} \), and \(x_j \in \{r_j, \overline{r_j}, a_j, \overline{a_j}, b_j, \overline{b_j}, c_j, \overline{c_j}\} \). Note that \(\delta_1(x_j1, a_j), \delta_2(x_j2, b_j), \) and \(\delta_3(x_j3, c_j) \) are undefined. (See Fig's 2.2, 2.3, and 2.4.)

The object of the construction of \(M_1, M_2, \ldots, M_n \) is to define a "product dfa" \(N \) of \(M_1, M_2, \ldots, M_n \), which is defined below. We consider \(N \) as a tool for the proof of the theorem, and we do not actually construct \(N \) in the simulation.
Fig. 2.4 transition $\delta_{j3}(p_{j3}, \sigma_{j})$

Now we define $N = (Q, \Sigma_{4m}, \delta, S, \{S\})$, where

\[Q = \{x_1, \overline{x}_1\} \times \{x_2, \overline{x}_2\} \times \cdots \times \{x_n, \overline{x}_n\},\]
\[S = (q_1, q_2, \ldots, q_n),\]
\[\delta((p_1, p_2, \ldots, p_n), \sigma) = (\delta_1(p_1, \sigma), \delta_2(p_2, \sigma), \ldots, \delta_n(p_n, \sigma)), p_i \in \{x_i, \overline{x}_i\},\]

and $\delta((p_1, p_2, \ldots, p_n), \sigma)$ is undefined if $\delta_i(p_i, \sigma)$ is undefined for some i.

We use a state (p_1, p_2, \ldots, p_n) of N and a pebble-placement P of the game-tree in the same meaning: for each $i (1 \leq i \leq n)$, $p_i = x_i$ if and only if there is a pebble on x_i in P, and $p_i = \overline{x}_i$ if and only if there is not a pebble on x_i in P.

Then by the definition of N, we have the following lemmas 2.3 and 2.4:

Lemma 2.3 Let P be a pebble-placement and let r_j be a rule of G. If r_j is applicable to P and if P' is the resultant pebble-placement then

\[\delta(P, r_j) = P' \text{ and } \delta(P', \overline{r_j}) = P.\]

If r_j is not applicable to P, then $\delta(P, r_j)$ is undefined.

Proof. Let $P = (p_1, p_2, \ldots, p_n)$ and let $r_j = (x_{j1}, x_{j2}, x_{j3})$. Suppose that r_j is not applicable to P. Then either $p_{j1} = x_{j1}$ (there is not a pebble on x_{j1}), $p_{j2} = \overline{x}_{j2}$ (a pebble is not on x_{j2}), or $p_{j3} = x_{j3}$ (a pebble is on x_{j3}) holds. If $p_{j1} = x_{j1}$ then $\delta_{j1}(p_{j1}, r_j)$ is undefined (see Fig.2.2), if $p_{j2} = \overline{x}_{j2}$ then $\delta_{j2}(p_{j2}, r_j)$ is undefined (see Fig.2.3), and if $p_{j3} = x_{j3}$ then $\delta_{j3}(p_{j3}, r_j)$ is undefined (see Fig.2.4). Thus $\delta(P, r_j)$ is undefined.

Suppose that r_j is applicable to P. Then $p_{j1} = x_{j1}$, $p_{j2} = x_{j2}$, and $p_{j3} = \overline{x}_{j3}$. Thus

\[\delta(P, r_j) = (p_1', p_2', \ldots, p_n'),\]
\[p_{j1}' = \overline{x}_{j1}, p_{j2}' = \overline{x}_{j2}, p_{j3}' = x_{j3}, \text{ and } p_i' = p_i, i \notin \{j1, j2, j3\}.\]

Further we have $\delta((p_1', p_2', \ldots, p_n'), \overline{r_j}) = P. \square$

Lemma 2.4 For any pebble-placement P and any symbol $\sigma \in \{a_j, \overline{a}_j, b_j, \overline{b}_j, c_j, \overline{c}_j | 1 \leq j \leq m\}$,

\[\delta(P, \sigma) = P \text{ or it is undefined.}\]

Further, r_j is not applicable to P if and only if there is $w_j \in \{a_j, \overline{a}_j, b_j, \overline{b}_j, c_j, \overline{c}_j\}$ such that $\delta(P, w_j) = P$.

\[\delta_{j3}(p_{j3}, \sigma_{j})\]
Proof. For any $p_i \in \{x_i, \overline{x_i}\}, 1 \leq i \leq n$, and $\sigma \in \{a_j, b_j, c_j\}, 1 \leq j \leq m$, we have $\delta_i(p_i, \sigma) = p_i$. (See Fig's. 2.2, 2.3, and 2.4.) For any $\sigma \in \{a_j, b_j, c_j\}$, either $\delta_i(p_i, \sigma) = p_i$ or $\delta_i(p_i, \sigma)$ is undefined.

