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On the vertices of modules in the Auslander-Reiten quiver

大阪大 教養 宇野勝博
(katsuhiro UNO)

I. Let $kG$ be the group algebra of a finite group $G$ over a field $k$ of char-

acteristic $p$ , where $p$ is a prime. In the theory of modular representations of finite

groups, the stable Auslander-Reiten quiver (AR quiver for short) $\Gamma_{s}(kG)$ of $kG$ is

quite important. Probably, one of the main problems is to understand, from the mod-

ule theoretic point of view, why all the indecomposable $kG$-modules are distributed

into several connected components of $\Gamma_{s}(kG)$ . Since the vertex is an invariant for

each indecomposable $kG$-module, it might be meaningful to investigate how vertices

of modules in a single component vary. In this note, we ask when a single connected

component $\Gamma$ of $\Gamma_{s}(kG)$ has two indecomposable $kG$-modules with distinct vertices,

and give one theorem in this nature, which generalizes some previous results. The

detailed version is now prepared by Professor Okuyama and myself ([OU2]).

We use the following notations and conventions. For any finite dimensional

k-algebra $R$ , we denote its radical by $JR$ . All modules considered here are finite

dimensional right modules. If a module $X$ is isomorphic to a direct summand of

another module $Y$ , we write $X|Y$ for notational convenience. Also, the direct sum

of $m$ copies of $X$ is denoted by $mX$ . The endomorphism algebra of a $kG$-module $X$

is denoted by $E_{G}(X)$ , or simply by $E(X)$ . Also, for an indecomposable module $X$ ,

we write its vertex by $vx(X)$ , and if $X$ is non-projective, then the Auslander-Reiten

sequence terminating at $X$ , which is unique up to equivalence, is denoted by

$A(X)$ : $0arrow\tau Xarrow M(X)arrow Xarrow 0$ ,
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where $\tau$ is the Auslander-Reiten translate. Notice that since $kG$ is a symmetric

algebra, $\tau$ is equal to $\Omega^{2}$ , the composite of two Heller operators.

II. We first mention a brief history of this problem.

Local results

(II.1) If $Xarrow Y$ is a part of $\Gamma$ , then we have $vx(X)\leq cvx(Y)$ or $vx(Y)\leq c$

$vx(X)$ ([El, (2.3)]).

(II.2) Consider relative projectivity of short exact sequences. Green ([G])

showed that we can define the vertex of AR sequences analogously. We denote the

vertex of $A(X)$ by $vx(A(X))$ . Note that all the modules appearing in $A(X)$ are

$vx(A(X))$-projective. He also proved the following.

$vx(X)\leq Gvx(A(X))\leq cI$ , where $I$ is the inertia subgroup of the source of

$X$ in $N_{G}(vx(X))([G, (5.12),(7.7)])$ .

(II.3) $vx(A(X))$ is a maximal element among vertices of modules appearing

in $A(X)$ . ([OU1, Theorem])

(II.4) Write $M(X)=\oplus_{i}Y_{i}$ . If $vx(X)<vx(A(X))$ , then there exists $i$ such

that $vx(Y_{i})=vx(A(X))$ . (See (II.3).) Moreover, if $X$ is not periodic, then such an $i$

is unique. ([U2, Theorem 4.1])

Global results

(II.5) $\{vxX|X\in\Gamma\}$ has a minimal element with respect to $\leq c$ . ([Kl, Lemma

3.1])

(II.6) It is known by Riedtmann that every connected component $\Gamma$ has a tree

$T$ from which $\Gamma$ can be obtained as a form $ZT/\pi$ , where $\pi$ is a subgroup of $Aut(ZT)$ .
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(See $[B,$ $2.29].$ ) The shape of $T$ is called the tree class of $\Gamma$ , and if $\Gamma$ is infinite, then

