<table>
<thead>
<tr>
<th>Title</th>
<th>Perfect Isometries for Blocks with Abelian Defect Groups and Klein Four Inertial Quotients (Representation Theory of Finite Groups and Finite Dimensional Algebras)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Puig, Lluis; Usami, Yoko</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1992), 799: 56-73</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1992-08</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/82823</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Perfect Isometries for Blocks with Abelian Defect

Groups and Klein Four Inertial Quotients

Université de Paris 7 Lluis Puig

Ochanomizu University Yoko Usami (宇佐美陽子)

1. Alperin's weight conjecture for the case of abelian defect groups

Let p be a prime number, k an algebraically closed field of characteristic p, O a complete discrete valuation ring with residue field k and quotient field K of characteristic zero, G a finite group, b a p-block of G (i.e. a primitive idempotent of $Z(kG)$), P a defect group of b, e a root of b in $C_G(P)$ and E the inertial quotient $N_G(P,e)/P C_G(P)$. We assume that K is large enough.

Alperin's weight conjecture states that the number $l(b)$ of isomorphism classes of simple kG_b-modules can be calculated by the function of its local structure. When P is abelian, this is equivalent to the following one. ([1])

Conjecture 1. If P is abelian, then $l(b)$ is the number of isomorphism classes of simple $kN_G(P,e)e$-modules.
This is known to be true if \(|E| \leq 3\) by the results of Brauer (cf. [3], Proposition (6G)) and Usami [13] (except the case \(|E| = 3\) and \(p = 2\)). Here we introduce the result which proves it in the case \(E\) is a Klein four group (and in the case \(|E| = 3\) and \(p = 2\)).

2. Reformed conjecture

First we want to reform Conjecture 1 in terms of a suitable \(k^*\)-central extension of \(E\). Setting \(\overline{N}_G(P,e) = N_G(P,e)/P\), \(\overline{C}_G(P) = C_G(P)/P\) and denoting by \(\overline{e}\) the image of \(e\) in \(k\overline{C}_G(P)\), it is well known from Brauer that \(k\overline{C}_G(P)\overline{e}\) is a simple \(k\)-algebra (i.e. a full matrix algebra over \(k\)) and, in particular, we have \(Z(k\overline{C}_G(P)\overline{e}) \cong k\); hence, by Skolem-Noether’s theorem, we have an exact sequence

\[
1 \rightarrow k^* \rightarrow (k\overline{C}_G(P)\overline{e})^* \xrightarrow{\pi} \text{Aut}(k\overline{C}_G(P)\overline{e}) \rightarrow 1
\]

so that \((k\overline{C}_G(P)\overline{e})^*\) can be seen as a \(k^*\)-central extension. Since \(N_G(P,e)\) acts on \(k\overline{C}_G(P)\overline{e}\), we have a group homomorphism \(\hat{\phi}: \overline{N}_G(P,e) \rightarrow \text{Aut}(k\overline{C}_G(P)\overline{e})\) and then \(\hat{\overline{N}}_G(P,e)\) is the \(k^*\)-central extension of \(\overline{N}_G(P,e)\) induced by \((k\overline{C}_G(P)\overline{e})^*\): that is to say, \(\hat{\overline{N}}_G(P,e)\) is the subgroup of

\[(\overline{a}, \overline{n}) \in (k\overline{C}_G(P)\overline{e})^* \times \overline{N}_G(P,e)\]

such that \(\pi(\overline{a}) = \hat{\phi}(\overline{n})\) and we get a commutative and exact diagram

\[
\begin{array}{ccc}
1 & \rightarrow & k^* & \rightarrow & (k\overline{C}_G(P)\overline{e})^* & \xrightarrow{\pi} & \text{Aut}(k\overline{C}_G(P)\overline{e}) & \rightarrow & 1 \\
\uparrow{id} & & \uparrow{\hat{\phi}} & & \uparrow{\pi} & & \uparrow{\hat{\phi}} & & \uparrow{\pi} \\
1 & \rightarrow & k^* & \rightarrow & \hat{\overline{N}}_G(P,e) & \rightarrow & \overline{N}_G(P,e) & \rightarrow & 1
\end{array}
\]

