TITLE:
A P-Complete Language Describable with Iterated Shuffle

AUTHOR(S):
Shoudai, Takayoshi

CITATION:
Shoudai, Takayoshi. A P-Complete Language Describable with Iterated Shuffle. 数理解析研究所講究録 1992, 796: 1-7

ISSUE DATE:
1992-07

URL:
http://hdl.handle.net/2433/82766

RIGHT:
A P-Complete Language Describable with Iterated Shuffle

Takayoshi Shoudai
Department of Control Engineering and Science
Kyushu Institute of Technology
Iizuka 820, Japan

Abstract

We show that a P-complete language can be described as a single expression with the shuffle operator, shuffle closure, union, concatenation, Kleene star and intersection on a finite alphabet.

1 Introduction

In this paper, we construct a P-complete language by using shuffle operator \(\triangle \), iterated shuffle \(\dagger \), union \(\cup \), concatenation \(\cdot \), Kleene star \(* \) and intersection \(\cap \) over a finite alphabet. The shuffle operator was introduced by [10] to describe the class of flow expressions. Formal properties of expressions with these operators have been extensively studied from various points in the literatures [2, 3, 4, 5, 8, 9, 10, 11].

It is known that the complexity of almost classes of languages can be increased by using the iterated shuffle operator. For example, there are two deterministic context-free languages \(L_1 \) and \(L_2 \) such that \(L_1 \triangle L_2 \) is NP-complete [9]. Moreover, by allowing the synchronization mechanisms, any recursively enumerable set can be described [1, 3].

In [2, 11], by using the shuffle and iterated shuffle operators together with \(\cup, \cdot, *\), and \(\cap \), an NP-complete language is described. We employ the same set of operators to describe our P-complete language. In the proof of P-completeness, the intersection operator plays an important role to make the language polynomial-time recognizable. However, we do not know whether the intersection operator is necessary to define a P-complete language as in the case with NP-complete [2, 11].

Recently, P-complete problems have received considerable attentions since they do not seem to allow any efficient parallel algorithms [7]. This paper gives a P-complete problem of a new kind, which is described by a single expression.
2 Preliminaries

Let Σ be a finite alphabet and Σ^* be $\{a_1 \cdots a_n \mid a_i \in \Sigma \text{ for } i = 1, \ldots, n \text{ and } n \geq 0\}$. A subset of Σ^* is called a language.

Definition 1 For languages L, L_1 and L_2, we define the shuffle operator \triangle, the iterated shuffle \dagger and operators, $\cdot, *, +$ as follows:

1. $L_1 \triangle L_2 = \{x_1 y_1 x_2 y_2 \cdots x_m y_m \mid x = x_1 x_2 \cdots x_m \in L_1, y = y_1 y_2 \cdots y_m \in L_2$ and $x_i, y_i \in \Sigma^*$ for $i = 1, \ldots, m\}$ (shuffle operator).
2. $L^\dagger = \{\epsilon\} \cup L \cup (L \triangle L) \cup (L \triangle L \triangle L) \cup \cdots$ (iterated shuffle).
3. $L_1 \cdot L_2 = \{xy \mid x \in L_1 \text{ and } y \in L_2\}$ (abbreviated to L_1L_2).
4. $L^* = \{\epsilon\} \cup L \cup (L \cdot L) \cup (L \cdot L \cdot L) \cdots$. (5) $L^+ = L \cdot L^*$.

We identify a language $\{w\}$ which consists of only one word with w. Thus, we will denote $\{w\}^*, \{w\}^+, \{w\}^\dagger, \ldots$ by $w^*, w^+, w^\dagger, \ldots$, respectively.

As the basis of our reduction, we use the circuit value problem (CVP) that was shown P-complete [6]. Our definition in this paper slightly different from one in [6].

CIRCUIT VALUE PROBLEM (CVP)

INSTANCE: A circuit $C = (C_1, \ldots, C_{m+1}, \ldots, C_n)$, where each C_i is either (i) $C_i = true$ or false $(1 \leq i \leq m)$, (ii) $C_i = \text{NOR}(C_j, C_k)$ $(m + 1 \leq i \leq n$ and $j, k < i)$.

PROBLEM: Decide whether the value of C_n is true.

In the following section, CVP represents the set of all circuits whose output is true.

