TITLE:
A P-Complete LanguageDescribable with Iterated Shuffle

AUTHOR(S):
Shoudai, Takayoshi

CITATION:
Shoudai, Takayoshi. A P-Complete Language Describable with Iterated Shuffle. 数理解析研究所講究録 1992, 796: 1-7

ISSUE DATE:
1992-07

URL:
http://hdl.handle.net/2433/82766

RIGHT:
A P-Complete Language Describable with Iterated Shuffle

Takayoshi Shoudai
Department of Control Engineering and Science
Kyushu Institute of Technology
Iizuka 820, Japan

Abstract

We show that a P-complete language can be described as a single expression with the shuffle operator, shuffle closure, union, concatenation, Kleene star and intersection on a finite alphabet.

1 Introduction

In this paper, we construct a P-complete language by using shuffle operator \triangle, iterated shuffle \dagger, union \cup, concatenation \cdot, Kleene star $*$ and intersection \cap over a finite alphabet. The shuffle operator was introduced by [10] to describe the class of flow expressions. Formal properties of expressions with these operators have been extensively studied from various points in the literatures [2, 3, 4, 5, 8, 9, 10, 11].

It is known that the complexity of almost classes of languages can be increased by using the iterated shuffle operator. For example, there are two deterministic context-free languages L_1 and L_2 such that $L_1 \triangle L_2$ is NP-complete [9]. Moreover, by allowing the synchronization mechanisms, any recursively enumerable set can be described [1, 3].

In [2, 11], by using the shuffle and iterated shuffle operators together with $\cup, \cdot, *, \cap$, an NP-complete language is described. We employ the same set of operators to describe our P-complete language. In the proof of P-completeness, the intersection operator plays an important role to make the language polynomial-time recognizable. However, we do not know whether the intersection operator is necessary to define a P-complete language as in the case with NP-complete [2, 11].

Recently, P-complete problems have received considerable attentions since they do not seem to allow any efficient parallel algorithms [7]. This paper gives a P-complete problem of a new kind, which is described by a single expression.
2 Preliminaries

Let Σ be a finite alphabet and Σ^* be $\{a_1 \cdots a_n \mid a_i \in \Sigma \text{ for } i = 1, \ldots, n \text{ and } n \geq 0\}$. A subset of Σ^* is called a language.

Definition 1 For languages L, L_1, and L_2, we define the shuffle operator \triangle, the iterated shuffle \dagger and operators, $\cdot, \ast, +$ as follows:

1. $L_1 \triangle L_2 = \{x_1y_1x_2y_2 \cdots x_my_m \mid x = x_1x_2 \cdots x_m \in L_1, y = y_1y_2 \cdots y_m \in L_2 \text{ and } x_i, y_i \in \Sigma^* \text{ for } i = 1, \ldots, m\}$ (shuffle operator).
2. $L^\dagger = \{\epsilon\} \cup L \cup (L \triangle L) \cup (L \triangle L \triangle L) \cup \cdots$ (iterated shuffle).
3. $L_1 \cdot L_2 = \{xy \mid x \in L_1 \text{ and } y \in L_2\}$ (abbreviated to L_1L_2).
4. $L^* = \{\epsilon\} \cup L \cup (L \cdot L) \cup (L \cdot L \cdot L) \cdots$.
5. $L^+ = L \cdot L^*$.

We identify a language $\{w\}$ which consists of only one word with w. Thus, we will denote $\{w\}^*, \{w\}^+, \{w\}^\dagger, \ldots$ by w^*, w^+, w^\dagger, respectively.

As the basis of our reduction, we use the circuit value problem (CVP) that was shown P-complete [6]. Our definition in this paper slightly different from one in [6].

CIRCUIT VALUE PROBLEM (CVP)

Instance: A circuit $C = (C_1, \ldots, C_m, C_{m+1}, \ldots, C_n)$, where each C_i is either (i) $C_i = \text{true}$ or false ($1 \leq i \leq m$), (ii) $C_i = \text{NOR}(C_j, C_k)$ ($m + 1 \leq i \leq n$ and $j, k < i$).

Problem: Decide whether the value of C_n is true.

In the following section, CVP represents the set of all circuits whose output is true.

Let Σ be a finite alphabet, v_1, v_2, \ldots, v_m be symbols where $v_i \in \Sigma$ for $i = 1, \ldots, m$ and $w_1, w_2, \ldots, w_{m+1}$ be words on the alphabet $\Sigma - \{v_1, v_2, \ldots, v_m\}$. By using the iterated shuffle operator, the language $\{v_1^n v_2^n \cdots v_m^n \mid n \geq 1\}$ can be described as $(v_1 v_2 \cdots v_m)^\dagger \cap v_1^+ v_2^+ \cdots v_m^+$.