Now, the twisted algebra \(k^*\hat{\overline{N}}_G(P,e)\) is the quotient of the full group algebra by the ideal generated by the elements \(\lambda(\overline{a}, \overline{n}) - (\lambda \overline{a}, \overline{n})\) where \(\lambda\) runs over \(k^*\) and \((\overline{a}, \overline{n})\) over \(\hat{\overline{N}}_G(P,e)\). (We can
define $0_* \hat{N}_G(P,e)$, since there is a unique section $k^* \rightarrow 0^*$ of the canonical homomorphism $0^* \rightarrow k^*$. Moreover, we have an injective group homomorphism

$$\hat{C}_G(P) \rightarrow \hat{N}_G(P,e)$$

mapping $\tilde{z} \in \hat{C}_G(P)$ on $(\tilde{z}e, \tilde{z}) \in \hat{N}_G(P,e)$ and its image is a normal subgroup of $\hat{N}_G(P,e)$ intersecting trivially the image of k^*, so the corresponding quotient is a k^*-central extension of E. We denote by \hat{E} the opposite one; that is to say, denoting by $\hat{N}_G(P,e)^*$ the set $\hat{N}_G(P,e)$ endowed with opposite product, we have the exact sequence

$$1 \rightarrow \hat{C}_G(P) \rightarrow \hat{N}_G(P,e)^* \rightarrow \hat{E} \rightarrow 1$$

where $\tilde{z} \in \hat{C}_G(P)$ maps on $(\tilde{z}e, \tilde{z})^{-1}$. The following more or less known lemma explains the role of \hat{E} (see also [9], Proposition 14.6 in [11], Proposition 2.1 in [10] and Lemma 2.5 in [12]).

Lemma 1. With the notation above, there is an algebra isomorphism

$$k\hat{N}_G(P,e)e \cong k\hat{C}_G(P)e \otimes_{k^*} \hat{E}$$

mapping \tilde{ne} on $\hat{f}(\tilde{n}) \otimes_{\hat{E}} (\tilde{n})^{-1}$, where $\tilde{n} \in \hat{N}_G(P,e)$ and \tilde{n} is an element of $\hat{N}_G(P,e)$ lifting \tilde{n}.

Let \hat{L} be the semidirect product of \hat{E} and P. Since the number of isomorphism classes of simple $k_\hat{L}$-modules is equal to the number of isomorphism classes of simple $k_*\hat{E}$-modules, we can reform Conjecture 1 by Lemma 1 as follows.

Conjecture 2. If P is abelian, then $1(b)$ is the number of
isomorphism classes of simple $k_\hat{L}$-modules.

Hence we must study the relation between $OG\hat{b}$ and $O_\hat{L}$, where \hat{b} denotes the unique primitive idempotent lifting b to $Z(OG)$. We denote respectively by $L_\hat{K}(\hat{L})$ and $L_\hat{K}(G,b)$ the Grothendieck groups of the categories of $K_\hat{L}$-modules and ordinary K-representations of G in b. We expect that there exists a special kind of bijective isometry between $L_\hat{K}(\hat{L})$ and $L_\hat{K}(G,b)$.

3. Preliminaries and the main theorem

Following [2] and [6], we consider Brauer morphism $Br_\mathbb{Q}$ for a p-subgroup Q of G and (b,G)-Brauer pairs. Note that (P,e) is a maximal (b,G)-Brauer pair and for a p-subgroup Q of P, $(Q,e^{C_G(Q)})$ is a (b,G)-Brauer pair contained in (P,e). One of the typical properties of blocks with abelian defect groups is the following one.

Lemma 2. (Proposition 4.21 in [2]) Assume that P is abelian. If (Q,f) is a (b,G)-Brauer pair such that $(Q,f) \subseteq (P,e)$ and x an element of G such that $(Q,f)^x \subseteq (P,e)$, then there are $z \in C_G(Q)$ and $n \in N_G(P,e)$ such that $x = zn$. In particular, if U is a set of representatives for the orbits of E in P, then
\[
\{ (u, e^{C_G(u)}) \}_{u \in U}
\]
is a set of representatives for the conjugacy classes of (b,G)-Brauer elements.