Let Σ be a finite alphabet, v_1, v_2, \ldots, v_m be symbols where $v_i \in \Sigma$ for $i = 1, \ldots, m$ and $w_1, w_2, \ldots, w_{m+1}$ be words on the alphabet $\Sigma - \{v_1, v_2, \ldots, v_m\}$. By using the iterated shuffle operator, the language $\{v_1^{n_1}v_2^{n_2} \cdots v_m^{n_m} \mid n \geq 1\}$ can be described as $(v_1v_2 \cdots v_m)^\dagger \cap v_1^+v_2^+ \cdots v_m^+$. Moreover, we can represent $\{w_1 v_1^{n_1}w_2v_2^{n_2} \cdots w_m v_m^{n_m}w_{m+1} \mid n \geq 1\}$ as

$$(w_1w_2 \cdots w_{m+1} \triangle(v_1v_2 \cdots v_m)^\dagger) \cap w_1v_1^+w_2v_2^+ \cdots w_mv_m^+w_{m+1}.$$

We often use this form of languages to define our P-complete language. Whenever such languages are used in the next section, we will not describe them explicitly by using the shuffle operator and the iterated shuffle.
3 A P-complete language

The main result in this paper is the following theorem.

Theorem 1 A P-complete language can be described with operators \(-, +, \cup, \cap, \triangle, \uparrow\).

3.1 Definition of the language

We will describe a P-complete language \(\mathcal{L}\) with the alphabet \(\Sigma = \{0, 1, a, b, u, v, x, y, z\}\). This language is defined stepwise.

At first, a language \(L\) is defined as follows:

\[
L_a = a^+0 \cup a^+1 = \{a^i\beta | i \geq 1 \text{ and } \beta \in \{0, 1\}\}.
\]

\[
L_{bba} = (b^+1b^+1a^+0) \cup (b^+0b^+1a^+1) \cup (b^+1b^+0a^+1) \cup (b^+0b^+0a^+1)
\]

\[
= \{b^i\beta^j\beta', a^i | i, j, k \geq 1 \text{ and } (\beta', \beta', \beta) \in \{(1, 1, 0), (0, 1, 1), (1, 0, 1), (0, 0, 1)\}\}.
\]

\[
L_b = b^+1 = \{b^i | i \geq 1\}.
\]

\[
L = L_a + L_{bba} + L_b.
\]

The following language \(T\) (resp. \(F\)) is used for a distribution of true (resp. false) value.

\[
T_x = \{1zx^{i+1}u^i | i \geq 1\}, \quad T_y = \{1y^{i+1}v^i | i \geq 1\}.
\]

\[
T_{xy} = \{1zx^i1y^{i+1}v^i | i \geq 1\}, \quad T_{yy} = \{1y^i1y^{i+1}v^i | i \geq 1\}.
\]

\[
T_{odd} = T_x T_y T_y T_y \cap T_x T_y T_y = \{1zx^{i+1}(1y^{i+1}v^i)^j | i \geq 1, j \geq 1 \text{ and } j \text{ is odd}\}.
\]

\[
T_{even} = T_x T_y T_y T_y \cap T_x T_y T_y = \{1zx^{i+1}(1y^{i+1}v^i)^j | i \geq 1, j \geq 1 \text{ and } j \text{ is even}\}.
\]

\[
T = T_x \cup T_{odd} \cup T_{even} = \{1zx^{i+1}(1y^{i+1}v^i)^j | i \geq 1 \text{ and } j \geq 1\}.
\]

\[
F = \{0zx^{i+1}(0y^{i+1})^j | i \geq 1 \text{ and } j \geq 0\}.
\]

Subwords \(1y^{i+1}v^i\) (resp. \(0y^{i+1}v^i\)) of a word in \(T\) (resp. \(F\)) are combined with \(b^i0\) (resp. \(b^i1\)) of words in \(L\) and determines the value of the ith variable. These three languages \(L, T\) and \(F\) are combined one another by using the shuffle operator and the iterated shuffle.

\[
\mathcal{J} = L \triangle (T \cup F)^\uparrow.
\]
A language \mathcal{K} is used to make our language \mathcal{L} polynomial time decidable. We construct the language \mathcal{K} stepwise as follows:

\[
A_{11} = \{a^i11zx^iu^i \mid i \geq 1\},
A_{00} = \{a^i00zx^iu^i \mid i \geq 1\},
A_{01} = \{a^i01zx^iu^i \mid i \geq 1\}.
\]

In a similar way, the following languages are defined:

\[
B_{01} = \{b^iy^{i}v^{i} \mid i \geq 1\},
B_{11} = \{b^i11y^{i}v^{i} \mid i \geq 1\}.
\]

\[
M = (A_{11} \cup A_{00})^+ (B_{01}B_{01}A_{01})^+ B_{11}.
\]

