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Fundamental Properties of Homogeneous Multifractals'

Iwao Hosokawa

University of Electro-Communications

It is proved from the requirement of scalé-sixrﬁlarity of
multifractals that the probability of spatial distribution of a certain
measure supported by a multifractal, which may be called intrinsic
probability, is uni'quely determined for scale ratio tending to zero if the
f-a spectrum of the multifractal is given. As a éorollary, it is proved |
that there exists no nonlinear transformation of multifractals. Also, it is
derived that infrinsic probabilities of many multifractals including

multi-nomial generalized Cantor sets can be determined by the :
| knowledge of intermittency exponents u(q) (and then genera]izéd
dimensions D(q)) limited for q = nonnegativé integers only. |

'The content was spoken in the Symp. on “Generation and Statistical Law of
Turbulence “ at Res. Inst, Math. Sci., Kyoto Univ. on Jan. 21-23, 1992, except for the
1st corollary.
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In the previous paper?), it was clarified that there are generalized
dimensions D(q), f-a spectrum f(«), intermittency exponents u(q), and
intrinsic probability p(y; r/1) (for an arbitrary scale ratio r/1) associated
with, and to characterize, every isotropic homogeneous multifractal;
these quantities are equivalent to each other; and also D(q) and n(q) are
continuous and differentiable in q, if D(q) is defined in the sense of
Hentschel and Procaccia?.

Here we resume the proof of the uniqueness for a given f(a) of
p(y; r/1) that is the probability density of spatial distribution of a
certain measure supported by the multifractal for a scale ratio r/1
tending to zero, by a new argument using scale-similarity of a
multifractal.

Returning to Hentschel and Procaccia’s formula?, we have

Y " = cyrLyehde (1)

asr/L — 0. L is a main scale, C,is proper proportioinal constants, and
p;(”D is the normalized measure of the ith subbox of scale r in the box
of scale L. The sum ¥ ; denotes summation over all subboxes of scale r,
except for the ones with p~L = 0. Here we consider much finer
subboxes of scale s. Then, of course, we should have a similar formula,

Y M) = cysL)@vP@
k o )

Here we can find (r/s)d subboxes of scale s in each subbox of scale
r. The measure of the jth subbox of scale s in the ith subbox of scale r
may be expressed as p;;(*'"p;("1). Of course, we have Ejpji(S/ 1) = 1. Then,
if s/r goes to zero, we should have

(PS4 = Cqfsir)@HD@

JZ ! (3)
in each subbox of scale r (irrespectively of i), so long as the multifractal
nature of the total domain is the same as that of a partial domain, as is
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illustrated in Fig. 1. Consider the measure of the kth subbox of scale s is
that of the jth subbox of scale s in the ith subbox of scale r, so that

pk(s/L) = pji(s/r)pi(_r/L), (4)
Thus, we have

TP = 30, /Op /D] = 3,(pL)a 3(p/D)e. (5)

Hence, we have from (1), (2) and (3) that

Cq= qu . (6)

Therefore, C, = 1 is the only meaningful case that we can have for
all g. The above argument may be a little more relaxed for the most
general case where C; depends weakly on r/L, such as including the the
the In(r/L) factor. However, such a case should be prohibited that Cqis
a power function of r/L, because it violates the definition of D,. If we
start from the premise of Cy(r/L), we have
Cq(s/L) = Cy(s/1)Cy(r/L) (7)
in place of (6). Then, the only possible solution is
Cq(r/L) = (r/L)vg,  vq
But this is the prohibited case unless Vg = 0.

Thus, if the left-hand side of (1) is replaced by the often-used
heuristic expression in terms of f(a), we should accept the exact
equality:

Jp(a) (r/Lyf@+aeda = (r/L)(a-HDi); (9)
p(a) denotes a weight in the integration. Now we prove that p(a) can

. const. ' (8)

take the only one form. The steepest descent method allows us to write
(9) as

p(al)(r/L)q“ﬂ\'f("ﬂ\) f(r/L)‘f”(“)(“-“ﬁ/ 2do = (r/L)@DDha (10)
under the condition of q - (o) = 0 and f’(a) <0, and to give

a1q - f(oy) = (q-1)D(q) (11)
as well as

pay) = [f7(ay)In(r/L)/(2x)] /2 (12)

for every q in (-, ) and then for every o, in its whole range, because
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a;must change continuously depending on q by (11), if D(q) and f(o,)
are continuous functions. This concludes the proof. We note here that
(12) is the lowest-order asymptotic formula to relate p to f, but itis
easy to obtain higher-order formulas including the correction terms of
O[ln(r/L)IM (n = 1, 2,..). The special case with a one-point f-a spectrum
cannot be treated by the above argument. The previous treatment?!)
contains exactly this case.