It is not difficult to handle $O_\hat{L}$, since there are a finite
subgroup L' of \hat{L} and a p-block b' of L' such that the inclusion $L' \subset L$ induces a bijective isometry $L_K(\hat{L}) = L_K(L', b')$ and an algebra isomorphism $O_\hat{L} \cong OL' \hat{b}'$ (see Remark 5 in section 1 in [8], Lemma 5.5 and Proposition 5.15 in [11]). Furthermore P is also a defect group of b' and E is also the inertial quotient of b', since P is the normal Sylow p-subgroup of L' and $(P, Br_p(b'))$ is the unique maximal (b', L')-Brauer pair. We remark that (3.1) $(Q, Br_Q(b'))$ is the unique (b', L')-Brauer pair for a fixed p-subgroup Q of P.

From now on we introduce some general notation and results without any hypothesis until we state Theorem 1 (i.e. E is arbitrary and we do not assume that P is abelian for the moment). We denote by $CF_K(G)$ and $CF_0(G)$ the sets of K- and O-valued central functions over G, so that $CF_0(G) \subset CF_K(G)$, and we identify $CF_K(G)$ with $K \otimes O CF_0(G)$ and with the set of central K-linear forms over KG (or OG). We denote respectively by $L_K(G)$ and $L_k(G)$ the Grothendieck groups of the categories of KG- and kG-modules (of finite dimension) and we identify $L_K(G)$ with its image in $CF_0(G)$. We also identify any element of $L_k(G)$ with its Brauer character; that is to say, denoting respectively by $BCF_K(G)$ and $BCF_0(G)$ (BCF for "Brauer central function") the sets of K- and O-valued G-central functions over the set G_p of elements of G of order prime to p, we also identify $L_k(G)$ with its image in $BCF_0(G)$ and $BCF_K(G)$ with $K \otimes O BCF_0(G)$. Recall that the inclusion $L_k(G) \subset BCF_0(G)$ induces an isomorphism

(3.2) $0 \otimes L_k(G) \cong BCF_0(G)$.

Following Brauer, we denote by
\[d_G : \text{CF}_K(G) \rightarrow \text{BCF}_K(G) \]

the restriction map, which fulfills

(3.3) \[d_G(L_K(G)) = L_K(G). \]

Moreover we denote by \(\text{CF}_K^0(G) \) the kernel of \(d_G \) and set \(L_K^0(G) = \text{CF}_K^0(G) \cap L_K(G) \). It is clear that \(d_G \) induces a bijection between the orthogonal subspace of \(\text{CF}_K^0(G) \) and \(\text{BCF}_K(G) \), and then the inverse map determines a section of \(d_G \)

\[e_G : \text{BCF}_K(G) \rightarrow \text{CF}_K(G) \]

and induces an scalar product on \(\text{BCF}_K(G) \); thus, \(d_G \) and \(e_G \) become adjoint maps.

More generally, following Broué [4], for any \(p \)-element \(u \) of \(G \), we consider the "twisted" restriction

\[d_G^u : \text{CF}_K(G) \rightarrow \text{BCF}_K(C_G(u)) \]

mapping \(\chi \in \text{CF}_K(G) \) on the \(C_G(u) \)-central function over \(C_G(u)_p \), which maps \(s \in C_G(u)_p \) on \(\chi(us) \), and denote by

\[e_G^u : \text{BCF}_K(C_G(u)) \rightarrow \text{CF}_K(G) \]

the adjoint \(K \)-linear map, which is a section of \(d_G^u \).

It is well-known that any idempotent of \(Z(kG) \) determines a selfadjoint projector over \(\text{CF}_K(G) \) which stabilizes \(\text{CF}_0(G) \) and \(L_K(G) \), and commutes with \(e_G d_G \), so that it determines a self-adjoint projector over \(\text{BCF}_K(G) \) stabilizing \(\text{BCF}_0(G) \) and \(L_K(G) \).

In particular, for any element \(\chi \) of \(\text{CF}_K(G) \) or \(\text{BCF}_K(G) \), we denote by \(b.\chi \) the image of \(\chi \) by the projector determined by \(b \) and set

\[b.\text{CF}_K(G) = \text{CF}_K(G,b) \quad \text{and} \quad b.\text{BCF}_K(G) = \text{BCF}_K(G,b). \]

Moreover, for any \(p \)-element \(u \) of \(G \), we have (cf. [4] Appendixes)