$T$ is one of $\tilde{A}_{1,2},\tilde{B}_{3},$ $A_{\infty},$ $D_{\infty},$ $B_{\infty},$ $C_{\infty}$ or $A_{\infty}^{\infty}$ . (For the notation used here, see $[B$ ,

2.30]. See also $[B, 2.31].$ ) Moreover, $\tilde{A}_{1,2}$ and $\tilde{B}_{3}$ occur only when the modules in $\Gamma$

lie in a block whose defect group is a four group, and if $k$ is algebraically closed, then

only $\tilde{A}_{1,2},$ $A_{\infty},$ $D_{\infty}$ and $A_{\infty}^{\infty}$ can occur. (See $[B,$ $2.31].$ ) Furthermore, if the tree class

is $A_{\infty}^{\infty}$ , then we have $\Gamma\cong ZA_{\infty}^{\infty}$ unless the modules in $\Gamma$ lie in a block whose defect

group is a four group. ([ES, Sec. 3,4]). See also [W] and [Be]. In any case, for our

question, it suffices to know how vertices vary on $T$ .

(II.7) ([E2, Theorem $A]$ ) Let $k$ be a perfect field, and $G$ be a p-group. Suppose

that $\Gamma$ is not a tube. Then one of the following holds.

(i) All the modules in $\Gamma$ have vertices in common.

(ii) We can take $T:X_{1}-X_{2}-X_{3}-\cdots-X_{n}-\ldots$ in $\Gamma$ with $\Gamma\cong ZT$ and

$vx(X_{1})\leq vx(X_{2})\leq vx(X_{3})=vx(X_{4})=\cdots=vx(X_{n})=\ldots$ . Moreover, one of the

following holds.

(iia) $vx(X_{1})<vx(X_{2})=vx(X_{3})$ .

(iib) $vx(X_{1})=vx(X_{2})<vx(X_{3})$ with $|vx(X_{3})$ : $vx(X_{2})|=p=2$ .

(iii) $p=2,$ $\Gamma=ZA_{\infty}^{\infty}$ , and the modules with the smallest vertex $Q$ lie in a

subquiver $\Gamma_{Q}$ such that both $\Gamma_{Q}$ and $\Gamma\backslash \Gamma_{Q}$ are connected as graphs isomorphic to

$ZA_{\infty}$ . Moreover, all the modules in $\Gamma\backslash \Gamma_{Q}$ have the same vertex $P$ with $|P$ : $Q|=2$ .

(iv) $p=2,$ $\Gamma\cong ZA_{\infty}^{\infty}$ , the modules with the smallest vertex $Q$ lie in two

adjacent $\tau$-orbits and all the other modules have the same vertex $P$ . Moreover, $Q$ is

a Kleinian four group and $P$ is a dihedral group of order 8.

(II.8) The above is first generalized as follows ([U2, Theorem $A]$ ). Let $k$ be a

perfect field. Suppose that $\Gamma$ is not a tube and that its minimal vertex is not a four

group. Then one of the following holds.

(i) All the modules in $\Gamma$ have vertices in common.
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(ii) The tree class of $\Gamma$ is $A_{\infty}$ and we can take $T$ : $X_{1}-X_{2}-X_{3}-\cdots-X_{n}-\ldots$

such that $vx(X_{1})\leq vx(X_{2})\leq$ . . . $\leq vx(X_{n-1})<vx(X_{n})=vx(X_{n+1})=$ . . . .

Moreover we have;

(iia) If $p$ is odd and $vx(X_{i})=vx(X_{i+1})$ for some $i$ , then the above $n$ must

be at $mo$st $i$ .

(iib) If $p=2=|vx(X_{i+1})$ : $vx(X_{i})|$ for some $i$ , then the above $n$ must be

$i+1$ .

