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ON &-CONVEX MULTIOBJECTIVE PROGRAMMING PROBLEMS

e RE RS EERt #HU—%F (Kazunori Yokoyama)

1. Introduction

In this note, we consider §g-solutions of convex multiobiective
programming éroblems and g£€-saddle points of vector Lagrangian.

Pareto solutions of multiobjective programming problems and saddle
points of vector Lagrangian were 1investigated by many authors. To

guarantee the existence of the Pareto solutions and the saddle points,

certain compactness assumption is necessary in general. However,
Loridan established the existence results of g€-solutions of

multiobjective programming problems without the compactness
assumption in [4].

We assume none of the compactness condition in this note. Our
results obtained extend the ones of Lai and Ho [2] and leoridan [3].
This note 1is organized as follows: In section 2, we formulate a
multiobjective programming problem and recall the definition of
€-quasi Pareto solution of the problem due to [4]. In section 3,
corresponding tp the results of [2], we show the necessary and
sufficient condition to ébtain the §g-quasi Pareto solution. In
section 4, we establish the existence result of g-saddle points of
vector Lagrangian. Also, by investigating the g-saddle point, the
existence result of some g-solution of the multiobjective programming

problem is shown to be verified.



2.Preliminaries

Let X be a Banach space with the dual space X7,

In this note,lwe consider the following multiobjective programming

problem:

(P) minimize f (x)
subject to g(x) £ 0
where f = (fl,...,fn) and g = (gl,...,gm),

fk(lsksn), g, (1 < i <m : X » R,

g(x) £ 0 means that gi(x) £ 0 for each i.

We denote the feasible set {x € Xlg(x) < 0} by K.

Throughout this note, we assume the following:

Assumption (A). fk is continuous convex and bounded from below for
each k = 1,...,n.

g, is continuous convex for each i = 1,...,m.

The feasible set K is nonempty.

Each element of g = (81,...,8n) € R" is positive.

With this assumption, Loridan [4] showed the existence theorem of

g€-solutions of the multiobjective programming problem (P).

Theorem 2.1.[4,Proposition 4.2] Assume that (A) is satisfied. Let u €

K be a (ngl Sj)—solution of

inf{Zkz1 f, (x)1x € K}



i. e.

=% f (uw £ inf(x "

n

k=1 Tk k=1 fk(x)lx € K} + zj=1 8{
Then, there exists x8 € K such that

(1) there is no x € K such that fk(x) < fk(xg) - Sk' kK = 1,..., n,
with at least one strict inequality

n n
2) 2, fk(xe) <Xy f 0.
n
(3) - < J(Z. .)
ha - xgl < /(22 e,

(4) there is no x € K such that fk(x) + (Sk//zej)ﬂx - Xg" < fk(xa),

k =1,...,n, with at least one strict inequality.

Associated with the above theorem, Loridan defined an g-approximate

solution of (P) as follows:

Definition 2.1.[4] An element X8 € K is said to be an g-quasi Pareto

solution of (P) if and only if XS satisfies (4) of Theorem 2. 1.

n

Remark. Since there exists a (Zj:1

Sj)~solution of infl(ZX (x) |x €

L1
k=lfk
K}, the existence of the g-quasi Pareto solution of (P) 1is also
verified wunder the assumption (A). However, the {exact) Pareto
solution of (P) is not necessarily attained under the same assumption

(A). The condition to obtain the Pareto solution of (P) was derived

in [51].
3. €-Optimality Condition

In this section, associated with the result of Lai and Ho 121, we

show the necessary and sufficient condition to obtain an E£-quasi



Pareto solution of (P).
To derive our results, we introduce the regular condition associated

with the constraint qualification of Slater type [11.

Assumption (Al). For each j, there exists a point x such that
g(x) < 0 and Fk(x) < Fk(xe) for any k # j
where

X is an g-quasi Pareto solution of (P),

- - - H o = n
Foxy = £ () + g lix X8" with g, Sk/J(ijl Bj).

Under the above assumption, we show the necessary and sufficient

condition to obtain an g-quasi Pareto solution of (P).