Moreover, we can represent $\{w_1 v_1^n w_2 v_2^n \cdots w_m v_m^n w_{m+1} \mid n \geq 1\}$ as

$$(w_1 w_2 \cdots w_{m+1} \triangle(v_1 v_2 \cdots v_m)^\dagger) \cap w_1 v_1^+ w_2 v_2^+ \cdots w_m v_m^+ w_{m+1}.$$

We often use this form of languages to define our P-complete language. Whenever such languages are used in the next section, we will not describe them explicitly by using the shuffle operator and the iterated shuffle.
3 A P-complete language

The main result in this paper is the following theorem.

Theorem 1 A P-complete language can be described with operators $\cdot, *, \cup, \cap, \triangle, \uparrow$.

3.1 Definition of the language

We will describe a P-complete language L with the alphabet $\Sigma = \{0, 1, a, b, u, v, x, y, z\}$. This language is defined stepwise.

At first, a language L is defined as follows:

$$L_a = a^+0 \cup a^+1 = \{a^i\beta | i \geq 1 \text{ and } \beta \in \{0,1\}\}.$$
$$L_{bba} = (b^+1b^+1a^+0) \cup (b^+0b^+1a^+1) \cup (b^+1b^+0a^+1) \cup (b^+0b^+0a^+1) = \{b^i\beta'b^j\beta'a^i| i, j \geq 1 \text{ and } (\beta', \beta'') \in \{(1,1,0), (0,1,1), (1,0,1), (0,0,1)\}\}.$$
$$L_b = b^+1 = \{b^i1 | i \geq 1\}.$$

$$L = L_a^+L_{bba}^+L_b.$$

The following language T (resp. F) is used for a distribution of true (resp. false) value.

$$T_x = \{1zxu^i| i \geq 1\}, \quad T_y = \{1y^iv^i| i \geq 1\}.$$
$$T_{xy} = \{1zxu^i1y^iv^i| i \geq 1\}, \quad T_{yy} = \{1y^iv^i1y^iv^i| i \geq 1\}.$$

$$T_{odd} = T_xT_y^*T_y \cap T_xT_y^* = \{1zxu^i(1y^iv^i)^j | i \geq 1, j \geq 1 \text{ and } j \text{ is odd.}\}.$$
$$T_{even} = T_xT_y^*T_y \cap T_xT_y^* = \{1zxu^i(1y^iv^i)^j | i \geq 1, j \geq 1 \text{ and } j \text{ is even.}\}.$$

$$T = T_x \cup T_{odd} \cup T_{even} = \{1zxu^i(1y^iv^i)^j | i \geq 1 \text{ and } j \geq 0\}.$$

F is defined in a similar way by simply replacing a symbol with 0 in the definition of 1.

$$F = \{0zxu^i(0y^iv^i)^j | i \geq 1 \text{ and } j \geq 0\}.$$

Subwords $1y^iv^i$ (resp. $0y^iv^i$) of a word in T (resp. F) are combined with b^i0 (resp. b^i1) of words in L and determines the value of the ith variable. These three languages L, T and F are combined one another by using the shuffle operator and the iterated shuffle.

$$\mathcal{J} = L \triangle (T \cup F)^\dagger.$$
A language \mathcal{K} is used to make our language \mathcal{L} polynomial time decidable. We construct the language \mathcal{K} stepwise as follows:

\[
A_{11} = \{a^i11zx^iu^i | i \geq 1\}, \\
A_{00} = \{a^00zx^iu^i | i \geq 1\}, \\
A_{01} = \{a^01zx^iu^i | i \geq 1\}.
\]

In a similar way, the following languages are defined:

\[
B_{01} = \{b^i01y^iv^i | i \geq 1\}, \\
B_{11} = \{b^i11y^iv^i | i \geq 1\}.
\]

\[
M = (A_{11} \cup A_{00})^+(B_{01}B_{01}A_{01})^+B_{11}.
\]

The language M contains a word w in which zx^iu^i occurs more than once in w for some i, where zx^iu^i corresponds to the ith gate. We will remove such words w from M so that each zx^iu^i occurs exactly once for all $1 \leq i \leq n$.