(iii) $p=2,$ $\Gamma=ZA_{\infty}^{\infty}$ , and the modules with the smallest vertex $Q$ lie in a

subquiver $\Gamma_{Q}$ such that both $\Gamma_{Q}$ and $\Gamma\backslash \Gamma_{Q}$ are connected as graphs isomorphic to

$ZA_{\infty}$ . Moreover, all the modules in $\Gamma\backslash \Gamma_{Q}$ have the same vertex $P$ with $|P$ : $Q|=2$ .

III. The following is the main result of this note.([OU2])

Theorem. Let $k$ be a perfect field, and let $\Gamma$ be a connected component of

$\Gamma_{s}(kG)$ . Suppose that it is not a tube. Then on$e$ of the following Aolds.

(i) All the modules in $\Gamma$ Aave vertices in common.

(ii) We can take $T:X_{1}-X_{2}-X_{3}-\cdots-X_{n}-\ldots$ in $\Gamma$ with $\Gamma\cong ZT$ an $d$

$vx(X_{1})\leq vx(X_{2})\leq vx(X_{3})\leq vx(X_{4})=vx(X_{5})=\cdots=vx(X_{n})=\ldots$ . Moreover,

one of the following holds.

$(iia)vx(X_{1})<vx(X_{2})=vx(X_{3})=vx(X_{4})$ .

$(iib)vx(X_{1})<vx(X_{2})=vx(X_{3})<vx(X_{4})$ with $|vx(X_{4})$ : $vx(X_{3})|=p=2$ .

$(iic)vx(X_{1})=vx(X_{2})<vx(X_{3})=vx(X_{4})$ with $|vx(X_{3})$ : $vx(X_{2})|=p=2$ .

(iii) $p=2,$ $\Gamma=ZA_{\infty}^{\infty}$ , an $d$ the modules with the $sm$allest vertex $Q$ lie in a

subquiver $\Gamma_{Q}$ such that both $\Gamma_{Q}$ and $\Gamma\backslash \Gamma_{Q}$ are connected as graphs isomorphic to

$ZA_{\infty}$ . $Mo$reover, all the modules in $\Gamma\backslash \Gamma_{Q}$ have the same vertex $P$ with $|P$ : $Q|=2$ .

(iv) $p=2,$ $\Gamma\cong ZA_{\infty}^{\infty}$ , th $e$ modules with the smallest vertex $Q$ lie in two or

four adjacent $\tau$ -orbits and all the $oth$er modules have the $s$am$e$ vertex P. Moreover,
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$Q$ is a Klein$ian$ four $gro$up and $P$ is a dihedral group of order 8.

Remark. In Erdmann’s theorem (II.7), we do not know that there is an

example which satisfies (iib), and similarly, there is no known example of (iib) or (iic)

above.

IV. Here we give some devices for proving the above results. First, notice

that in order to prove our theorem, we may assume that $k$ is algebraically closed.(See

$[B, 2.33]$ and [E2, Sec.3].) The following are used when proving the results in II.

(IV.1) (Green-Kawata correspondence, [Kl, Theorem 4.6]) Let $Q$ be a mini-

mal vertex of modules in $\Gamma,$ $H$ the normalizer $N_{G}(Q)$ of $Q$ in $G$ , and let $X$ a module

in $\Gamma$ with $vx(X)=Q,$ $U$ the Green correspondent of $X$ with respect to $(G,Q,H)$ , and

$\Xi$ a connected component of $\Gamma_{s}(kH)$ containing $U$ . Then, there is a vertex preserving

graph monomorphism $\kappa$ from $\Gamma$ to $\Xi$ . Moreover, if $Y$ in $\Gamma$ has $Q$ as its vertex, then

$\kappa(Y)$ is nothing but the Green correspondent of Y. Furthermore, the image $\kappa(\Gamma)$

consists of modules $X’$ with the property:

There exist $kG$-modules $X’=X_{1},$ $X_{2},$ $\ldots X_{m}=X$ such that $X_{n}$ and $X_{n+1}$

are connected by an irreducible map for all $n$ with $0\leq n\leq m-1$ and $vx(X_{n})\geq cQ$

for all $n$ .