The necessary and sufficient condition that $\delta_i(p_i, a_j)$ is undefined is that $i = j1$ and $p_i = x_{j1}$, that is, there is a pebble on x_{j1} in P. Likewise, the necessary and sufficient condition for $\delta_i(p_i, b_j)$ to be undefined is that $i = j2$ and $p_i = x_{j2}$, that is, a pebble is on x_{j2} in P, and the necessary and sufficient condition for $\delta_i(p_i, c_j)$ to be undefined is that $i = j3$ and $p_i = x_{j3}$, that is, a pebble is not on x_{j3} in P. Thus, r_j is applicable to P if and only if none of $\delta(P, a_j), \delta(P, b_j), \delta(P, c_j)$ are defined. \hfill \Box

Note that $L(G)$ is a subset of D_{4m}. Further we can obtain the following lemma:

Lemma 2.5 For any $\alpha \in D_{4m}$ and a pebble-placement P,

$$\delta(P, \alpha) = P \text{ or it is undefined.}$$

Proof. We can show the lemma by induction on $|\alpha|$. \hfill \Box

Lemma 2.6 The first player has a winning strategy from a pebble-placement P if and only if there is $w \in \Sigma_{4m}^*$ such that

$$U \Rightarrow w \text{ and } \delta(P, w) = P.$$

Example 2.1 Before we prove the lemma, consider the pebble game G of Example 1.1. The cfg G guesses the following derivation:

$$U \Rightarrow r_2Wr_2 \Rightarrow r_2V_1V_2V_3V_4r_2 \Rightarrow r_2b_1a_2\overline{a_2}r_3U\overline{r_3}a_4\overline{a_4}r_2 \Rightarrow r_2b_1a_2\overline{a_2}r_3U\overline{r_3}a_4\overline{a_4}r_2.$$

Let $P_0 = (x_1, x_2, x_3, \overline{x_4}, \overline{x_5})$. P_0 is the initial pebble-placement of G. Then

$$\delta(P_0, r_2) = (x_1, \overline{x_2}, x_3, x_4, \overline{x_5}) = P_1.$$

P_1 is the resultant pebble-placement after an application of r_2 to P_0.

Since there is not a pebble on the second component x_2 of r_1, r_1 is not applicable to P_1, and $\delta(P_1, b_1\overline{b_1}) = P_1$. Similarly, r_2 and r_4 are not applicable to P_1, since there is not a pebble on the first component x_2 of r_2 and r_4. Thus $\delta(P_1, a_2\overline{a_2}) = P_1$, and $\delta(P_1, a_4\overline{a_4}) = P_1$. Further

$$\delta(P_1, r_3) = (x_1, x_2, \overline{x_3}, x_4, \overline{x_5}) = P_2,$$

and

$$\delta(P_2, r_4) = (x_1, \overline{x_2}, \overline{x_3}, x_4, x_5) = P_3.$$

P_2 is the pebble-placement after the second player applies r_3 to P_1, and P_3 is the pebble-placement after the first player applies r_4 to P_2. The symbols r_4, $\overline{r_3}$, $\overline{r_2}$ are for backtracking procedures. Thus we have

$$\delta(P_3, r_4) = P_2, \delta(P_2, \overline{r_3}) = P_1, \text{ and } \delta(P_1, \overline{r_2}) = P_0.$$

Therefore, there is $w \in \Sigma_{4m}^*$ such that $U \Rightarrow w$, and $\delta(P_0, w) = P_0$.

Proof. (Only if): There is a game-tree, the root of which is P. We will prove the “only if” part by induction on the depth of the game-tree. Assume that the depth of the tree is one. That is, the first player applies $r_j = (x_{j1}, x_{j2}, x_{j3})$ to put a pebble on x_n, and $j3 = n$. Then $U \Rightarrow r_j \overline{r_j}$, and if P' is the resultant pebble-placement after the application of r_j to P, then

$$\delta(P, r_j \overline{r_j}) = \delta(P', \overline{r_j}) = P$$

by Lemma 2.3. Thus the “only if” part holds for the basis of the induction.