Theorem 3.1. Assume that (Al) 1is satisfied. Let x8 € K. Then, x8

is an g-quasi Pareto solution of (P) if and only if there exist a € A

and b8 € B such that

- *
0 .+ +
€ 8f(x8)a8 Sg(xg)b8 SaSB ,
b = 0.
g(xe) e

where

A and B denote the sets of matrices defined by

A= {a = (ajk)anlajk 20 and a, =1, j, k= 1,...,10},
B = (b = (bik)mxﬂlbikzo, i = 1,....m, k = 1,....,n}.

* * *
Af (x) = (8fl(x),...,8fn(x)) = {(xl,...,xn)lxk € 9f, (x) ),

i

8g (x) = (dg, (x),...,8g_(x)) {(xI,...,x;)lx: € 9g, (%)},

with ka(x)(agi(x)) is the subdifferential of fk(resp. gi) at x.

- _ g - . - n
g = (g,,...,€ ) with € Sj/(‘/zk=18k)‘

B is the unit ball in X .



4. €-Quasi Saddle Point of Vector Lagrangian

In this section, we establish the existence result of g-saddle
points of vector Lagrangian by using the scalarized Lagrangian. Also,

the existence result of some £-solutions of (P) is presented.

Definition 4.1.{2] The vector Lagrangian L : X X U - Rn is
defined by

L(x,2) = f(x) + g(x)x
where

= = i o= 1 =

A €U {x (lik)anllik > 0 for any i 1,...,m k 1,...,n}
Definition 4. 2. A point (Xs,ke) € X X U is said to be an
€-quasi saddle point of L if the following conditions are satisfied:

there is no A € U and x € X such that

L(x,, 0 - Elx - A, Lx_, 0 - &l - ,
(x, 1) elx AEJZL(XS Ag) L(x8 Xx) el 18]¢L(x8 Ag)

€
L , L (x, g - , , , o _
(x8 18) > L(x AS) + glx | XS" L(x8 18) # L(x 18) + gllx xg"
where
[xl = ([l}jk)HXn is a nXn matrix
. B _ i _ T
with [A]kk = ulk", [l]jk 0 for j # k, Xy (Alk”"’lmk) .

Remark. If k

]

1, the above definition reduces to [3,Definition 6.1].

We show the relation between the §g-quasi saddle point and the

primal problem (P).



Proposition 4.1. Assume that (Al) is satisfied. Let x_ be an g£-quasi

€
Pareto solution of (P). Then, there exists AF € U such that
(xe,le) is an g-quasi saddle point of vector l.agrangian L.

Proposition 4.2. Let (XS,AS) be an g€-quasi saddle point of L. Then,

the following are satisfied:
there is no x € {x|g(x) < g(xg)} such that

fk(x) + Skux - X8“ < fk(xe) for k = 1,--+,n

with at least one strict inequality,

gi(xs) < € for any i where € = max {éklk = 1,...,n},

Aeik¢ 0 for each k implies - € < gi(xg).

Remark. If k = 1, the above result reduces to [3, Theorem 6. 21.

Now, we introduce a scalarized th:angian associated with the vector

Lagrangian.

Definition 4.3.[2] For fixed pu € int R™ (i.e. oy > 0 for any k =

+

1,...,n), the scalar Lagrangian Lu is defined by Lu(x,l) = <u, L{x.x)>.
We show the relation between Lu and the vector Lagrangian L.

Proposition 4.3. Let (XS,AS) be an g-quasi saddle point of L’J in the

sence of Loridanm [3] 1i.e.

L , - <u, € - >
“(xe x) u, el ls]

< L ,
u(XS 18)



< Lu(x,lg) + <, Ellx - x8H> for any (x,1) € X X U

Then, (xe,le) is also an g-quasi saddle point of L.

We establish the existence result of -an g-quasi saddle point of

scalar Lagrangian.

Proposition 4. 4. For some p € int Ri, there exists an g-quasi saddle

oint of L
P u

Remark. From Propositions 4.3 and 4.4, it is verified that there
exists an g-quasi saddle point of vector Lagrangian without the
compactness assumption. Also, from Proposition 4.2, the existence of

certain g€-solution of (P) is verified.
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