(IV.2) By the above result our problem can essentially be reduced to the case

where $Q$ is normal in $G$ . Take $X$ in $\Gamma$ with source $V$ and $vx(X)=Q$ . Let $I$ be the

inertia subgroup of $V$ in $G$ . Then there is an indecomposable direct summand $U$ of

$V^{I}$ such that $U^{G}=X$ . This $U$ is determined uniquely up to isomorphisms and gives a

primitive idempotent $e$ of $E_{I}(V^{I})$ . The following yields that the question on $vx(A(X))$

is equivalent to that on the vertex of the simple module $eE_{I}(V^{I})/eJ(E_{I}(V^{I}))$ ([Ul,

Theorem 5.4]).
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Let $P=vx(A(X))$ . (Note that $P\geq Q$ by (II.2).) Then a vertex of the

simple $E_{I}(V^{I})$-module $eE_{I}(V^{I})/eJ(E_{I}(V^{I}))$ is $P/Q$ .

Notice that $E_{I}(V^{I})$ becomes naturally an $I/Q$-graded algebra over $E_{Q}(V)$ .

Since $k$ is algebraicaly closed, $\overline{E}=E_{I}(V^{I})/(J(E_{Q}(V))E_{I}(V^{I})$ is a twisted group

algebra of $I/Q$ over $k$ .

(IV.3) Here we give an outline of the proof of (II.3) and (II.4). We consider

the following exact sequence which is naturally induced from $A(U)$ . (Here $I(U, U’)$

means $Hom_{kI}(U, U’).)$

$0arrow I(V^{I}, \tau U)arrow I(V^{I}, M(U))arrow\sigma I(V^{I}, U)arrow e\overline{E}/eJ(\overline{E})arrow 0$

Then

$0arrow I(V^{I}, \tau U)arrow I(V^{I}, M(U))arrow{\rm Im}\sigmaarrow 0$

splits as a sequence of $E_{I}(V^{I})$ -modules ([OU1, Prop.4.2]), and thus we get

$I(V^{I}, M(U))\cong I(V^{I}, \tau U)\oplus{\rm Im}\sigma$.

So, first reduce the problem to $U$ and $I$ using (IV.1), [K2] etc. If $vx(A(U))>$

$Q$ , then ${\rm Im}\sigma$ is non-zero indecomposable and not projective as an $E_{I}(V^{I})$-module.

Note that $I(V^{I}, \tau U)$ and $I(V^{I}, U)$ are projective as $E_{I}(V^{I})$ -modules ([OU1, Lemma

3.6]). Hence there must be an indecomposable summand $Y$ of $M(U)$ such that

${\rm Im}\sigma|_{I}(V^{I}, Y)$ . Since ${\rm Im}\sigma$ and $eE_{I}(V^{I})/eJ(E_{I}(V^{I}))$ have the same vertex, this and

(IV.2) give $vx(A(U))=vx(Y)$ . For the unicity of such a summand, we need more

computations on multiplicities.
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(IV.4) The next result gives a decomposition of the restriction of the middle

term to $Q$ , and turns out to be a ve$ry$ powerful device. ( $[G, (7.9)]$ , see also [U2,

Lemma 2.6].)

In the same situation and notation as above, we have

$M(X)_{Q}\cong\oplus_{g\in I\backslash G}\{a(X)(M(V)g)\oplus(b(X)-a(X))(Vg\oplus\tau Vg)\}$ ,

where $a(X)=\dim_{k}e\overline{E}/eJ(\overline{E})$ and $b(X)=\dim_{k}eE_{I}(V^{I})/eJ(E_{Q}(V))E_{I}(V^{I})$ . (Note

also that $X_{Q}=b(X)\oplus_{g}Vg.)$

(IV.5) If $M(X)$ is indecomposable, then $X$ lies at the end of $\Gamma$ and some

computations yield that the tree class is $A_{\infty}$ and we get (ii) of (II.8). On the other

hand, if $M(X)$ is not indecomposable and that $M(X)$ is not Q-projective, then by

(II.4) there is an indecomposable direct summand $X^{/}$ of $M(X)$ with $vx(X’)=Q$ .

