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Sublayer Streaks の発生機構に関する一考察

愛媛大工 河原源太 (Genta Kawahara)

I. INTRODUCTION

One of the most outstanding characteristics of near-wall turbulence is the presence of

streaky structures which consist of regions of low- and high-speed fluid, elongated down-

stream and alternating in the spanwise direction.1 As is well known, these structures have

a characteristic spanwise wavelength of approximately 100 wall units in the near-wall re-

gion, and their wavelength increases as the distance from the wall is increased.23 They are

believed to be a significant factor in the production and maintenance of a mean turbu-

lent flow, since these structures were found to undergo so-called “ $bursting’.1,4$ In a recent

study,5 the streaky structures were found to be associated with the vortical structures, i.e.,

the quasi-streamwise vortices, which play a dominant role in turbulence production and

momentum transfer in the near-wall region, but their cause has been unclear.

Several $attempts^{6-8}$ have been made to give a theoretical explanation for the generation

of the streaky structures. They succeeded in estimating the wavelengths corresponding to

the mean streak spacing, but their results have not included the variation of the spacing

with the distance from the wall. Recently, Lee et al.9 studied a homogeneous shear flow

at a high shear rate using the direct numerical simulation and rapid distortion theory

(RDT). They showed that the presence of the wall is not necessary for the generation of the

streaky structures, and that the essential mechanism responsible for the formation of these

structures is contained in the linear theory. Lee and Hunt” studied an inhomogeneous

uniform-shear flow with the slip condition at the plane boundary using RDT, and found

that the streak spacing increases with the distance from the wall. However, it may be

difficult to compare directly the streaky structures which Lee et al. and Lee and Hunt

found with those in near-wall turbulent flows, since their results seem to depend on the

initial conditions and a uniform mean shear was assumed.

In their computation based on the localized-induction approximation (LIA), Aref and

Flinchem” found that localized finite-amplitude initial disturbances disperse into planar

undulations on the vortex filament in the background shear. Since these undulations have
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a certain well-defined periodicity and can lead to the generation of streamwise vorticity,

such vortex dynamics is conjectured to be connected with the formation of the streaky

structures. Pierrehumbert” pointed out that the vortex filament considered in Aref and

Flinchem is unstable to infinitesimal disturbances, and showed that the linear stability

theory can predict the wavelength of these undulations. However, there are some problems

in the LIA, as is referred to by both authors. There is no objective way of evaluating the

constant $C$ , and $C$ in reality depends logarithmically on wavenumber,13 where $C$ is the

asymptotic expansion parameter coming from the LIA in Refs. 11 and 12. Moreover, it is

difficult to examine the wall effect.

In this paper, a new phenomenological approach to the early stages of the formation of

the streaky structures is described, which is based on the linear stability theory for a recti-

linear vortex in a background shear flow. The Biot-Savart integral is carried out to study

the long-wavelength instability. The cutoff method, proposed by Crowi4 and Moore and

Saffmani5 is used to omit the singularity from the line integral. In this method, a cutoff

length is evaluated with a vortex core radius. The core radius and the strength of the

disturbed vortices are estimated from Robinson’s16 results for the transverse vortices in the

numerically-simulated turbulent boundary layer. The most unstable spanwise wavelengths

are calculated for the turbulent boundary-layer type background flow to be compared with

the mean streak spacing. In addition, image vortices are introduced into the calculations

to examine the effect of the wall impermeability.

II. INSTABILITY OF A VORTEX FILAMENT IN A SHEAR FLOW

The problem considered is a vortex filament embedded in a shear flow, as shown in Fig. 1.

$e_{x},$ $e_{y}$ and $e_{z}$ are the longitudinal, vertical and lateral unit vectors, and $x,$ $y$ and $z$ are used

to represent the coordinates corresponding to their directions. $a$ is the vortex core radius,

and $\Gamma$ is the strength of the vortex filament. $U_{ext}=U(y)e_{x}$ is the background velocity

field. In the absence of perturbations, the vortex is parallel to the z-direction.

