<table>
<thead>
<tr>
<th>Title</th>
<th>Non-Cohen-Macaulay symbolic blow-ups for space monomial curves and counterexamples to Cowsik's question (The ring theory of blow-up rings)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Goto, Shiro</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 801: 1-13</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1992-08</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/82867</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Non-Cohen-Macaulay symbolic blow-ups for space monomial curves and counterexamples to Cowsik's question

明大・理工 後藤四郎 (Shiro Goto)

Let \(p \) be a prime ideal in a commutative Noetherian ring \(A \) and put

\[
R_S(p) := \sum_{n \geq 0} p^{(n)}t^n \subseteq A[t],
\]

where \(t \) denotes an indeterminate over \(A \). Let me call it the symbolic Rees algebra of \(p \). In my lecture, I'm interested in their ring-theoretic properties and especially, in the following two questions:

Questions

1. When is \(R_S(p) \) a Noetherian ring, that is, when is \(R_S(p) \) a finitely generated \(A \)-algebra?
2. When is \(R_S(p) \) a Cohen-Macaulay or Gorenstein ring, provided that it is Noetherian?

Today I will answer these questions in the following special situation, that is,

Let \(k \) be a field, and let \(n_1, n_2, \) and \(n_3 \) be positive integers with \(\text{GCD}(n_1, n_2, n_3) = 1 \). Let \(A = A_k := k[[X, Y, Z]] \) be a formal power series ring over \(k \) and let \(\varphi : A \to k[[t]] \) be the \(k \)-algebra map defined by

\[
\varphi(X) = t^{n_1}, \quad \varphi(Y) = t^{n_2}, \quad \text{and} \quad \varphi(Z) = t^{n_3}.
\]
Let me denote by \(p := p_k(n_1, n_2, n_3) \) the kernel of \(\varphi \).

Then \(A \) is a regular local ring of dimension 3 and \(p \) is a prime ideal in \(A \) of height 2. So in some sense, this is the simplest non-trivial case for the above questions. And my answer is

Theorem 1 (with Nishida and Watanabe). Let \(m \) and \(n \) be positive integers such that \(n \geq 4 \) and \(2m > n + 1 \). Let \(n_1 = 7m - 3 \), \(n_2 = 5mn - m - n \), and \(n_3 = 8n - 3 \). Assume that \(\gcd(n_1, n_2, n_3) = 1 \) and let \(p = p_k(n_1, n_2, n_3) \). Then the symbolic Rees algebra \(R_s(p) \) of \(p \) is a Noetherian ring if and only if the characteristic of the ground field \(k \) is positive. When this is the case, \(R_s(p) \) is not a Cohen-Macaulay ring.

The simplest example obtained by this theorem is the ideal

\[
p = p_k(18, 53, 29) \quad \text{(here } m = 3, n = 4 \text{)}
\]

\[
= I_2 \left[\begin{array}{ccc}
X^4 & Y^2 & Z^5 \\
Y & Z^3 & X^7
\end{array} \right]
\]

\[
= (Z^8 - X^7Y^2, X^{11} - YZ^5, Y^3 - X^4Z^3)_{A_k}.
\]

Therefore, if we consider the same prime ideal \(P = (Z^8 - X^7Y^2, X^{11} - YZ^5, Y^3 - X^4Z^3)_{B} \) inside of the polynomial ring \(B = k[X, Y, Z] \), the symbolic Rees algebra \(R_s(P) \) is a finitely generated \(k \)-algebra but not a Cohen-Macaulay ring if \(\text{ch } k \) is positive, and if \(\text{ch } k = 0 \), say \(k = \mathbb{Q} \), then it is not a finitely generated \(\mathbb{Q} \)-algebra.
Let me add one question:

Question What about the prime ideal

\[p = p_k(11, 25, 21) \]

\[= I_2 \begin{bmatrix} x^3 & y^2 & z^3 \\ y & z^2 & x^5 \end{bmatrix} \]

(that is, choose \(m = 2 \) and \(n = 3 \))? Of course, this ideal doesn't satisfy my condition. But by a theorem of Cutkosky you can easily check that \(R_s(p) \) is a Noetherian ring, if \(\text{ch } k > 0 \).

However I couldn't know whether it is a Noetherian ring or not in the case where \(\text{ch } k = 0 \), though I believe that the answer is negative.

Now let me give a sketch of proof of the theorem. To do this I need a theorem due to Craig (Huneke). For a moment, let me assume that \((A, m)\) is a regular local ring of dimension 3 and \(p \) is a prime ideal in \(A \) of \(\dim A/p = 1 \).

Theorem 2 (C. Huneke). If there exist two elements \(f \in p^{(k)} \) and \(g \in p^{(l)} \) with positive integers \(k, l \) such that the equality

\[l_A(A/(x, f, g)) = kl \cdot l_A(A/p + xA) \]

holds for some (and hence for any) element \(x \in m \setminus p \), then the symbolic Rees algebra \(R_s(p) \) is a Noetherian ring. If the field \(A/m \) is infinite, the converse is also true.