Assume that the depth of the tree is greater than one, that $r_j = (x_{j1}, x_{j2}, x_{j3})$ is the first player's rule to apply to P and that P' is the resultant pebble-placement. Prior to show the inductive step, we will show that

for each $j (1 \leq j \leq m)$, there is $w_j \in D_{4m}$ such that

$$(*) \quad V_j \Rightarrow w_j, \delta(P', w_j) = P'.$$

If r_j is not applicable to P' then there is $w_j \in \{a_j \overline{a_j}, b_j \overline{b_j}, c_j \overline{c_j}\}$ which satisfies $(*)$ by Lemma 2.4.

Suppose that r_j is applicable to P', and that P'_j is the pebble-placement after the application of r_j to P'. Since the first player has a winning strategy from P'_j, there is $v_j \in \Sigma_{4m}$ such that

$$U \Rightarrow v_j, \delta(P'_j, v_j) = P'_j$$

by the inductive hypothesis. If we put $w_j = r_j v_j \overline{r_j}$ then

$$V_j \Rightarrow r_j U \overline{r_j} \Rightarrow r_j v_j \overline{r_j} = w_j,$$

$$\delta(P', w_j) = \delta(P'_j, v_j) = \delta(P'_j, \overline{r_j}) = P'.$$

Thus $(*)$ holds in the inductive step. We have shown $(*)$.

Therefore we have

$$U \Rightarrow r_j W \overline{r_j} \Rightarrow r_j V_1 \cdots V_m \overline{r_j} \Rightarrow r_j w_1 \cdots w_m \overline{r_j},$$

and

$$\delta(P, r_j \cdots w_m \overline{r_j}) = \delta(P', w_1 \cdots w_m \overline{r_j}) = \delta(P', \overline{r_j}) = P.$$

(If): We use induction on the number of steps of the derivation $U \Rightarrow w$. Assume that the number of the steps is one, that is, $U \Rightarrow r_j \overline{r_j} = w$. Obviously the first player has a winning strategy from P.

Assume that

$$U \Rightarrow r_j W \overline{r_j} \Rightarrow r_j V_1 \cdots V_m \overline{r_j} \Rightarrow r_j w_1 \cdots w_m \overline{r_j} = w,$$

$$V_j \Rightarrow w_j, (1 \leq j \leq m).$$

Since $\delta(P, w) = P$, $\delta(P, r_j)$ is defined. If $\delta(P, r_j) = P'$, then P' is the pebble-placement after the application of r_j to P, and $\delta(P', \overline{r_j}) = P$. By Lemma 2.5 and by $\delta(P', w_1 \cdots w_m) = P'$, we have

$$\delta(P', w_j) = P'.$$
for every \(j \) (\(1 \leq j \leq m \)). If \(w_j \in \{a_j\overline{a_j}, b_j\overline{b_j}, c_j\overline{c_j}\} \), then \(r_j \) is not applicable to \(P' \) by Lemma 2.4. If \(w_j \notin \{a_j\overline{a_j}, b_j\overline{b_j}, c_j\overline{c_j}\} \), then \(r_j \) is applicable to \(P' \) and \(w_j \) is of the form \(r_jv_j\overline{r_j}, v_j \in D_{4m} \). Thus

\[
V_j \Rightarrow r_jU\overline{r_j} \Rightarrow r_jv_j\overline{r_j} = w_j, \text{ and } U \Rightarrow v_j.
\]

If \(\delta(P', r_j) = P'_j \) then \(P'_j \) is the pebble-placement after the application of \(r_j \) to \(P' \), and \(\delta(P'_j, v_j) = P'_j \). By the inductive hypothesis, \(U \Rightarrow v_j \) and \(\delta(P'_j, v_j) = P'_j \) imply that the first player has a winning strategy from \(P'_j \). Thus the first player can win the game no matter what rule \(r_j \) the second player may apply to \(P' \).

Therefore the lemma is proved.

By Lemma 2.6, the necessary and sufficient condition for the first player to have a winning strategy from the initial pebble-placement in \(G \) is that there is \(w \in \Sigma_{4m}^* \) such that \(w \in L(G) \cap L(N) \), and the condition is also that \(L(G) \cap \bigcap_{i=1}^{n} L(M_i) \neq \phi \).

