ON AUSLANDER-REITEN QUIVERS
OF FINITE GROUPS

大阪市立大学理学部 河田成人 (Shigeto KAWATA)

1. Introduction

Let G be a finite group and k a field of characteristic $p > 0$. Let $\Gamma_s(kG)$ be the stable Auslander-Reiten quiver of the group algebra kG. By Webb's Theorem, the tree class of a connected component Δ of $\Gamma_s(kG)$ is restricted. We summarize results from [W, O1, Bt1, E-S] on the graph structure of connected components of $\Gamma_s(kG)$.

Theorem 1.1([W], [O1], [Bt1], [E-S]). Let Δ be a connected component of $\Gamma_s(kG)$. Then the tree class of Δ is A_n, $\tilde{A}_{1,2}$, \tilde{B}_3, A_∞, B_∞, C_∞, D_∞ or A_∞^∞. If k is algebraically closed, then the tree class is not B_∞ or C_∞. Moreover if the tree class or the reduced graph of Δ is Euclidean, then the modules in Δ lie in a block whose defect group is a Klein four group $C_2 \times C_2$.

Moreover if Δ contains the trivial kG-module k, then the graph structure of Δ has been investigated [W, L, O1, E2].
Theorem 1.2([W], [L], [O1], [E2]). Let Δ_0 be the connected component containing the trivial kG-module k and T the tree class of Δ_0. Let P be a Sylow p-subgroup of G. Then:

1. If P is cyclic, then $T = A_n$ for some n.
2. If $P = C_2 \times C_2$ and $N_G(P) = C_G(P)$, then $T = \tilde{A}_{1,2}$.
3. If $P = C_2 \times C_2$ and $N_G(P) \neq C_G(P)$ but k does not contain a primitive cube root of unity, then $T = \tilde{B}_3$.
4. If P is a dihedral 2-group and neither (2) nor (3) holds, then $T = A_\infty$. Moreover if P is dihedral of order at least 8, then $\Delta_0 \cong ZA_\infty$.
5. If P is a semidihedral 2-group, then $T = D_\infty$ and $\Delta_0 \cong ZD_\infty$.
6. If P is a generalized quaternion 2-group, then $T = A_\infty$ and Δ_0 is a 2-tube.
7. $T = A_\infty$ and $\Delta_0 \cong ZA_\infty$ otherwise.

Here we study a connected component of $\Gamma_s(kG)$ containing an indecomposable kG-module whose k-dimension is not divided by p. Suppose that M is an indecomposable kG-module and $p \nmid \dim_k M$. In Section 2, we will show that M lies in a connected component isomorphic to ZA_∞ if k is an algebraically closed field of odd characteristic and a Sylow p-subgroup of G is not cyclic. In Sections 3 and 4 we consider the situation where $p = 2$ and a Sylow 2-subgroup of G is dihedral of order at least 8 or semidihedral. In Section 5 we make some remarks on tensoring the component containing the trivial kG-module k with M.

The notation is almost standard. For an indecomposable non-projective kG-module W, we write $A(W)$ to denote the Auslander-Reiten sequence (AR-sequence) $0 \rightarrow \Omega^2 W \rightarrow m(W) \rightarrow W \rightarrow 0$.
terminating at W, where Ω is the Heller operator. The symbol \otimes denotes tensor product over the coefficient field k. For an exact sequence of kG-modules $S : 0 \to A \to B \to C \to 0$ and a kG-module W, we write $S \otimes W$ to denote the tensor sequence $0 \to A \otimes W \to B \otimes W \to C \otimes W \to 0$. For tensoring the AR-sequence with an indecomposable kG-module, see [A-C, B-C]. If an exact sequence of kG-modules S is of the form $0 \to \Omega^2 W \oplus U' \to m(W) \oplus U \oplus U' \to W \oplus U \to 0$, where W is an indecomposable non-projective kG-module, and U and U' are projective or 0, we say that S is the AR-sequence $A(W)$ \textit{modulo projectives}. Concerning some basic facts and terminologies used here, we refer to [Bn], [F] and [G].

2. ZA_{∞}--Component

Throughout this section, we assume that

\(#2\) k is algebraically closed and a Sylow p-subgroup P of G is not cyclic, dihedral, semidihedral or generalized quaternion.

First of all, we show

Theorem 2.1. Suppose that Θ is a connected component of $\Gamma_s(kG)$ containing an indecomposable kG-module whose k-dimension is not divided by p. Then

(1) Θ is isomorphic to ZA_{∞} or ZD_{∞}.

(2) If p is odd, then Θ is isomorphic to ZA_{∞}.
(3) All modules in \(\Theta \) have the same vertex \(P \).

Remark. The above (3) follows from [U, Theorem 4.3].