The instantaneous flow due to the vortex filament is described by the Biot-Savart law

with a cutoff, viz.:

$u(x,t)=- \frac{\Gamma}{4\pi}\int_{L[\delta]}\frac{x-x’}{|x-x’|^{3}}\cross dx’+U_{ext}(x)$. (1)
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Here $x=xe_{x}+ye_{y}+ze_{z}$ , and the notation $\int_{L[6]}$ means that a length $2\delta$ centered on $x’=x$

is omitted from a line integral along $L$ defining the vortex. Given the fluid velocity $u$ , the

equation of motion of the vortex for each point $X=Xe_{x}+Ye_{y}+Ze_{z}$ on the filament is

of the form
$\frac{dX(X_{0},t)}{dt}=u(X(X_{0},t),t)$ , (2)

where

$X(X_{0},t)|_{t=0}=X_{0}$ . (3)

The equation of motion is valid in the limit of small vortex cross-sectional area and long

disturbance wavelength. In addition, it is valid only at early times in the evolution of the

vortex. Consider the rectilinear vortex filament perturbed by a sinusoidal disturbance:

$(\begin{array}{l}XYZ\end{array})=(\begin{array}{l}U(y_{0})ty_{0}z\end{array})+(\begin{array}{l}\tilde{x}y\sim 0\end{array})\exp(i(kz-\sigma t))$ . (4)

Here $k$ is the axial wavenumber, $\sigma$ is the growth rate, and $y_{0}$ is the y-location of the

undisturbed vortex. Substituting into equation (2) and linearizing, we obtain

$-i\sigma\tilde{x}-i\sigma\overline{y}==$ $- \frac{\Gamma}{2\pi}\omega(k\delta)k^{y_{2_{\tilde{X}}}U^{J\sim}}\frac{\Gamma}{2\pi}\omega(k\delta)k^{2\sim}+y$

,
$(5a, b)$

where

$U’= \frac{dU}{dy}|_{y=y_{0}}$ , (6)

$\omega(\xi)=\frac{1}{2}(\frac{\cos\xi-1}{\xi^{2}}+\frac{\sin\xi}{\xi}-Ci(\xi))$ . (7)

The function $\omega$ is Crow’s self-induction function. $Ci$ is the integral cosine function. A

long-wavelength asymptote of $\omega$ is of the form

$\omega\sim\frac{1}{2}(\ln\frac{1}{k\delta}-\gamma+\frac{1}{2})$ , (8)

where $\gamma=0.5772\cdots$ is Euler’s constant, and the leading-order term depends logarithmically

on wavenumber. The physical meanings of each term in equations (5) are similar to those of

Pierrehumbert”. The first terms in (5) yield the self-induced rotation, and the second term

in (5a) comes from the advection by the background shear flow. However, in the present
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case the self-induced rotation rate is $O(-k^{2}\ln k)$ for the long-wavelength disturbances, while

in the LIA that is $O(k^{2})$ .

Moore and Saffmani5 assumed that the cutoff length $\delta$ depends only on the distribution

of swirl and axial velocity in the vortex core, and found the value of $\delta$ by evaluating the

Biot-Savart integral similar to (1) for a circular vortex ring and comparing with Saffman’s’7

result for its translational velocity. The cutoff method has been applied to several stability

problems, and it has been shown that it is useful to analyse the long-wavelength instabilities

of rectilinear vortices.14,18,19 When we assume uniform vorticity and no axial velocity in the

core, $\delta$ is estimated from their formula

$\delta=\frac{1}{2}e^{\frac{1}{4}}a$ . (9)

Note that the asymptotic theory using the cutoff method is accurate to $O(ka)^{2}$ . The

dimensionless eigenvalues and corresponding eigenvectors of (5) are given by

$\frac{\pi a^{2}\sigma}{|\Gamma|}=\pm\frac{1}{2}\sqrt{\phi(ka)(\phi(ka)-2\beta)}$ , (10)

$\frac{y\sim}{\tilde{x}}=\mp\frac{i\frac{\Gamma}{|\Gamma|}\phi(ka)}{\sqrt{\phi(ka)(\phi(ka)-2\beta)}}$ , (11)

where
$\phi(\xi)=\xi^{2}\omega(\frac{1}{2}e^{\frac{1}{4}}\xi)$ , (12)

$\beta=-\frac{\pi a^{2}U’}{\Gamma}$ . (13)

$\beta$ indicates the ratio of circulation of the background shear to that of the vortex. The

stability of the vortex filament depends only on $\beta$ , and the vortex can be unstable when

it has circulation of the same sign as that of the background shear $(\beta>0)$ . The physical

mechanism of the instability is qualitatively the same as that discussed by Pierrehumbert.12

When $\beta>0$ , the self-induced rotation is opposite to the background rotation and the

background strain dominates the stabilizing effect of the self-induced rotation, depressed

by the background rotation. The unstable band of $\phi$ is $0<\phi<2\beta$ , and the unstable modes

lie in a plane tilted to the $(x, z)$-plane, which lead to the generation of streamwise vorticity.

The maximum growth occurs at

$\phi(ka)=\beta$ , (14)
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and in this case the eigenvector is tilted at a $45^{o}$ angle to the $(x, z)$-plane.