\[
N_z = (zxuzx^2u^2 \Delta (xuxu)^\dagger) \cap (zx^+u^+zx^+u^+) = \{zx^i u^{i+1}u^{n+1} | i \geq 1\}.
\]

\[
N_{odd} = zxuN_z^* \cap N_z^*zx^+u^+ = \{zxuzx^2u^2 \cdots zx^iu^i | i \geq 1 \text{ and } i \text{ is odd.}\},
\]

\[
N_{even} = zxuN_z^*zx^+u^+ \cap N_z^* = \{zxuzx^2u^2 \cdots zx^iu^i | i \geq 1 \text{ and } i \text{ is even.}\}.
\]

\[
N = N_{odd} \cup N_{even} = \{zxuzx^2u^2 \cdots zx^iu^i | i \geq 1\}.
\]

Then, we define the language \mathcal{K} which will be used for allowing a language \mathcal{J} to be in P.

\[
\mathcal{K} = M \cap (N \Delta \Sigma'^*), \text{ where } \Sigma' = \Sigma \setminus \{u,x,z\}.
\]

Finally, we defined the language \mathcal{L} as follows:

\[
\mathcal{L} = \mathcal{J} \cap \mathcal{K}.
\]

3.2 Proof of the P-completeness

Theorem 1 follows from the next lemma.

Lemma 1 \mathcal{L} is log-space equivalent to CVP, i.e., \mathcal{L} is log-space reducible from CVP and CVP is log-space reducible from \mathcal{L}.
Proof. We will define a function f from CVP to Σ^*. f is a function which transforms $C = (C_1, \ldots, C_n) \in$ CVP to $f(C) = w_1 \cdots w_n w_{n+1} \in \Sigma^*$, where

$$w_i = \begin{cases} a^i 11zx^i u^i & (C_i = \text{true}) \\ a^i 00zx^i u^i & (C_i = \text{false}) \\ b^i 01y^i v^i b^k 01y^k v^k a^i 01zx^i u^i & (C_i = \text{NOR}(C_j, C_k)) \\ b^n 11y^n v^n & (i = n+1). \end{cases}$$

It is easy to see that this function is computable in log-space.

We show following two claims.

Claim 1. $f(C) \in \mathcal{L}$ for every $C \in$ CVP.

Proof. Let $w = w_1 \cdots w_m w_{m+1} \cdots w_n w_{n+1}$ be a word transformed from some n-gates instance $C = (C_1, \ldots, C_m, C_{m+1}, \ldots, C_n)$ where C_i is an input gate for $1 \leq i \leq m$, an NOR gate for $m+1 \leq i \leq n$ and an output of this circuit is true. Let $\beta_i = 1$ (resp. $\beta_i = 0$) if the value of C_i is true (resp. false) for $1 \leq i \leq n$.

According to $B = (\beta_1, \ldots, \beta_n)$, we divide w_i into two words w_i' and w_i'' as follows:

1. For $i = 1, \ldots, m$, $w_i' = a^i \beta_i$, $w_i'' = \beta_i zx^i u^i$.
2. For $i = m + 1, \ldots, n$, $w_i' = b^i \beta_j b^k \beta_k a^i \beta_i$, $w_i'' = \beta_j y^j v^j \beta_k y^k v^k \beta_i zx^i u^i$.

We note that w_i' is in L_{ba} since $C_i = \text{NOR}(C_j, C_k)$.

(3) $w_{n+1}' = b^n 1$, $w_{n+1}'' = 1 y^n v^n$.

Figure 1: This above circuit is transformed to the word w.

\[w = a^1 11zx^1 u^1 a^2 00zx^2 u^2 01y^1 v^1 01y^2 v^2 a^3 01zx^3 u^3 b^2 01y^2 v^2 b^3 01y^3 v^3 a^4 01zx^4 u^4 b^4 01y^4 v^4 b^5 01y^5 v^5 a^5 01zx^5 u^5 b^6 01y^6 v^6. \]
It is easy to see that a word \(w' = w_1' \cdots w_{n+1}' \) is in \(L = L_a + L_b + b. \)

On the other hand, since \(w'' = w_1'' \cdots w_{n+1}'' \) is constructed with subwords of the form \(\beta_i z x^i u^i \) or \(\beta_i y^i v^i \) and for each NOR gate, input gate numbers of this gate are always smaller than its number, we can describe the word \(w'' \) as word in \(t_1 \Delta t_2 \Delta \cdots \Delta t_n \), where \(t_i = \beta_i z x^i u^i \beta_i y^i v^i \cdots \beta_i y^i v^i. \) Since \(t_i \in T \) or \(F \) for \(i = 1, \ldots, n \), \(f(C) = w_1 \cdots w_m w_{m+1} \cdots w_n w_{n+1} \) is in \(w' \Delta t_1 \Delta \cdots \Delta t_n \subset L \Delta (T \cup F)^\dagger = L. \)