Letting $V$ ‘ be a source of $X’$ , (IV.4) implies that $b(X^{/})\leq a(X)$ or $b(X’)\leq 2a(X)$ ,

and $b(X)\leq a(X’)$ or $b(X)\leq 2a(X)$ . Then it follows that $b(X)/a(X)$ is 2, thus

(IV.2) and the fact that $\overline{E}$ is a symmetric algebra imply that we have $p=2$ and

$|vx(Y)$ : $vx(X)|=2$ , where $Y$ is an indecomposable direct summand of $M(X)$ with

$vx(Y)>Q$ . This is a typical argument in the proof of (II.8).

(IV.6) Using this kind of argument and the results of Erdmann (II.6) and

Kawata (IV.1), we can prove the following. (See Proof of [U2, Theorem $A].$ )

Let $X’arrow Xarrow Y$ be a part of $\Gamma$ with $Q=vx(X)=vx(X’)<vx(Y)$ .

Suppose that $Q$ is normal and that $vx(X)$ is not a four group. Then $|vx(Y)$ : $vx(X)|=$

$p=2$ and one of the following holds.

(a) In the tree $T$ , we have a sequence of modules whose vertex $Q$ such that

it is isomorphic to $A_{\infty}$ .
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(b) Modules in the $\tau$-orbits of $X$ and $X’$ are only modules in $\Gamma$ having the

same vertex as of $X$ .

In each case, modules with bigger vertex have $vx(Y)$ as their vertices.

(IV.7) The above and the next result ([U2, Theorem 4.3]) give many restric-

tions on the structure of F.

Let $Xarrow Y$ be a part of $\Gamma$ with $|vx(X)|<|vx(Y)|$ . Suppose that $X$ and $Y$

are non-periodic. Then in the tree $T$ there is a sequence of modules whose vertex is

bigger than or equal to $vx(Y)$ such that it is isomorphic to $A_{\infty}$ .

(IV.8) If $Q$ is not a four group, then the above (IV.6) and (IV.7) easily imply

(II.8). To prove the main theorem in the case where $Q$ is a four group, we use

essentially the same argument and use the structure theorem of $\Gamma_{s}(kQ)$ . We omit the

detail, which is found in [OU2].

V. In order to complete the proof of the main theorem, the following new

idea is necessary. This is a generalization of the fact in (IV.3) and due entirely to

T.Okuyama. We fix the following notation. $Q$ is a normal subgroup of $G$ and $V$ is

an indecomposable G-invariant non-projective $kQ$-module, and for any subgroup $H$

of $G$ with $Q\leq H$ , we write $E_{H}=E_{H}(V^{H})$ and $\overline{E}_{H}=E_{H}/J(E_{Q})E_{H}$ .

(V.1) We now define a category $C(H)$ as follows. Objects of $C(H)$ are short

exact sequences of $kH$-modules

$0arrow\tau Yarrow Zarrow Xarrow 0$

such that

(i) $X$ and $Y$ are isomorphic to direct summands of direct sum of some copies

of $V^{H}$ , and
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(ii) upon the restriction to $kQ$ it is a direct sum of some AR-sequences and

a split short exact sequence.

A morphism of $C(H)$ from an object $0arrow\tau Yarrow Zarrow Xarrow 0$ to another object

$0arrow\tau Y’arrow Z’arrow X’arrow 0$ is a triple $(\gamma, \beta, \alpha)$ of kH-homomorphisms which makes

the following diagram commute.