The language M contains a word w in which zx^iu^i occurs more than once in w for some i, where zx^iu^i corresponds to the ith gate. We will remove such words w from M so that each zx^iu^i occurs exactly once for all $1 \leq i \leq n$.

\[
N_z = (zxuz^2u^2 \Delta (zuxu)^! \cap (zx^+u^+zx^+u^+) = \{zx^iu^izx^{i+1}u^{n+1} \mid i \geq 1\}.
\]

\[
N_{odd} = zxuN_z^* \cap N_z^*zx^+u^+ = \{zxu^2 \cdots zx^iu^i \mid i \geq 1 \text{ and } i \text{ is odd.}\},
N_{even} = zxuN_z^*zx^+u^+ \cap N_z^* = \{zxu^2 \cdots zx^iu^i \mid i \geq 1 \text{ and } i \text{ is even.}\}.
\]

\[
N = N_{odd} \cup N_{even} = \{zxu^2 \cdots zx^iu^i \mid i \geq 1\}.
\]

Then, we define the language \mathcal{K} which will be used for allowing a language \mathcal{J} to be in P.

\[
\mathcal{K} = M \cap (N \Delta \Sigma^*)^*, \text{ where } \Sigma^* = \Sigma - \{u, x, z\}.
\]

Finally, we defined the language \mathcal{L} as follows:

\[
\mathcal{L} = \mathcal{J} \cap \mathcal{K}.
\]

3.2 Proof of the P-completeness

Theorem 1 follows from the next lemma.

Lemma 1 \mathcal{L} is log-space equivalent to CVP, i.e., \mathcal{L} is log-space reducible from CVP and CVP is log-space reducible from \mathcal{L}.
$w = a1zxua^{2}11zx^{2}u^{2}a^{3}00zx^{3}u^{3}b01yv^{2}01y^{2}v^{2}a^{4}01zx^{4}u^{4}$
$b^{2}01y^{2}v^{2}b^{3}01y^{3}v^{2}a^{5}01zx^{5}u^{5}b^{4}01y^{4}v^{2}b^{5}01y^{5}v^{5}a^{6}01zx^{6}u^{6}b^{6}11y^{6}v^{6}$.

Figure 1: This above circuit is transformed to the word w.

Proof. We will define a function f from CVP to Σ^*. f is a function which transforms $C = (C_1, \ldots, C_n) \in$ CVP to $f(C) = w_1 \cdots w_n w_{n+1} \in \Sigma^*$, where

$$w_i = \begin{cases} a^{i}11zx^{i}u^{i} & (C_i = \text{true}) \\ a^{i}00zx^{i}u^{i} & (C_i = \text{false}) \\ b^{i}01y^{i}v^{i}b^{k}01y^{k}v^{k}a^{i}01zx^{i}u^{i} & (C_i = \text{NOR}(C_j, C_k)) \\ b^{n}11y^{n}v^{n} & (i = n+1). \end{cases}$$

It is easy to see that this function is computable in log-space.

We show following two claims.

Claim 1. $f(C) \in \mathcal{L}$ for every $C \in$ CVP.

Proof. Let $w = w_1 \cdots w_m w_{m+1} \cdots w_n w_{n+1}$ be a word transformed from some n-gates instance $C = (C_1, \ldots, C_{m}, C_{m+1}, \ldots, C_n)$ where C_i is an input gate for $1 \leq i \leq m$, an NOR gate for $m+1 \leq i \leq n$, and an output of this circuit is true. Let $\beta_i = 1$ (resp. $\beta_i = 0$) if the value of C_i is true (resp. false) for $1 \leq i \leq n$.

According to $B = (\beta_1, \ldots, \beta_n)$, we divide w_i into two words w_i' and w_i'' as follows:

1. For $i = 1, \ldots, m$, $w_i' = a^i \beta_i$, $w_i'' = \beta_i zx^i u^i$.

2. For $i = m+1, \ldots, n$, $w_i' = b^i \beta_1 \beta_2 \beta_3 \beta_4 \beta_5$, $w_i'' = \beta_3 y^i v^i \beta_4 y^k v^k \beta_5 zx^i u^i$.

We note that w_i' is in L_{bba} since $C_i = \text{NOR}(C_j, C_k)$.

3. $w_{n+1}' = b^n 1$, $w_{n+1}'' = 1 y^n v^n$.

It is easy to see that a word $w' = w_1' \ldots w_{n+1}'$ is in $L = L_a + L_{bba} + L_b$.