To complete the proof of the theorem, we have to construct \(M \). It is clear that we can easily construct the dfa \(M'_i \) from \(M_i \) which accepts \(\Sigma_{4m}^* - L(M_i) \), the complement of \(L(M_i) \). Now we consider an nfa \(M \) such that \(M \) accepts the complement of \(\bigcap_{i=1}^{n} L(M_i) \). Since

\[
\Sigma_{4m}^* - \bigcap_{i=1}^{n} L(M_i) = \bigcup_{i=1}^{n} (\Sigma_{4m}^* - L(M_i)) = \bigcup_{i=1}^{n} L(M'_i) = L(M),
\]

we can construct an nfa \(M \) as the collection of \(M'_1, M'_2, \ldots, M'_n \) together with the initial state \(q_0 \) of \(M \) by simply adding \(\lambda \)-moves from \(q_0 \) to each initial state of \(M'_1, M'_2, \ldots, M'_n \). The set of the accepting states of \(M \) is the union of the ones of \(M'_1, M'_2, \ldots, M'_n \).

Therefore, there is a winning strategy for the first player from the initial pebble-placement in \(G \) if and only if \(L(G) \not\subset L(M) \). The constructions of \(G \) and \(M \) can be performed within polynomial time. We note that \(M \) can be constructed within polynomial time since \(M \) is nondeterministic. Thus both \(P'_1 \) and \(P_2 \) are complete for \(\text{EXPTIME} \). \(\square \)

3 Problems on dcfl's

We consider in this section some problems concerning dcfl's.

Theorem 3.1 The problem \(P_2 \):

Given: a regular set \(R \subset \Sigma_2^* \).
To determine whether: \(D_2 \subset R \).

is \(\text{EXPTIME} \) complete.

Proof. To prove the theorem, it suffices to show that the following \(P'_2 \):

Given: a regular set \(R \subset \Sigma_2^* \).
To determine whether: \(D_2 \not\subset R \).
is EXPTIME complete. By Lemma 2.2, P_2' is solvable within exponential time. We show that the pebble game problem is polynomial time reducible to P_2'. The proof proceeds similarly as in the one of Theorem 2.1.

Let $G = (X, R, S, x_n)$ be a pebble game, $X = \{x_1, x_2, \cdots, x_n\}$, $|R| = m$. Let G be the cfg, let M_1, M_2, \cdots, M_n be the dfa’s, and let M be the nfa constructed in the proof of Theorem 2.1. We have shown in the preceding proof that the necessary and sufficient condition for the first player having a forced win from the initial pebble-placement in G is $L(G) \not\subset L(M)$, hence $L(G) \cap \cap_{j=1}^{n} L(M_j) \neq \phi$. We will construct a dfa M_0 such that $L(G) = D_{4m} \cap L(M_0)$.

Lemma 3.1 There exist a dfa M_0 such that $L(G) = D_{4m} \cap L(M_0)$.

Proof. Assume that R_1 is the set of rules of G to put a pebble not on x_n, i.e., $R_1 = \{r_j | r_j = (x_{j1}, x_{j2}, x_{j3}), j3 \neq n\}$, and that R_2 is the set of rules to put a pebble on x_n, $R_2 = \{r_j | r_j = (x_{j1}, x_{j2}, x_{j3}), j3 = n\}$. Without loss of generality, we may assume that $R_1 = \{r_1, \cdots, r_1\}$ and $R_2 = \{r_{\ell+1}, \cdots, r_m\}$. We construct M_0, which is shown in Fig.3.1, where the transition $r_1 + \cdots + r_\ell$ from U to V_1 stands for ℓ transitions by r_1, \cdots, r_ℓ from U to V_1 (See Fig.3.2(a)). Transitions by $\overline{r_1} + \cdots + \overline{r_\ell}$ in Fig.3.1 are similar abbreviations. For $1 \leq j \leq m$, let $\mu_j = a_j \overline{a_j} + b_j \overline{b_j} + c_j \overline{c_j}$. The transition by μ_j from V_j to V_{j+1} implies that either $a_j \overline{a_j}, b_j \overline{b_j}$, or $c_j \overline{c_j}$ causes the transition from V_j to V_{j+1}. (See Fig.3.2(b)).

Let δ be the transition function of M_0. Recall that D_{4m} is generated by $G' = (\{S\}, \Sigma_{4m}, P, S)$, where P contains $S \rightarrow SS | \lambda | [i, S]$, for $1 \leq i \leq 4m$. It is clear that $L(G) \subset D_{4m}$ since any derivation in G can be “mapped into” a derivation in G' by replacing U, W, V_1, \cdots, V_m by S.