$0arrow\tau Yarrow Zarrow Xarrow 0$

$\gamma\downarrow$ $\beta\downarrow$ $\alpha\downarrow$

$0arrow\tau Y’arrow Z’arrow X’arrow 0$

Notice that by $[B$ , 2.17.7$]$ and $[G, (7.9)]$ , for any indecomposable direct sum-

mand $X$ of $V^{H}$ , the AR-sequence $A(X)$ is an object of $C(H)$ . Note that varying

subgroups of $G/Q$ , we can define induction, restriction, conjugation functors between

suitable categories. We admit usual subscript superscript notations for those notions.

(V.2) We consider those short exact sequences of group modules and modules

over $\overline{E}_{H}$ constructed naturally from those group modules. This construction is closely

related to arguments in [P] and [U1], and essentially due to those ideas. Define an

equivalence relation $\equiv$ among objects of $C(H)$ by the relation that $S\equiv S’$ if and

only if $S\oplus \mathcal{T}\cong S’\oplus \mathcal{T}’$ for some split short $ex$act sequences $\mathcal{T}$ and $T’$ . Then we can

define a category $\overline{C}(H)$ as follows. Its objects are these equivalence classes. For two

objects $\overline{S}$ and $\overline{S’}$ of $\overline{C}(H)$ , the morphism set $Hom(\overline{S},\overline{S}‘)$ is $Hom(S, S’)/Ker\Sigma$ , where

$Ker\Sigma=$ { $(\gamma,$ $\beta,$ $\alpha)\in Hom(S,$ $S’)|\alpha=\sigma’\delta$ for some $\delta\in Hom_{kH}(X,$ $Z’)$ }.

$\sigma$

(V.3) Let $S$ : $0arrow\tau Yarrow Zarrow Xarrow 0$ be an object of $C(H)$ . Then

$H(V^{H}, X)J(E_{Q})\subseteq Im(\sigma_{*})$ , where $\sigma_{*}$ : $H(V^{H}, Z)arrow H(V^{H}, X)$ is the map naturally

induced from $\sigma$ .
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(V.4) Now we define a functor $F_{H}$ from $\overline{C}(H)$ to Mod $(\overline{E}_{H})$ . Let $S$ : $0arrow$

$\tau Yarrow Zarrow\sigma Xarrow 0$ be a representative of an object of $\overline{C}(H)$ . Then we let $F_{H}(\overline{S})$

be the cokernel of $\sigma_{*}$ . Namely, $F_{H}(\overline{S})=H(V^{H}, X)/{\rm Im}\sigma_{*}$ . Note that (V.3) implies

that $F_{H}(\overline{S})$ becomes an $\overline{E}_{H}$ -module. For a morphism $(\gamma, \beta, \alpha)$ from $S:0arrow\tau Yarrow$

$\sigma’$

$Zarrow\sigma Xarrow 0$ to $S’$ : $0arrow\tau Y’arrow Z’arrow X’arrow 0$ , the map $F_{H}(\overline{(\gamma,\beta,\alpha)})$ from $F_{H}(\overline{S})$

to $F_{H}(S)arrow$ is defined in the obvious way so that the following commutes.

$\sigma$ .
$0arrow(V^{H}, \tau Y)arrow(V^{H}, Z)-arrow(V^{H}, X)arrow F(S)arrow 0$

$\gamma_{*}\downarrow$ $\beta.\downarrow$ $\alpha.\downarrow$ $F_{H}(\overline{(\gamma,\beta,\alpha)})\downarrow$

$\sigma’$.
$0arrow(V^{H}, \tau Y’)arrow(V^{H}, Z’)arrow(V^{H}, X‘)$ $arrow F(S’)arrow 0$ ,

Note that for any indecomposable direct summand $X$ of $V^{H}$ , we have $F_{H}(A(X))=$

$eE_{I}(V^{I})/eJ(E_{I}(V^{I}))$ in the notation of (IV.2). For an object $S$ of $C(H)$ , we also use

$F_{H}(S)$ to mean the object $F_{H}(\overline{S})$ of Mod $(\overline{E}_{H})$ .