(3.4) \[d_G^u(b.\chi) = Br_u^b(d_G^u(\chi)) \quad \text{and} \quad e_G^u(Br_u(b.\varphi)) = b.e_G^u(\varphi) \]

for any \(\chi \in \text{CF}_K(G) \) and any \(\varphi \in \text{BCF}_K(C_G(u)) \) (where \(Br_u = Br_{\langle u \rangle} \)).
Consequently, for any \(\chi \in CF_K(G, b) \) and any \((b, G)\)-Brauer element \((u, g)\) we consider the central function
\[
\chi^{(u, g)} = e^u_g \cdot d^u_g(\chi)
\]
which still belongs to \(CF_K(G, b) \). Notice that we have
\[
\chi^{(u, g)}(u) = \chi(u\widehat{g}),
\]
where \(\widehat{g} \) is the unique primitive idempotent of \(Z(O\mathcal{C}_G(u)) \) lifting \(g \). We remark that
\[
(3.5) \quad \chi = \sum_{(u, g)} \chi^{(u, g)}
\]
and for any \(\chi, \chi' \in CF_K(G, b) \) we get
\[
(3.6) \quad (\chi, \chi')_G = \sum_{(u, g)} (\chi^{(u, g)}, \chi'^{(u, g)})_G
\]
where \((u, g)\) runs over a set of representatives for the conjugacy classes of \((b, G)\)-Brauer elements.

Following [6], a central function \(\lambda \) over \(P \) is called \((G, e)\)-stable if, for any \((b, G)\)-Brauer element \((u, g)\) such that \((\langle u \rangle, g) \subset (P, e)\) and any \(x \in G \) such that \((\langle u^x \rangle, g^x) \subset (P, e)\), we have \(\lambda(u^x) = \lambda(u) \). In that case, for any \(\chi \in CF_K(G, b) \), we consider the new central function
\[
\lambda \ast \chi = \sum_{(u, g)} \lambda(u) \chi^{(u, g)}
\]
where \((u, g)\) runs over a set of representatives such that \((\langle u \rangle, g) \subset (P, e)\) for the conjugacy classes of \((b, G)\)-Brauer elements, which still belongs to \(CF_K(G, b) \) and does not depend on the choice of the set of representatives. We remark that
\[
g \cdot d^u_g(\lambda \ast \chi) = \lambda(u) (g \cdot d^u_g(\chi)).
\]
Then, by the main result in [6], if \(\lambda \) and \(\chi \) are generalized characters, so is \(\lambda \ast \chi \). Notice that, by Lemma 2, if \(P \) is
abelian, a central function over P is (G,e)-stable if and only if it is E-stable. We denote by $\text{CF}_0(P)^E$ the 0-module of E-stable 0-valued central functions over P.

We are ready to state our main theorem (Theorem 1.5 in [12]).

Theorem 1. With the notation above, assume that P is abelian and E is a Klein four group. Then there is a bijective isometry

$$\Delta : \text{CF}_0(\hat{L}) \rightarrow \text{CF}_0(G,b)$$

such that

$$\Delta (L_K(\hat{L})) = L_K(G,b)$$

and

$$(3.7) \quad \Delta (\lambda \ast \eta) = \lambda \ast \Delta (\eta)$$

for any $\lambda \in \text{CF}_0(P)^E$ and any $\eta \in \text{CF}_0(\hat{L})$.

(3.7) implies that Δ fulfills Definition 4.3 in [5] (i.e. (3.7) guarantees the existence of a local system in Broué's terms) and therefore, by Lemma 4.5 in [5], Δ is a perfect isometry in Broué's terms. (We discuss perfect isometries in section 5.) By Proposition 1.3 and Theorem 1.5 in [5] we have a following corollary.

Corollary 1. If P is abelian and E is a Klein four group, then the following hold with the notation of Theorem 1.

(i) Δ is a perfect isometry from $L_K(\hat{L})$ onto $L_K(G,b)$.

(ii) Δ induces a bijective isometry from $L_K(\hat{L})$ onto $L_K(G,b)$ and hence Alperin's weight conjecture (Conjecture 2) holds in this case.
(iii) The algebra isomorphism Δ^* from $Z(K^\wedge_{\mathbb{Q}})$ onto $Z(KG^\wedge)$ determined by the isometry Δ maps $Z(O^\wedge_{\mathbb{Q}})$ onto $Z(OG^\wedge)$.