Thus in order to prove the lemma it suffices to show that for $\alpha \in D_{4m}$

$$U \xrightarrow{G} \alpha \text{ if and only if } \delta(U, \alpha) = U',$$
Fig. 3.2 abbreviations in Fig.3.1

for each $j (1 \leq j \leq m)$, $V_j \xrightarrow{r_j} \alpha$ if and only if $\delta(V_j, \alpha) = V_{j+1},$

$W \xrightarrow{\overline{r_j}} \alpha$ if and only if $\delta(V_1, \alpha) = V_{m+1}$.

(Only if): Let us use induction on $|\alpha|$. If $|\alpha| \leq 2$, the cases are trivial. Consider $\alpha, |\alpha| = k > 2$, assuming that the “only if” part holds for each $\beta \in D_{4m}, |\beta| < k$. Suppose $U \xrightarrow{\overline{r_j}} \alpha$. Then the first step of the derivation should be $U \xrightarrow{r_j} W \overline{r_j} G$ for some $j (1 \leq j \leq m)$, and $W \xrightarrow{\overline{r_j}} \beta \in D_{4m}, \alpha = r_j \beta \overline{r_j}, |\beta| < k$. By the inductive hypothesis, we have $\delta(V_1, \beta) = V_{m+1}$. Thus $\delta(U, \alpha) = \delta(U, r_j \beta \overline{r_j}) = \delta(V_1, \beta \overline{r_j}) = \delta(V_{m+1}, \overline{r_j}) = U'$.

The cases that $V_j \xrightarrow{r_j} \alpha$ and $W \xrightarrow{\overline{r_j}} \alpha$ can be similarly proved.

(If): By simple induction on $|\beta|, \beta \in D_{4m} - \{\lambda\}$, we can show that

(i) $\delta(U, \beta) = U'$ or it is undefined, and

(ii) for each $j (1 \leq j \leq m)$, $\delta(V_j, \beta) \in \{V_{j+1}, \cdots, V_{m+1}\}$ or it is undefined.

Again we will use induction on $|\alpha|$ to show the “if” part. If $|\alpha| \leq 2$ the proof is obvious. Consider α, $|\alpha| = k > 2$, and assume that the “if” part holds for each $\beta, |\beta| < k$.

Suppose $\delta(U, \alpha) = U'$. If $\alpha = \alpha_1 \alpha_2$ and if $\alpha_1, \alpha_2 \in D_{4m} - \{\lambda\}$, then $\delta(U, \alpha_1) = U'$ by (i). The transition from U' is made only by one of $\overline{r_1}, \cdots, \overline{r_7}$ and $\delta(U', \alpha_2)$ is undefined. Thus M_0 does not accept $\alpha_1 \alpha_2$. So $\alpha = r_j \beta \overline{r_j}$ for some $j (1 \leq j \leq \ell)$ and $\beta \in (D_{4m} - \{\lambda\})$. Since $\delta(U, r_j) = V_1$ and $\delta(V_1, \beta \overline{r_j}) = U'$, we obtain $\delta(V_1, \beta) = V_{m+1}$. By the inductive hypothesis we have $W \xrightarrow{\overline{r_j}} \beta$. Thus

$U \xrightarrow{\overline{r_j}} r_j W \overline{r_j} \xrightarrow{\overline{r_j}} r_j \beta \overline{r_j} = \alpha.$

The cases $\delta(V_1, \alpha) = V_{i+1}$ and $\delta(V_1, \alpha) = V_{m+1}$ can be similarly proved.\square

We define a homomorphism $h : \Sigma_{4m}^* \rightarrow \Sigma_2^*$ as follows:

$h([i]) = [i \overline{1}^{i}]$ \hspace{1cm} ($1 \leq i \leq 4m$)
Assume that $\Delta = \{h(l_i), h(r_i) \mid 1 \leq i \leq 4m\}$. Then the following lemma holds.

Lemma 3.2 $h(D_{4m}) = D_2 \cap \Delta^*$.

Proof. By the definition of h and D_{4m}, $h(D_{4m})$ is the language, which can be generated by the cfg $(\{S\}, \Sigma_2, P, S)$, where P contains $S \rightarrow SS \mid \lambda \mid [1 \mid \Sigma_2, \Sigma_2 \mid 2]_1$ for $1 \leq i \leq 4m$. Thus the lemma follows.