(V.5) $F_{H}$ gives a well defined funcor from $\overline{C}(H)$ to Mod $(\overline{E}_{H})$ and commutes

with restriction, induction and conjugation functors. Moreover, it gives an isomor-

phism of categories.

$\sigma$

(V.6) Let $S:0arrow\tau Yarrow Zarrow Xarrow 0$ be an object of $C(H)$ . Then, we have

the following which generalizes the result in (IV.3).

(i) $0arrow$ $H(V^{H}, \tau Y)arrow$ $H(V^{H}, Z)arrow{\rm Im}\sigma_{*}arrow 0$ splits as a sequence of

$E_{H}$ -modules.

(ii) If $F_{H}(S)$ is a non-projective indecomposable $\overline{E}_{H}$-module with vertex $\overline{P}=$

$P/Q$ . Then $Z$ is P-projective and there is a direct sum decomposition $Z=Z_{1}\oplus Z_{0}$

such that

(iia) $Z_{1}$ is indecomposable with $vx(Z_{1})Q=P$ ,
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(iib) $(V^{G}, Z_{1})/Ann(V^{G}, Z_{1})\cong\Omega(F_{H}(S))\oplus B$ , where $B$ is a zero or a projec-

tive E-module and $\Omega$ is taken among $\overline{E}_{H}$ -modules, and

(iic) $(V^{G}, Z_{0})/Ann(V^{G}, Z_{0})$ is a projective $\overline{E}$-module.

Here $Ann(B’)$ denotes {$b\in B’|ba=0$ for all $a$ with $J(E_{Q})a=0$ } for all

$E_{H}$-module $B’$ .

(V.7) Let $H$ be a normal subgroup of $G$ with $Q\leq H$ and $\mathcal{T}$ : $0arrow\tau Yarrow$

$Zarrow Xarrow 0$ be an object of $C(H)$ . Write $\overline{G}=G/Q$ . Assume that $F_{H}(\mathcal{T})$ is

7-invariant, that is, $F_{H}(\mathcal{T})\otimes u_{\overline{g}}\cong F_{H}(\mathcal{T})$ for all $\overline{g}$ in $\overline{G}$. Further, we suppose

that $F_{H}(\mathcal{T})$ is indecomposable and that $vx(F_{H}(\mathcal{T}))\neq\overline{1}$ . Then, by (V.6), there

exists a direct sum decomposition $Z=Z_{0}\oplus Z_{1}$ such that $Z_{1}$ is indecomposable with

$H(V^{H}, Z_{1})/Ann(H(V^{H}, Z_{1}))\cong\Omega(F_{H}(\mathcal{T}))\oplus Z’$ , where $Z’$ is a zero or projective,

and that $Z_{0}$ has no direct summand isomorphic to $Z_{1}$ . In particular, it follows that

$Z_{1}$ is G-invariant since $F_{H}(\mathcal{T})$ is $\overline{G}$-invariant. Put $B=F_{H}(\mathcal{T})$ . Now recall that

$\overline{E}_{G}$ is a twisted group algebra of $\overline{G}$ over $k$ . Thus $End_{\overline{E}_{H}}(B)$ can be regarded as a

subalgebra of $End_{\overline{E}_{G}}(B\otimes_{\overline{E}_{H}}\overline{E}_{G})$ by identifying $f$ in $End_{\overline{E}_{H}}(B)$ with $f\otimes_{\overline{E}_{H}}Id_{\overline{E}_{G}}$ .