Thus, it is incorrect to presume p(a) in an arbitrary form, since it
evidently destroys the equélity of (10) and then (9) for all q or violates
scale-similarity of multifractals. Physically, this means that the
probability distribution of o in space for scale ratio r/L — 0 should be
decided by the f-a spectrum alone, and never interfered by an extra
independent factor. The present proof is less axiomatic but more
illustrative than the previous one.

As a corollary, we can find the transormation rule of multifractals.
Suppose two multifractals with fi(oy), py(oy), and D,(q) (for i = 1, 2). Then
we have |

Joi( @) (r/L)fe+aofdq, - (r/L)@DDNa . (13)
If o, is related to a; as a,(a,), (13) for i = 2 is rewritten as
Joy(az)ay’(ag)(r/Lyfed+adda - (r/L)@bDiQ (14)

Since the right-hand side is the ensembie average of (r/L)ezd (d:
spatial dimension), we must have just o

pa(a2)oy’ () = py(ay) and fy(ay(ay)) = filay). | (15)

As a result, we can produce a different multifractal with f;(«;) from a
multifractal with f,(a,) and vice versa by way of (15), once a function
a,(aq) is given. How arbitrary is the functional form of a,(a;)?
According to (12), we have "'

pi(ey) = [”;(0y)In(r/L)/(2m)]1/2. (16)

On the other hand, we have o "

92/9a,2 f(o(ag)) = £7()(0))? + £5,(ay)ay” - (17)
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Thus, (15), (16) and (17) require

a,”(a;) =0, (18)

which means

ay(a;) =aa; +b (a,b:const). (19)

Namely, any nonlinear transformation of a is prohibited. It is easy to

obtain the transformation rule of D(q) caused by (19) as

(q-1)Dy(q) = (aq-1)D,(aq) + bq. (20)
As another corollary, we can argue the moment problem of

intrinsic probability. The intrinsic probability to characterize a

multifractal may be written as!)

amd
()@= f yap(y; r/l)dy.
’ (21)

In this case, r/1 does not necessarily tend to zero. Since (21) is a kind of
the Mellin transform, we generally need the knowledge of n(q) in the
complex g-plane in order to determine the form of p. It is to be noted
here that all formes for u(q) do not necessarily give the intrinsic
probability of a multifractal which is strongly conditioned to vanish
towardsy =0 (répidly) and for 'y > (1/1)9; neither an exponential nor
lognormal form as p is not exactly conditioned to do sO. Many forms of p
which can characterize multifractals were shown in Ref. 3, including
binomial generalized Cantor sets; it is easy to extend the argument to
multi-nomial Cantor sets. It is obvious that the characteristic functions
#(8; r/1) of these intrinsic probabilities have no essential singularity at 6
= 0; that is, ¢ can be expanded in a Taylor series. Since all the Taylor
coefficients at the origin are given by all the nonnegative-integer-order
moments of y, many intrinsic probabilities of multifractals can be
determined by the limited knowledge of u(q) only forq=0,1,2,...In
these cases, all other values of wu(q) and D(q) are redundunt.
Correspondingly, the right branch of f(«) is redundunt because it is
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decided by D(q) for q < 0. Also, it is remarked that intrinsic probabilities
of these multifractals are much less intermittent than the lognormal
distribution that was mentioned by Orszag® as an example in which all
the moments of nonnegative-integer-order cannot determine a unique
probability. It is easy to see that the moments of y in generalized Cantor
sets are within Carleman’s criterion®.

Finally, we note that the longitudinal velocity difference in
isotropic turbulence is not supported by a multifractal in the present
paradigm, because it is not exactly a measure in space. The statistical
quality of it was discussed in Refs. 5 and 6.
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