Figure 2 is the resulting stability diagram. It is found that as $\beta$ increases, the vortex

becomes unstable to the larger-wavenumber disturbances and the most unstable mode has

the larger wavenumber. Note that a short-wavelength instability $(ka\approx 1)$ , allowed by the

cutoff theory is valid only in a qualitative sense.

III. THE MOST UNSTABLE WAVELENGTH FOR THE TRANSVERSE

VORTICES IN THE TURBULENT BOUNDARY-LAYER TYPE

BACKGROUND FLOW

The vortex instability discussed in Sec. II is considered for the background or mean flow

with the same velocity profile as that of turbulent channel flow.3 Robinson16 identified

the elongated low-pressure regions corresponding to the vortical structures in $Spalart’ s^{2}$

numerically-simulated boundary layer, and showed the kinematic properties of transverse

vortices in the near-wall region. In the present study, the core radius and the strength of

the disturbed vortices are estimated from Robinson’si6 results for the transverse vortices,

V1Z.:

$a^{+}= \frac{1}{2}\kappa y^{+}$ , (15)

$\Gamma^{+}=2\pi R_{V}$ . (16)

Here $\kappa=0.41$ is the Karman constant, and $y$ is the vortex core height. Hereinafter the

notaion $indicates$ a value normalized by wall variables, i.e., $\nu$ and $u_{\tau}$ , where $\nu$ is kinematic

viscosity and $u_{\tau}$ is a friction velocity. $R_{V}=\Gamma/2\pi\nu\approx-30$ is the most probable value

of a vortex Reynolds number for the transverse vortices, computed with the fluctuating

component of spanwise vorticity. He reported that the variation of the transver@e-vortex

radius with the distance from the wall is fit reasonably well by equation (15), and that

over 40% of the transverse vortices is distributed over the vicinity of $R_{V}$ . Although the

vortical structures including the transverse-vortex parts, identified by Robinson seem to

have already evolved into a three-dimensional shape, in the present study we examine

the instability of the rectilinear vortex with the same radius and strength as those of

the transverse vortex. We are also interested in the long-wavelength instability, since the
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lengthscale of the above transverse-vortex radius is much smaller than that of the streak

spacing ( $\approx 100$ in wall units) in the near-wall region.

The above instability parameter $\beta$ is plotted as a function of $y^{+}$ in Fig. 3. The vortex

can be unstable for such a value of $\beta$ , as discussed in Sec. II. As $y^{+}$ is increased, $\beta$ increases

monotonically. However, $\beta$ is of the order of $10^{-1}$ in the near-wall region, which means that

the magnitude of vorticity of the vortex is much larger than that of vorticity and strain

of the background or mean shear. For such weak strain, the growth rate predicted by the

Biot-Savart cutoff theory is in excellent agreement with an exact one at small wavenumber. i9

The growth rate ${\rm Im}\sigma^{+}$ is shown in Fig. 4. The maximum growth rate decreases and

the most unstable dimensionless wavenumber $ka$ increases with $y^{+}$ . In addition, the

dimensionless-wavenumber range, in which the instability occurs, grows broader as $y^{+}$ is

increased, i.e., $\beta$ is increased, which means that the vortex can be unstable to the dis-

turbances with the wavelength comparable to the vortex radius. The maximum growth,

however, occurs at $ka<0.5$ , when the vortex is located at $y^{+}\leq 70$ .

The variation of the most unstable wavelength $\lambda^{+}$ with the distance from the wall is

shown in Fig. 5. Figure 5 includes the results for the viscous sublayer $(0<y^{+}<5)$ to show

the effect of image vortices, but it is doubtful whether the invisid theory can be applied

to this region. The vortex radius $a$ increases with $y^{+}$ , which increases $\lambda^{+}$ for fixed $\beta$ . On

the other hand, the instability parameter $\beta$ increases with $y^{+}$ , which decreases $\lambda^{+}$ for fixed