(iv) Δ preserves the height of irreducible ordinary characters. In particular, all the irreducible ordinary characters of G in b have height zero and Alperin-McKay conjecture holds in this case.

(v) Δ preserves the elementary divisors of the Cartan matrices.

4. Local systems for blocks with abelian defect groups

Before we introduce Theorem 2 in this section, we assume only that P is abelian (and E is arbitrary).

By Lemma 2, E controls the fusion of (b,G)-Brauer pairs (resp. (b',L')-Brauer pairs). Then in the summation of (3.5) we have only to make u run over U.

Applying inductive method, we hope to construct a bijective isometry Δ_Q from $\text{CF}_0(L)^Q$ onto $\text{CF}_0(G)^Q$, for each p-subgroup Q of P where $f = e^Q_{C_G(Q)}$. (That is to say, first we construct it for $Q = P$ and we hope to construct it for $Q = 1$ finally.) We note that (P,e) is also a maximal $(f,C_G(Q))$-Brauer pair and (u,g) is a $(f,C_G(Q))$-Brauer element contained in it for any element u of P, where $g = e^Q_{C_G(Q)}$. By Lemma 2, $C_E(Q)$ controls the fusion of $(f,C_G(Q))$-Brauer pairs, and by (3.5) for any $\chi \in \text{CF}_K(C_G(Q),f)$

\begin{equation}
\chi = \sum_{u \in U_Q} e^u_{C_G(Q)} (g.d^u_{C_G(Q)}(\chi))
\end{equation}
where U_Q is a set of representatives for the orbits of $C_E(Q)$ in P. Similarly we note that $(P, Br_P(b'))$ is the maximal $(Br_Q(b'), C_L(Q))$-Brauer pair and $(u, Br_Q(u))(b')$ is a $(Br_Q(b'), C_L(Q))$-Brauer element contained in it for any element u of P by (3.1).

By Lemma 2 and (3.5) for any $\eta \in CF_K(C_L(Q))$

$$\eta = \sum_{u \in U_Q} e_{C_L(Q)}^u (d_{C_L(Q)}^u(\eta)),$$

since we can omit $Br_Q(u)(b')$ by (3.1) and (3.4).

Let X be an E-stable non-empty set of subgroups of P and assume that X contains any subgroup of P containing an element of X. We call any map γ (G,b)-local system over X, if γ is defined over X and sends $Q \in X$ to a bijective isometry

$$\gamma_Q : BCF_K(C_L(Q)) \cong BCF_K(C_G(Q), f)$$

where $f = e_{C_G(Q)}$, and fulfills the following two conditions:

(4.3) For any $Q \in X$, any $\eta \in BCF_K(C_L(Q))$ and any $s \in E$, we have

$$\gamma_Q^s(\eta) = \gamma_Q^s(\eta).$$

(4.4) For any $Q \in X$ and any $\eta \in L_K(C_L(Q))$, the sum

$$\sum_{u \in U_Q} e_{C_G(Q)}^u (\gamma_Q^u(d_{C_L(Q)}^u(\eta)))$$

is a generalized character of $C_G(Q)$.

We examine these conditions to give more explicit expression.

For any $Q \in X$ and any $\eta \in CF_K(C_L(Q))$, the sum

$$\Delta_Q^s(\eta) = \sum_{u \in U_Q} e_{C_G(Q)}^u (\gamma_Q^u(d_{C_L(Q)}^u(\eta)))$$

is certainly an element of $CF_K(C_G(Q), f)$ (cf.(3.4), (4.1) and (4.2)), and we have, setting $g = e_{C_G(Q)}(u)$,
(4.6) \[\Delta_Q(\eta)^{(u,g)} = e^u_{C_G(Q)}(\Gamma_Q \omega) d^u_{C^\wedge_L(Q)}(\eta) \]

and therefore, for any \(\eta' \in CF_K(C^\wedge_L(Q)) \) we get (cf.(3.6))

\[(\Delta_Q(\eta), \Delta_Q(\eta'))_{C_G(Q)} \]
\[= \sum_{u \in U_Q} (d^u_{C^\wedge_L(Q)}(\eta), d^u_{C^\wedge_L(Q)}(\eta'))_{C^\wedge_L(Q)}(\omega_u) \]
\[= (\eta, \eta')_{C^\wedge_L(Q)} \]