We will complete the proof of Theorem 3.1. By the definition of h, for languages $L, L' \subseteq \Sigma_4^*$, we have that $L = \phi$ if and only if $h(L) = \phi$, and that $h(L \cap L') = h(L) \cap h(L')$. Thus

$$L(G) \not\subset L(M) \quad \text{if and only if} \quad D_{4m} \cap \bigcap_{i=0}^{n} L(M_i) = \phi$$

if and only if

$$h(D_{4m}) \cap \bigcap_{i=0}^{n} h(L(M_i)) = \phi.$$

It is easy to construct a dfa $\overline{M_i}$ such that $h(L(M_i)) = L(\overline{M_i})$ for $0 \leq i \leq n$. Let $\overline{M_n+1}$ be the dfa, which accepts Δ^*. Then,

$$L(G) \not\subset L(M) \quad \text{if and only if} \quad D_2 \cap \Delta^* \cap \bigcap_{i=0}^{n} L(\overline{M_i}) = \phi$$

if and only if

$$D_2 \cap \bigcap_{i=0}^{n+1} L(\overline{M_i}) = \phi.$$

We can construct an nfa \overline{M} which accepts the complement of $\bigcap_{i=0}^{n+1} L(\overline{M_i})$ as in the proof of Theorem 2.1, since $\overline{M_0}, \overline{M_1}, \cdots, \overline{M_n+1}$ are deterministic. Thus,

$$L(G) \not\subset L(M) \quad \text{if and only if} \quad D_2 \not\subset L(\overline{M}).$$

The construction of \overline{M} can be performed within polynomial time. Therefore the proof of the theorem is completed.

Corollary 3.1 For a given regular set R and for each $k \geq 2$, the problem to determine whether $D_k \subset R$ is EXPTIME complete.

Proof. The problem can be solved within EXPTIME. Let R be a regular set. We prove that

$$D_2 \subset R \quad \text{if and only if} \quad D_k \subset R \cup (\Sigma_k^* - \Sigma_2^*).$$

Assume that $D_2 \subset R$, and that $w \in D_k$. If $w \in \Sigma_2^*$ then $w \in D_2$. If $w \not\in \Sigma_2^*$ then $w \in \Sigma_k^* - \Sigma_2^*$. Thus $w \in R \cup (\Sigma_k^* - \Sigma_2^*)$ and we obtain that $D_k \subset R \cup (\Sigma_k^* - \Sigma_2^*)$.

Assume that $D_k \subset R \cup (\Sigma_k^* - \Sigma_2^*)$, and $w \in D_2$. Since $w \in R \cup (\Sigma_k^* - \Sigma_2^*)$ and $w \not\in \Sigma_k^* - \Sigma_2^*$, we obtain that $w \in R$. Thus $D_2 \subset R$.

As we can construct the nfa accepting $R \cup (\Sigma_k^* - \Sigma_2^*)$ within polynomial time, the corollary is proved.

Open problem 1 The complexity of the problem to determine whether $D_1 \subset R$ for a given regular set R is remained open.

Since we can construct a dpda M to accept D_2, we obtain the following corollary.
Corollary 3.2 The problem P_3:

$Given$: a $dcfl$ L, and a regular set R.

To $determine$ $whether$: $L \subseteq R$.

is $EXPTIME$ complete.

Corollary 3.3 The problem P_4:

$Given$: a $dcfl$ $L \subseteq \Sigma^*$, and a regular set $R \subseteq \Sigma^*$.

To $determine$ $whether$: $L \cup R = \Sigma^*$.

is $EXPTIME$ complete.

Proof. Let M be a dpda which accepts L. Since M is deterministic, we can construct a dpda M' such that M' accepts $\Sigma^* - L$. (See [4], p.238, for example.) Then we can construct a cfg G, which satisfies $L(G) = L(M')$.

Since $L \cup R = \Sigma^*$ is equivalent to $L(G) \subseteq R$, and G can be constructed within polynomial time, P_4 is $EXPTIME$ complete by Corollary 3.2.

Remark The problem to determine whether $R \subset L$ for a given regular set R and a $dcfl$ L is solvable within polynomial time by constructing a cfg G generating the complement of L and by applying the algorithm of Fig.2.1 to determine whether $R \cap L(G) = \phi$, which is equivalent to $R \subset L$.

Open problem 2 Let L be a $dcfl$ and R be a regular set. The following problems are in $EXPTIME$, however, their complexities are open.

1. $R = L$?
2. $L \subsetneq R$?
3. $R \subsetneq L$?

REFERENCES

謝辞 1

岐阜ペンなんて忘れてしまったでかんわ。町田さん来年も開くまわししてちょう。

謝辞 2

くに荘のおばさん、おっかなかったよ。町田さん、研究会しらせてくれてあんがと。またひておれ。