$a$ as shown in Fig. 4. The variation of $\lambda^{+}$ is determined by the above both effects. The

resulting dependence of $\lambda^{+}$ on the distance from the wall is found to be similar to that

of the recent experimental results” for the mean streak spacing near the wall. Moreover,

it is found that the most unstable mode has a spanwise wavelength of about 100 wall

units in the buffer region $(5 <y^{+}<30)$ . We also consider the effect of image vortices,

introduced into the calculations (see Appendix). With an image vortex, $\lambda^{+}$ approaches

zero linearly as $y^{+}arrow 0$ , while without an image vortex, it approaches infinity. At $y^{+}>10$ ,

both wavelengths are similar and image vortices only decrease the wavelength slightly. The

effect of image vortices on the shear instability is found to be limited only to the vicinity

of the wall $(y^{+}<10)$ , which suggests that the wall impermeability may not be necessary

for the generation of the streaky structures, as is pointed out by Lee et al.9
The present results are compared with representative experimental results for the mean
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streak spacing taken from Kasagi,22 as shown in Fig. 6. At $10<y^{+}<60$ , they have the

same trend as that of the present results, although there are some deviations in the exper-

imental results. It suggests that the vortex instability discussed in Sec. II may show the

early stages of the formation of the streaky structures, and that their spanwise dimensions

may be fixed in these stages. At $y^{+}>60$ , it is difficult to compare the present results with

the experimental results, since there are few data, distributed over the wide range in this

region. We conjecture that the variation of the streak spacing with the distance from the

wall may be determined rather by the dynamical behavior of the streaks, e.g., the spacing

is increased as the streaks generated near the wall ascend from there, than by the above

vortex instability. However, it is beyond the present study to discuss how the transverse

vortices are generated, how their cross-sectional lengthscale and circulation are determined,

and the effect of the internal structure of the transverse vortices.

APPENDIX: INTRODUCTION OF IMAGE VORTICES

When image vortices are introduced, equations (5) are rewritten in the form

$-i\sigma\tilde{x}-i\sigma y\sim$ $==$
$- \frac{}{2\pi b^{2}}x\sim^{-\frac{\Gamma}{\frac{2\not\in\beta^{2}}{2\pi b^{2}}}\chi(kb)_{\tilde{x}-\frac{\frac 2r_{F}}{2\pi}\omega(k\delta)k^{2_{2^{\sim}}}}^{\sim}}+\psi(kb)^{y+\omega(k\delta)ky_{\tilde{X}}+U’\text{動}}-\frac{\Gamma}{2\#\backslash b^{2}}y\sim\}$ $(A1a, b)$

where $b$ is the distance between the real and image vortices,

$\chi(\xi)=\xi K_{1}(\xi)$ , $(A2)$

$\psi(\xi)=\xi^{2}K_{0}(\xi)+\xi K_{1}(\xi)$ . $(A3)$

The functions $\chi$ and $\psi$ are Crow’s first and second mutual-induction functions. $K_{0}$ and

$K_{1}$ are modified Bessel functions of the second kind. The dimensionless eigenvalues and

corresponding eigenvectors of (A1) are given by

$\frac{\pi a^{2}\sigma}{|\Gamma|}=\pm\frac{1}{2}\sqrt{(\phi(ka)-\alpha^{2}\psi(\alpha^{-1}ka)+\alpha^{2})(\phi(ka)-2\beta-\alpha^{2}\chi(\alpha^{-1}ka)-\alpha^{2})}$ , $(A4)$

$\frac{y\sim}{\tilde{x}}=\mp\sqrt{(\phi(ka)-\alpha^{2}\psi(\alpha^{-1}ka)+\alpha^{2})(\phi(ka)-2\beta-\alpha^{2}\chi(\alpha^{-1}ka)-\alpha^{2})}i\frac{\Gamma}{\ovalbox{\tt\small REJECT}|\Gamma|}(\phi(ka)-\alpha^{2}\psi(\alpha^{-1}ka)+\alpha^{2})$ $(A5)$
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where $\alpha=a/b$ , and it has a constant value of $\kappa/4$ in the present case. Without a back-

ground shear, the above formulae were given by Crow 14.
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Fig. 1. Definition of problem showing
the unit vectors corresponding to the
coordinates. In this case, the vortex has
circulation of the same sign as that of
the background shear.

Fig. 2. Contour plot of growth rate in
$ka$ and $\beta$ . The dashed line indicates $ka$

$\beta$ at which maximum growth occurs for
fixed $\beta$ .

ん $a$

$\beta$
Fig. 3. Plot of instability parameter $\beta$

versus $y^{+}$ .

$y^{+}$
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Fig. 4. Growth rate versus $ka$ for vari-
ous $y^{+}$ -locations.

紘

Fig. 5. Dependence of the most unsta-
ble spanwise wavelength on $y^{+}$ . The
solid line indicates the results without
an image vortex. The dotted-dashed
line indicates the results with an image
vortex.

$y^{+}$

Fig. 6. Comparison of the most unsta-
ble spanwise wavelength with represen-

$\lambda^{+}$

tative experimental results for the mean
streak spacing taken from Kasagi22.

$y^{+}$