(recall that \(e^u_{C_G(Q)} \) and \(e^u_{C^\wedge_L(Q)} \) are isometries!). Hence for any \(Q \in X \) we get a bijective isometry

(4.7) \[\Delta_Q = \sum_{u \in U_Q} e^u_{C_G(Q)} \Gamma_Q \omega_u d^u_{C^\wedge_L(Q)} \]

from \(CF_K(C^\wedge_L(Q)) \) onto \(CF_K(C_G(Q), f) \) and condition (4.3) insures that \(\Delta_Q \) does not depend on the choice of \(U_Q \) whereas condition (4.4) demands that \(L_K(C^\wedge_L(Q), f) \) contains \(\Delta_Q(L_K(C^\wedge_L(Q))) \) which actually implies the equality

(4.8) \[\Delta_Q(L_K(C^\wedge_L(Q))) = L_K(C_G(Q), f) \]

since both members have orthonormal basis of the same cardinal (cf.(4.7)). Moreover, notice that \(d_{C_G(Q)} \circ \Delta_Q = \Gamma_Q \omega d_{C^\wedge_L(Q)} \) (cf. (4.5)) and therefore we get (cf.(3.3) and (4.8))

\[\Gamma_Q(L_K(C^\wedge_L(Q))) = L_K(C_G(Q), f) \]

which then implies (cf.(3.2))

(4.9) \[\Gamma_Q(BCF_0(C^\wedge_L(Q))) = BCF_0(C_G(Q), f). \]

Consequently, since (4.9) is true for any \(R \in X \) and the maps \(d^u_{C^\wedge_R(Q)} \) and \(e^u_{C_G(Q)} \) send \(0 \)-valued functions to \(0 \)-valued functions, we have for any \(Q \in X \)

(4.10) \[\Delta_Q(CF_0(C^\wedge_L(Q))) = CF_0(C_G(Q), f). \]
An immediate consequence of the definition of \(\Delta_Q \), which does not depend on conditions (4.3) and (4.4), is that for any \(Q \in X \), any \(\lambda \in CF_K(P)_{C_E(Q)} \) and any \(\eta \in CF_K(C_L(Q)) \) we have

\[
\Delta_Q(\lambda \ast \eta) = \lambda \ast \Delta_Q(\eta).
\]

These (4.8), (4.10) and (4.11) show that for any \(Q \in X \), \(\Delta_Q \) (for \(C_L(Q) \) and \(C_G(Q), f \)) fulfills the similar conditions to \(\Delta \) (for \(\widehat{L} \) and \((G,b) \)) in Theorem 1. (Hence, if \(1 \in X \), then \(\Delta = \Delta_1 \) is a required one in Theorem 1.) Since \(C_L(P) \cong k^* \times P \), we can easily prove that there are exactly two \((G,b)\)-local systems defined over \(\{P\} \) (cf. (4.11)). (Notice that, up to sign, there is just one possibility for the isometry \(\Gamma_P \).

We want to extend \(X \) and \(\Gamma \) step by step. Assume that \(X \) does not contain all the subgroups of \(P \) and let \(Q \) be a subgroup of \(P \) which is maximal such that \(Q \not\in X \). We will discuss now a necessary and sufficient condition to extend \(\Gamma \) to a \((G,b)\)-local system \(\Gamma' \) over the union \(X' \) of \(X \) and the \(E \)-orbit of \(Q \). Since any subgroup \(R \) of \(P \) properly containing \(Q \) belongs to \(X \), for any \(u \in P - Q \) we still have the map (as in (4.6))

\[
e^u_{C_G(Q)} \ast \Gamma_Q \ast d^u_{C_L(Q)} : CF_K(C_L(Q)) \longrightarrow CF_K(C_G(Q), f)
\]

where \(f = e \). We consider the sum

\[
\Delta_Q^\circ = \sum_{u \in U_Q - Q} e^u_{C_G(Q)} \ast \Gamma_Q \ast d^u_{C_L(Q)}
\]

where, as above, \(U_Q \) is a set of representatives for the orbits of \(C_E(Q) \) in \(P \) and by condition (4.3) again, \(\Delta_Q^\circ \) does not depend on the choice of \(U_Q \).