Since every word \(w \) of \(L \) is contained in \(M \), \(w' \) of the form \(w_1 \cdots w_m w_{m+1} \cdots w_n w_{n+1} \), where, for \(i = 1, \ldots, n + 1, \)

\[
w_i = \begin{cases} a^i \beta_i z x^i u^i & (1 \leq i \leq m, \beta_i \in \{0,1\}) \\
b^i0y^i v^i b^i01y^i v^i \cdots b^i01 z x^i u^i & (m + 1 \leq i \leq n) \\
b^{n+1}1y^{n+1} v^{n+1} & (i = n + 1) \end{cases}
\]

We transform a word \(w \in L \) to a circuit \(C = (C_1, \ldots, C_m, C_{m+1}, \ldots, C_n) \) as follows:

1. For \(i = 1, \ldots, m \), if \(\beta_i = 1 \) then \(C_i = true \) else \(C_i = false. \)
2. For \(i = m + 1, \ldots, n \), \(C_i = \text{NOR}(C_j, C_k) \) where \(j = \ell_i' \) and \(k = \ell_i''. \)

It is easy to see that this transformation, say \(g \), is a well-defined function computable in log-space.

Claim 2. \(g(w) \in \text{CVP} \) for every \(w \in L. \)

Proof. For \(w \in L \), let \(w'' \) be the word obtained by dropping off the contribution from \(L \). Then \(w'' \) is in \((T \cup F)^\dagger \) and has the form \(c_1 c_2 \cdots c_{3n-2m+1} \) where \(c_r = \beta_r z x^r u^r \) or \(\beta_r y^r v^r \) \((\beta_r \in \{0,1\}, p_r \geq 1 \) and \(1 \leq r \leq 3n-2m+1) \). Since \(w'' \) contains \(n \) 's, there exist \(n \) words \(t_1, t_2, \ldots, t_n \in L \cup F \) such that \(w'' \) is in \(t_1 \Delta t_2 \Delta \cdots \Delta t_n \). It is easy to see that each \(c_r (1 \leq r \leq 3n-2m+1) \) is a subword of some \(t_i \) \((1 \leq i \leq n) \). Thus, without loss of generality, we may assume that for each \(i = 1, \ldots, n \), \(t_i \) is of the form \(\beta_i z x^i u^i \beta_i y^i v^i \cdots \beta_i y^i v^i \) \((\beta_i \in \{0,1\}) \). Since \(w'' \) is also in \(N \Delta \Sigma^* \) and for \(1 \leq i \leq n \), a subword \(\beta_i y^i v^i \) of \(w'' \) does not occur before a subword \(\beta_i z x^i u^i \) of \(w'' \), we have \(j, k < i \).

We claim that for \(i = 1, \ldots, n \), \(t_i \in T \) if and only if the value of \(C_i \) is true. This is shown by the induction. For \(i = 1, \ldots, m \), if \(\beta_i = 1 \), then \(t_i \) must be in \(T \). Thus, by definition of \(g \), \(C_i = true. \)

For \(i \geq m + 1 \), suppose that for \(j, k < i \), this claim is true. We only discuss the case of \(t_j \in T \) and \(t_k \in T \). By the assumption, the values of \(C_j \) and \(C_k \) are true. We remove contributions of \(t_j \) and \(t_k \) from \(w_i \). The remaining word is \(b^j0b^k0a^i01z x^i u^i \). Moreover, \(w_i \) must have a contribution from \(L_b a. \) This contribution must be of the form \(b^j0b^k0a^i \). Thus, the remaining word after removing this contribution is \(0z x^i u^i \). Therefore, \(t_i \) must be in \(F \). On the other hand, the value of \(C_i = \text{NOR}(C_j, C_k) \) is false. Other case is shown in a similar way. Thus, this claim holds.

Since \(t_a \) must be in \(T \), the value of \(C_a \) is true. Thus \(g(w) \in \text{CVP}. \)

By the discussion above, we can say that \(L \) is log-space reducible to \(\text{CVP} \) via \(f \) and \(\text{CVP} \) has a log-space reduction \(g \) (inverse of \(f \)) from \(L. \)
References