Let \(M \) be an indecomposable \(kG \)-module with a Sylow \(p \)-subgroup \(P \) of \(G \) as vertex, and let \(S \) be a \(P \)-source of \(M \). Then \(p \nmid \dim_k M \) if and only if \(p \nmid \dim_k S \) from [B-C, Proposition 2.4].

Proposition 2.2. Let \(M \) be an indecomposable \(kG \)-module such that \(p \nmid \dim_k M \), and let \(S \) be a \(P \)-source of \(M \). Let \(\Theta \) be the connected component of \(\Gamma_S(kG) \) containing \(M \), and let \(\Xi \) be the connected component of \(\Gamma_S(kP) \) containing \(S \). Then

1. \(\Theta \) is isomorphic to \(ZA_\infty \) if and only if \(\Xi \) is isomorphic to \(ZA_\infty \).
2. \(M \) lies at the end of \(ZA_\infty \)-component if and only if \(S \) lies at the end of \(ZA_\infty \)-component.
3. Suppose that \(\Theta \) is isomorphic to \(ZA_\infty \) and \(M \) lies at the end of \(\Theta \). Let \(M_1 \rightarrow M_2 \rightarrow \cdots \rightarrow M_n \rightarrow \cdots \) is a maximal tree of \(\Theta \) with an irreducible map \(M_{n+1} \rightarrow M_n \) (\(n \geq 1 \)). Then there is a \(P \)-source \(S_n \) of \(M_n \) (\(n \geq 2 \)) such that \(S \rightarrow S_2 \rightarrow \cdots \rightarrow S_n \rightarrow \cdots \) is a maximal tree of \(\Xi \) with an irreducible map \(S_{n+1} \rightarrow S_n \) (\(n \geq 1 \)).

Now we give examples of indecomposable \(kG \)-modules lying at the ends of \(ZA_\infty \)-components.

Proposition 2.3. Let \(M \) be an indecomposable \(kG \)-module whose \(k \)-dimension is not divided by \(p \). Let \(Q \) be a proper subgroup of \(P \). Suppose that \(M \) satisfies the following conditions (with respect to \(Q \));
(1) The trivial \(kQ \)-module \(k \) is a direct summand of \((M \otimes M) \downarrow Q \) with multiplicity one;

(2) If \(Q \) is generalized quaternion, then \(\Omega^2 k \nmid (M \otimes M) \downarrow Q \).

Then \(M \) lies at the end of \(ZA_{\infty\text{-component}} \).

Remark. The above condition (1) is equivalent to the following condition: \((1')\) We have an indecomposable direct sum decomposition \(N \oplus (\oplus_i W_i) \) of \(M \downarrow Q \), where \(p \nmid \text{dim}_k N \) and \(p \mid \text{dim}_k W_i \) for all \(i \).

From Proposition 2.3, we have following

Example 2.4. (1) Suppose that \(p \) is odd. Let \(M \) be an indecomposable \(kG \)-module with vertex \(P \) and \(S \) a \(P \)-source of \(M \). Suppose that \(\text{dim}_k S = 2 \). Then \(M \) lies at the end of \(ZA_{\infty\text{-component}} \).

(2) Suppose that \(p \neq 3 \). Let \(M \) be an indecomposable \(kG \)-module with vertex \(P \), and \(S \) a \(P \)-source of \(M \). Suppose that \(\text{dim}_k S = 3 \). Then \(M \) lies at the end of \(ZA_{\infty\text{-component}} \).

Proof. There exists an element \(x \) of \(P \) such that \(x \) does not act on \(S \) trivially. Let \(Q = \langle x \rangle \). Then \(S \) satisfies the conditions (with respect to \(Q \)) in Proposition 2.3.

Remark. In [E3], Erdmann proved that if \(k \) is algebraically closed and a \(p \)-group \(P \) is not cyclic, dihedral, semidihedral or generalized quaternion, then there are infinitely many \(kP \)-modules of dimension 2 or 3 lying at the ends of \(ZA_{\infty\text{-components}} \) ([E3], Propositions 4.2 and 4.4.). Using this result, she consequently showed that for a block \(B \) over an algebraically closed field, the stable Auslander-Reiten quiver \(\Gamma_s(B) \) has infinitely many components of the
form $\mathbb{Z}A_\infty$ if a defect group of B is not cyclic, dihedral, semidihedral or generalized quaternion.

3. Dihedral 2-group

In this section we consider the following situation:

(#3) k is an algebraically closed field of characteristic 2 and a Sylow 2-subgroup P of G is dihedral of order at least 8.

Let Δ_0 be the connected component containing the trivial kG-module k. Then Δ_0 is isomorphic to $\mathbb{Z}A_\infty^\infty$ by Theorem 1.2. It is known that all modules in Δ_0 are endotrivial kG-modules (see, e.g., [Bt2]). Hence the following holds.