Denote by \(\bar{f} \) the image of \(f \) in \(kC_G(Q) \), where we set \(\bar{C}_G(Q) = \)...
\(\mathcal{C}_G(Q)/Q \). We also set \(\mathcal{C}_L(Q) = \mathcal{C}_L(Q)/Q \). In [12] we proved following propositions (Proposition 3.7 and Proposition 3.11).

Proposition 1. With the notation and the hypothesis above, \(\Delta^*_Q \) induces a bijective isometry

\[
\Delta^*_Q : \text{CF}_K(\mathcal{C}_L(Q)) \cong \text{CF}_K(\mathcal{C}_G(Q), \mathcal{f})
\]
such that \(\Delta^*_Q(L_K(\mathcal{C}_L(Q))) \subset L_K(\mathcal{C}_G(Q), \mathcal{f}) \).

Proposition 2. With the notation and the hypothesis above, the \((G,b)\)-local system \(\Gamma \) over \(X \) can be extended to a \((G,b)\)-local system \(\Gamma' \) over \(X' \) if and only if the bijective isometry \(\Delta^*_Q \) can be extended to a \(N_E(Q) \)-stable bijective isometry

\[
\Delta_Q : \text{CF}_K(\mathcal{C}_L(Q)) \cong \text{CF}_K(\mathcal{C}_G(Q), \mathcal{f})
\]
such that \(\Delta_Q(L_K(\mathcal{C}_L(Q))) = L_K(\mathcal{C}_G(Q), \mathcal{f}) \).

Now we try to extend \(\Delta^*_Q \) to a \(N_E(Q) \)-stable bijective isometry \(\Delta_Q \). When \(E \) is a Klein four group, we obtain the following slightly stronger theorem (Theorem 4.2 in [12]) than Theorem 1. Unfortunately we do not succeed when \(E \) is cyclic of order 4.

Theorem 2. If \(P \) is abelian and \(E \) is a Klein four group, then there is a \((G,b)\)-local system over the set of all the subgroups of \(P \).

5. Perfect isometry
In this section we introduce some Broué's terms. Let \((H, f)\) (resp. \((H', f')\)) be a pair of a finite group \(H\) and its block \(f\) (resp. a finite group \(H'\) and its block \(f'\)).

Definition 1 (Definition 1.4 and Proposition 4.1 in [5]). A bijective isometry \(I\) from \(L_K(H, f)\) onto \(L_K(H', f')\) is called a perfect isometry if it induces a bijection from \(CF_0(H, f)\) onto \(CF_0(H', f')\) and a bijection from \(BCF_K(H, f)\) onto \(BCF_K(H', f')\). (We can extend \(I\) \(K\)-linearly.)

Such special kind of bijective isometry has various properties as follows.

Proposition 3 (Proposition 1.3 and Theorem 1.5 in [5]). If \(I\) is a perfect isometry from \(L_K(H, f)\) onto \(L_K(H', f')\), then the following hold.

(i) \(I\) induces a bijective isometry from \(L_K(H, f)\) onto \(L_K(H', f')\) and then \(l(f) = l(f')\).

(ii) \(I\) induces a bijective isometry from the \(Z\)-module generated by the characters of projective \(OH\hat{f}\)-modules onto the \(Z\)-module generated by the characters of projective \(OH'\hat{f}'\)-modules.

(iii) The bijection between primitive idempotents of \(ZKH\hat{f}\) and \(ZKH'\hat{f}'\) defined by \(I\) induces an algebra isomorphism between \(ZOH\hat{f}\) and \(ZOH'\hat{f}'\).

(iv) \(I\) preserves the height of irreducible ordinary characters and the elementary divisors of the Cartan matrices.
Let \((P, f_P)\) be a maximal \((f, H)\)-Brauer pair and for any \(p\)-subgroup \(Q\) of \(P\), let \((Q, f_Q)\) be a \((f, H)\)-Brauer pair contained in it.

Definition 2. Let \(\text{Br}_f(H)\) be the category whose objects are \((f, H)\)-Brauer pairs and whose morphisms from \((Q, f_Q)\) to \((R, f_R)\) are the homomorphisms from \(Q\) to \(R\) induced by the inner automorphisms of \(G\) which send \((Q, f_Q)\) onto a pair contained in \((R, f_R)\). This is called the Brauer category of \(H\) for \(f\).