Write $E_{G}(B^{G})=End_{\overline{E}_{H}}(B\otimes_{\overline{E}_{H}}\overline{E}_{G})$ and $\tilde{E}_{G}(B^{G})=E_{G}(B^{G})/J(End_{\overline{E}_{H}}(B))E_{G}(B^{G})$

for convenience. Also, we put $\tilde{E}_{G}(Z_{1}^{G})=E_{G}(Z_{1}^{G})/J(End_{kH}(Z_{1}))End_{kG}(L_{1}^{G})$. We

define a map $0$ from $E_{G}(B^{G})$ to $\tilde{E}_{G}(Z_{1}^{G})$ in the following way. First, let $\iota$ : $Z_{1}arrow Z$

and $\pi$ : $Zarrow Z_{1}$ be the injection and the projection with respect to the above

decomposition of $Z$ . Then, $\iota^{G}$ : $Z_{1}^{G}arrow Z^{G}$ and $\pi^{G}$ : $Z^{G}arrow Z_{1}^{G}$ give the injection and

the projection with respect to the decomposition $Z^{G}=Z_{1}^{G}\oplus Z_{0}^{G}$ . Recall also that

$F_{G}(\mathcal{T}^{G})=B\otimes_{\overline{E}_{H}}\overline{E}_{G}$ . For each $\lambda$ in $E_{G}(B\otimes_{\overline{E}_{H}}\overline{E}_{G})$ , choose $(\gamma, \beta, \alpha)$ in End $(T^{G})$

with $F_{G}((\gamma, \beta, \alpha))=\lambda$ . (Such a triple exists by (V.5).) Then, we define $\Theta(\lambda)$ to be

the natural image of the map $\pi^{G}\beta\iota^{G}$ in $\tilde{E}_{G}(Z_{1}^{G})$ . Put

$E_{G}\overline{(B}^{G})=End_{\overline{E}c}(B\otimes_{\overline{E}_{H}}\overline{E}_{G})/J(End_{\overline{E}_{H}}(B))End_{\overline{E}c}(B\otimes_{\overline{E}_{H}}\overline{E}_{G})$ and

$E_{G}\overline{(Z}_{1}^{G})=End_{kG}(Z_{1}^{G})/J(End_{kH}(Z_{1}))End_{kG}(Z_{1}^{G})$ .
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The above $\Theta$ is well defined and induces a k-algebra isomorphism from
$E_{G}\overline{(B}^{G})$ to $E_{G}\overline{(Z}_{1}^{G}$ ).

(V.8) Let $X$ be an indecomposable direct summand of $V^{G}$ . Assume that

$P=vx(A(X))>Q$ . Let $\mathcal{T}$ be an object of $C(P)$ such that $B=F_{H}(\mathcal{T})$ is a source
of $eE_{G}(V^{G})/eJ(E_{G}(V^{G}))$ , and let $I$ be the inertia subgroup of $B$ in $N_{G}(P)$ . Since
$eE_{G}(V^{G})/eJ(E_{G}(V^{G}))$ is simple, the projective indecomposable $E_{I}\overline{(B}^{I}$ )-module cor-

responding to $eE_{G}(V^{G})/eJ(E_{G}(V^{G}))$ (via Green and Clifford correspondence) is also

simple by [Kn, Proposition 3.1]. Thus the $E_{I}\overline{(Z}_{1}^{I}$)-module corresponding to the above

one via (V.7) is also projective and simple. (Here $Z_{1}$ is the module as in (V.6) for

the object $\mathcal{T}$ . Note that $I$ is also the inertia subgroup of $Z_{1}$ in $N_{G}(P).)$ On the other

hand, we can also prove that the $kP$-mosule $Z_{1}$ is the source of the indecomposable

direct sumlnand $Y$ of $M(X)$ with $vx(Y)=P.$ (See (II.4).) Therefore, again by

(IV.2), we have the following.

$vx(Y)=vx(A(X))=vx(A(Y))$ .

(V.9) Of course, the above says that if $Xarrow Y$ is a part of the tree $T$ with

$vx(X)<vx(Y)$ , then the module $Z$ next to $Y$ in $T$ must satisfy $vx(Y)=vx(Z)$ .
Using this, (II.8) and (IV.6), an inductive argument and the reduction methods yield

our main result.
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