Proposition 3.1. Assume (#3). Let M be an odd dimensional indecomposable kG-module. Let Θ be the connected component of $\Gamma_s(kG)$ containing M and Δ_0 the connected component containing k. Then Θ is isomorphic to $\mathbb{Z}A_\infty^\infty$ and tensoring with M induces a graph isomorphism from Δ_0 onto Θ. Moreover all modules in Θ have the same vertex P.

4. Semidihedral 2-group

Throughout this section, we assume that
(#4) \(k \) is an algebraically closed field of characteristic 2 and a Sylow 2-subgroup \(P \) of \(G \) is semidihedral.

Let \(A_0 \) be the connected component of \(\Gamma_S(kP) \) containing the trivial \(kP \)-module \(k \). Then \(A_0 \) is isomorphic to \(ZD_{\infty} \) (see [E2, p.76, II. 10.7 Remark]). Thus a part of \(A_0 \) is as follows for some indecomposable \(kG \)-modules \(H_2, H_3 \) and \(I \).

\[
\begin{array}{c}
\Omega^2k \\
\downarrow \\
\Omega^2H_2 \\
\downarrow \\
H_3 \\
\end{array}
\xrightarrow{\quad} \begin{array}{c}
\Omega^2I \\
\downarrow \\
H_2 \\
\downarrow \\
\Omega^2H_3 \\
\end{array}
\xrightarrow{\quad} \begin{array}{c}
k \\
\downarrow \\
I \\
\downarrow \\
\Omega^2H_2 \\
\end{array}
\]

Let \(P = \langle x, y \mid x^2 = y^{2^n-1} = 1, \; y^x = y^{-1+2^n-2} \rangle \) and \(\mathcal{K} = \{<x>\} \). Then an \(\mathcal{K} \)-projective cover resolution of \(k \) is \(0 \to \Omega_{\mathcal{K}}k \to (k_{\downarrow<\mathcal{K}})^\uparrow P \to k \to 0 \), where \((k_{\downarrow<\mathcal{K}})^\uparrow P \to k \) is a canonical epimorphism and \(\Omega_{\mathcal{K}}k \) is its kernel. Concerning some basic facts on relative projective cover, we refer to [Kn, T, O2].

In [O2], Okuyama showed the following

Theorem 4.1[O2]. With the same assumption and notations as above,

(1) \(I \equiv \Omega(\Omega_{\mathcal{K}}k) \) and \(I \) is an endotrivial \(kP \)-module.

(2) \(I \) is self-dual and odd dimensional.

(3) If \(I' \) is self-dual, odd dimensional and indecomposable, then
$I' \cong k$ or I.

Applying Theorem 4.1, we have

Lemma 4.2. Let S be an odd dimensional indecomposable kP-module. Then $S \not\cong S \otimes I$.

If S is an odd dimensional indecomposable kP-module, then the projective-free part S' of $S \otimes I$ is odd dimensional indecomposable and $S \not\cong S'$ by Theorem 4.1 and Lemma 4.2. Moreover it follows that the projective-free part of $S \otimes H_2$ is indecomposable. Therefore the following holds.

Proposition 4.3. Let S be an odd dimensional indecomposable kP-module and Ξ the connected component of $\Gamma_s(kP)$ containing S. Then

1. Ξ is isomorphic to $\mathbb{Z}D_\infty$.
2. All indecomposable kP-modules in Ξ have the same vertex P.

Remark. The above (2) follows from [E1, Theorem A].

Let $k \rightarrow H_2 \rightarrow H_3 \rightarrow \cdots \rightarrow H_n \rightarrow \cdots$ be a maximal tree of Λ_0.

If S is an odd dimensional indecomposable kG-module, then the projective-free part S_n of $H_n \otimes S$ is indecomposable and the tensor sequence $A(H_n) \otimes S$ is the AR-sequence $A(S_n)$ modulo projectives. Hence the following holds.
Lemma 4.4. Let S be an odd dimensional indecomposable kP-module and Ξ the connected component of $\Gamma_S(kP)$ containing S. Then tensoring with S induces a graph isomorphism from Δ_0 onto Ξ.

Using [Ka1, Theorem and Ka2, Theorem], we obtain

Proposition 4.5. Let M be an odd dimensional indecomposable kG-module and Θ the connected component containing M. Let Δ_0 be the connected component containing the trivial kG-module k. Then

1. Θ is isomorphic to $\mathbb{Z}D_\infty$ and tensoring with M induces a graph isomorphism from Δ_0 onto Θ.