Hypothesis for pairs \((H, f)\) and \((H', f')\) (Hypothesis 4.2 in [5]). We suppose that \(P\) is a defect group of \(f\) and \(f'\). We also suppose that the inclusions of \(P\) in \(H\) and \(H'\) induce a equivalence of Brauer categories \(\text{Br}_f(H)\) and \(\text{Br}_{f'}(H')\).

Definition 3 (Definition 4.3 in [5]). With the above Hypothesis, a linear map \(I\) from \(\text{CF}_K(H, f)\) to \(\text{CF}_K(H', f')\) is called compatible with the fusion, if for every cyclic subgroup \(<u>\) of \(P\), there exists a linear map \(I_{p'}^{<u>}\) from \(\text{BCF}_K(C_H(u), f'_{<u>})\) onto \(\text{BCF}_K(C_{H'}(u), f'_{<u>})\) such that

\[
(f'_{<u>} \cdot d^u_{H'}) \circ I = I_{p'}^{<u>} \circ (f'_{<u>} \cdot d^u_{H'}).
\]

Here the family \(\{ I_{p'}^{<u>} \mid <u> \subseteq P \}\) is called the local system of \(I\).

**Definition 4 (Definition 4.6 and "good definition" in its
Remark in [5]). We say that the pair \((H,f)\) and \((H',f')\) are the same type (in "good definition"), if the following conditions are satisfied.

(i) The Brauer categories \(\text{Br}_f(H)\) and \(\text{Br}_{f'}(H')\) are equivalent.

(ii) There exists a family of perfect isometries

\[
\{I^Q : L_K(C_H(Q),f_Q) \longrightarrow L_K(C_{H'}(Q),f'_Q) \mid Q \subseteq P\}
\]

such that if for any \(Q\) we denote by

\[
I^Q_p' : BCF_K(C_H(Q),f_Q) \longrightarrow BCF_K(C_{H'}(Q),f'_Q)
\]

the map induced by \(I^Q\), then \(I^Q\) is compatible with the fusion and its local system is

\[
\left\{I^Q_p' \mid \langle u \rangle \subseteq C_p(Q)\right\}.
\]

Broué conjectured that if \(b\) has an abelian defect group \(P\), and \((P,e)\) is a maximal \((b,G)\)-Brauer pair, then \((G,b)\) and \((N_G(P,e),e)\) are the same block type (Conjecture 6.1 in [5]).

By Lemma 2 \(\text{Br}_b(G)\) and \(\text{Br}_e(N_G(P,e))\) are equivalent. Notice that by (4.5) for any \(p\)-subgroup \(Q\) of \(P\) and any \(u \in U_Q\) we have

\[
g^{-d_{C_G(Q)}} \Delta_Q = \Gamma_{Q,\langle u \rangle} \circ d_{C_L(Q)}
\]

and in particular, \(\Gamma_Q\) is the restriction of \(\Delta_Q\) to \(BCF_K(C_L(Q))\).

Then by (4.8), (4.10) and Theorem 2, this conjecture holds when \(E\) is a Klein four group (and it also holds when \(|E| \leq 3\)).
REFERENCES

 Weights for finite groups, in Proc. of Sym.

 Local methods in block theory, Ann of Math.,
 110 (1979), 143-157

 Some applications of the theory of blocks of
 characters of finite groups IV, J. of Algebra,
 17 (1971), 489-521

 Radical, hauteurs, p-sections et blocs, Ann. of
 Math., 107 (1978), 89-107

 Isométries parfaites, types de blocs,
 catégories dérivées, Astérisque 181-182 (1990),
 61-92

 Characters and local structures in G-algebras,
 J. of Algebra, 63 (1980), 306-317

 A Frobenius theorem for blocks, Inventiones
 Math., 56 (1980), 117-128

[8] S. B. CONLON
 Twisted group algebras and their representations,

[9] B. KÜLSHAMMER
 Crossed products and blocks with normal defect
 groups, Comm. Algebra, 13 (1985), 147-168

[10] L. PUIG
 Pointed groups and construction of characters,
[1] L. Puig
Pointed groups and construction of modules, J. of Algebra, 116 (1988), 7-129

Perfect isometries for blocks with abelian defect groups and Klein four inertial quotient,
submitted to J. of Algebra

[3] Y. Usami
On p-blocks with abelian defect groups and inertial index 2 or 3, I, J. of Algebra, 119 (1988), 123-146