On the other hand, since $w'' = w_1'' \ldots w_{n+1}''$ is constructed with subwords of the form $\beta_i z x^i u^i$ or $\beta_i y^i v^i$ and for each NOR gate, input gate numbers of this gate are always smaller than its number, we can describe the word w'' as word in $t_1 \Delta t_2 \Delta \ldots \Delta t_n$, where $t_i = \beta_i z x^i u^i \beta_i y^i v^i \ldots \beta_i y^i v^i$.

Since $t_i \in T$ or F for $i = 1, \ldots, n$, $f(C) = w_1 \ldots w_m w_{m+1} \ldots w_n w_{n+1}$ is in $w' \Delta t_1 \Delta \ldots \Delta t_n \subseteq L \Delta (T \cup F)^\dagger \subseteq L$. □

Since every word w of L is contained in M, w is of the form $w_1 \ldots w_m w_{m+1} \ldots w_n w_{n+1}$, where, for $i = 1, \ldots, n + 1$,$$w_i = \begin{cases} a^i \beta_i z x^i u^i & (1 \leq i \leq m, \beta_i \in \{0,1\}) \\ b^{i+1} y^i v^i, b^{i+1} 01 y^i v^i, a^i 01 z x^i u^i & (m + 1 \leq i \leq n) \\ b^{n+1} 11 y^{n+1} v^{n+1} & (i = n + 1) \end{cases}$$

We transform a word $w \in L$ to a circuit $C = (C_1, \ldots, C_m, C_{m+1}, \ldots, C_n)$ as follows:

(1) For $i = 1, \ldots, m$, if $\beta_i = 1$ then $C_i = \text{true}$ else $C_i = \text{false}$.

(2) For $i = m + 1, \ldots, n$, $C_i = \text{NOR}(C_j, C_k)$ where $j = \ell_i'$ and $k = \ell_i''$.

It is easy to see that this transformation, say g, is a well-defined function computable in log-space.

Claim 2. $g(w) \in \text{CVP}$ for every $w \in L$.

Proof. For $w \in L$, let w'' be the word obtained by dropping off the contribution from L. Then w'' is in $(T \cup F)^\dagger$ and has the form $c_1 c_2 \cdots c_{3n - 2m + 1}$ where $c_r = \beta_r z z^p r u^p r$ or $\beta_r y^p r v^p r$ ($\beta_r \in \{0,1\}, p_r \geq 1$ and $1 \leq r \leq 3n - 2m + 1$). Since w'' contains n z's, there exist n words $t_1, t_2, \ldots, t_n \in T \cup F$ such that w'' is in $t_1 \Delta t_2 \Delta \ldots \Delta t_n$. It is easy to see that each c_r ($1 \leq r \leq 3n - 2m + 1$) is a subword of some t_i ($1 \leq i \leq n$). Thus, without loss of generality, we may assume that for each $i = 1, \ldots, n$, t_i is of the form $\beta_i z x^i u^i \beta_i y^i v^i \beta_i y^i v^i$ ($\beta_i \in \{0,1\}$). Since w'' is also in $N \Delta \Sigma^*$ and for $1 \leq i \leq n$, a subword $\beta_i y^i v^i$ of w'' does not occur before a subword $\beta_i z x^i u^i$ of w'', we have $j, k < i$.

We claim that for $i = 1, \ldots, n$, $t_i \in T$ if and only if the value of C_i is true. This is shown by the induction. For $i = 1, \ldots, m$, if $\beta_i = 1$, then t_i must be in T. Thus, by definition of g, $C_i = \text{true}$. For $i = m + 1, \ldots, n$, suppose that for $j, k < i$, this claim is true. We only discuss the case of $t_j \in T$ and $t_k \in F$. By the assumption, the values of C_j and C_k are true. We remove contributions of t_j and t_k from w_i. The remaining word is $b'^j 0 b'^0 a^k 0 a^i 1$. Moreover, w_i must have a contribution from L_{bba}. This contribution must be of the form $b'^j 0 b'^0 a^i 1$. Thus, the remaining word after removing this contribution is $0 z x^i u^i$. Therefore, t_i must be in F. On the other hand, the value of $C_i = \text{NOR}(C_j, C_k)$ is false. Other case is shown in a similar way. Thus, this claim holds.

Since t_n must be in T, the value of C_n is true. Thus $g(w) \in \text{CVP}$. □

By the discussion above, we can say that L is log-space reducible to CVP via f and CVP has a log-space reduction g (inverse of f) from L. □
References