2. All indecomposable kG-modules in Θ have the same vertex P.

5. Remarks on tensoring with a certain module

Suppose that M is an indecomposable kG-module and $p \nmid \dim_k M$. Let Θ be the connected component of $\Gamma_S(kG)$ containing M and Δ_0 the connected component containing the trivial kG-module k. If a Sylow p-subgroup P of G is dihedral of order at least 8 or semidihedral, then tensoring with M induces a graph isomorphism from Δ_0 onto Θ as we have seen in Propositions 3.1 and 4.5.

In this section we consider on tensoring modules in Δ_0 with M under the same hypothesis as in Section 2. Throughout this section, we assume that
(#2) \(k \) is algebraically closed and a Sylow \(p \)-subgroup \(P \) of \(G \) is not cyclic, dihedral, semidihedral or generalized quaternion.

Hence the connected component \(\Delta_0 \) of \(\Gamma_s(kG) \) containing the trivial kG-module \(k \) is of the form \(ZA_{\infty} \) by Theorem 1.2.

Proposition 5.1. Suppose that \(M \) is indecomposable kG-module and \(p \nmid \dim_k M \). Let \(\Theta \) be the connected component of \(\Gamma_s(kG) \) containing \(M \). Let \(S \) be a \(P \)-source of \(M \) and \(\Xi \) the connected component of \(\Gamma_s(kP) \) containing \(S \). Suppose that \(\Theta \) is isomorphic to \(ZA_{\infty} \) and \(M \) lies at the end of \(\Theta \). Then the following are equivalent.

1. Tensoring with \(M \) induces a graph isomorphism from \(\Delta_0 \) onto \(\Theta \).
2. Tensoring with \(S \) induces a graph isomorphism from the connected component of \(\Gamma_s(kP) \) containing the trivial kP-module \(k \) onto \(\Xi \).

Note that the hypothesis of Proposition 5.1 implies that \(\Xi \cong ZA_{\infty} \) and \(S \) lies at the end of \(\Xi \) by Proposition 2.2.

Example 5.2. Let \(M \) be a trivial source module with vertex \(P \). Let \(\Theta \) be the connected component of \(\Gamma_s(kG) \) containing \(M \). Then \(\Theta \) is isomorphic to \(ZA_{\infty} \) and \(M \) lies at the end of \(\Theta \). Moreover tensoring with \(M \) induces a graph isomorphism from \(\Delta_0 \) onto \(\Theta \).

We consider an indecomposable kG-module \(M \) lying at the end of its connected component \(\Theta \) isomorphic to \(ZA_{\infty} \). In the following,
we give conditions which imply that tensoring with \(M \) induces a graph isomorphism from \(\Delta_0 \) onto \(\Theta \).

Proposition 5.3. Let \(M \) be an indecomposable \(kG \)-module with \(p \nmid \dim_k M \), and let \(\Theta \) be the connected component of \(\Gamma_s(kG) \) containing \(M \). Suppose that \(M \) lies at the end of \(\Theta \) and \(M \otimes M^* \cong k \otimes (\otimes_i W_i) \), where each \(W_i \) is indecomposable and \(p \mid \dim_k W_i \). Then tensoring with \(M \) induces a graph isomorphism from \(\Delta_0 \) onto \(\Theta \).

Example 5.4. Suppose that \(M \) is an endotrivial \(kG \)-module. Let \(\Theta \) be the connected component containing \(M \). Then \(M \) satisfies the condition in Proposition 5.5. Hence tensoring with \(M \) induces a graph isomorphism from \(\Delta_0 \) onto \(\Theta \).

Remark. Without the assumption \((#2)\), if \(M \) is an endotrivial \(kG \)-module, then tensoring with \(M \) induces a graph isomorphism from the connected component containing the trivial \(kG \)-module onto the connected component containing \(M \) (Bt2, Theorem 2.3]). For related results on endotrivial modules, see also [Bt2].

Proposition 5.5. Let \(M \) be an indecomposable \(kG \)-module with \(p \nmid \dim_k M \), and let \(\Theta \) be the connected component of \(\Gamma_s(kG) \) containing \(M \). Let \(Q \) be a proper subgroup of \(P \). Suppose that \(M \) satisfies the conditions (with respect to \(Q \)) in Proposition 2.3. Then tensoring with \(M \) induces a graph isomorphism from \(\Delta_0 \) onto \(\Theta \).
Example 5.6. (1) Suppose that p is odd. Let M be an indecomposable kG-module with vertex P and S a P-source of M. Suppose that $\dim_k S = 2$. Then tensoring with M induces a graph isomorphism from Δ_0 onto the connected component containing M.

(2) Suppose that $p = 2$. Let M be an indecomposable kG-module with vertex P and S a P-source of M. Suppose that $\dim_k S = 3$. Then tensoring with M induces a graph isomorphism from Δ_0 onto the connected component containing M.

References