By this theorem, Huneke showed that \(R_s(p) \) is a Noetherian ring for \(p = p_k(n_1, n_2, n_3) \), if \(\min(n_1, n_2, n_3) \leq 4 \).
If $R = R_s(p)$ is a Noetherian ring, then you can easily get an isomorphism $K_R = R(-1)$. Therefore R is a Gorenstein ring, once it is Cohen-Macaulay. To check the Cohen-Macaulay property of R, you have the following

Theorem 3 (, Nishida and Shimoda). Let f and g be the elements in the above theorem. Then the following two conditions are equivalent.

1. The symbolic Rees algebra $R_s(p)$ is a Gorenstein ring.
2. For any integer $1 \leq n \leq k + l - 2$, the ring $A/(f, g) + p^{(n)}$ is a Cohen-Macaulay ring.

When this is the case, the rings $A/(f) + p^{(n)}$, $A/(g) + p^{(n)}$, and $A/(f, g) + p^{(n)}$ are Cohen-Macaulay for all $n \geq 1$, and we have the equality

$$R_s(p) = A[(p^{(n)}t^n)_{1 \leq n \leq k + l - 2}, ft^k, gt^l].$$

Using this criterion, you can show that $R_s(p)$ is a Gorenstein ring for $p = p_k(n_1, n_2, n_3)$, if $\min \{n_1, n_2, n_3\} \leq 4$. But in general, the Cohen-Macaulay property of $R_s(p)$ depends on the characteristic of the ground field. Let me give one example:

Example Let $p = p_k(7, 11, 13)$. Then $R_s(p)$ is always a Noetherian ring, but it is a Gorenstein ring if and only if $\text{ch } k \neq 2, 3$.

Now let's start the proof of the theorem. In what follows, let m and n be positive integers such that $n \geq 4$ and $2m > n$
+ 1. Let $n_1 = 7m - 3$, $n_2 = 5mn - m - n$, and $n_3 = 8n - 3$. We assume that $\text{GCD}(n_1, n_2, n_3) = 1$. Then

$$
p = p_k(n_1, n_2, n_3)
$$

$$
= I_2 \begin{bmatrix} x^n & y^2 & z^{2m-1} \\
Y & Z^m & x^{2n-1} \end{bmatrix}.
$$

Let $a = z^{3m-1} - x^{2n-1}y^2$, $b = x^{3n-1} - yz^{2m-1}$, and $c = y^3 - x^n z^m$. Then $p = (a, b, c)$ and we have two equations

$$
x^n a + y^2 b + z^{2m-1} c = 0,
$$

$$
Y a + Z^m b + x^{2n-1} c = 0.
$$

I claim that

Lemma There exist elements $d_2 \in p^{(2)}$, and $d_3, d_3' \in p^{(3)}$ such that $d_2 = z^{5m-2}$, $d_3 = z^{7m-2}$, $d_3' = y^8 z^{2m-2} \mod (X)$, and

$$
X d_3 + Y b c^2 + Z d_3' = 0.
$$

Proof. First of all, consider two expressions of $-y^2 ab$:

$$-y^2 ab = Y b (-Y a) = Y b (Z^m b + x^{2n-1} c)
$$

$$= a (-y^2 b) = a (x^n a + z^{2m-1} c).
$$

And you get

$$x^n (a^2 - x^{n-1} Y b c) = z^m (Y b^2 - Z^{m-1} ac),
$$

hence there exists an element d_2 of A such that

$$x^n d_2 = Y b^2 - Z^{m-1} ac,$$
\[Z^{m_d_2} = a^2 - X^{n-1}Ybc. \]

Of course, \(d_2 \) is in \(\mathcal{P}^{(2)} \). To get \(Yd_2 \), consider

\[-Yd_2 = d_2(- Ya) \]
\[= d_2(Z^{m_b} + X^{2n-1}c) \]
\[= b \cdot Z^{m_d_2} + X^{n-1}c \cdot X^{n_d_2} \]
\[= b(a^2 - X^{n-1}Ybc) + X^{n-1}c(Yb^2 - Z^{m-1}ac) \]
\[= - a(- ab + X^{n-1}Z^{m-1}c^2). \]

Thus \(Yd_2 = - ab + X^{n-1}Z^{m-1}c \) and we have two equations:

\[Yd_2 = - ab + X^{n-1}Z^{m-1}c^2, \]
\[Z^{m_d_2} = a^2 - X^{n-1}Ybc. \]

We compare two expressions of \(a^2b \):

\[a^2b = b(Z^{m_d_2} + X^{n-1}Ybc) \]
\[= a(- Yd_2 + X^{n-1}Z^{m-1}c^2). \]

Then we have

\[Z^{m-1}(- Zbd_2 + X^{n-1}ac^2) = Y(a d_2 + X^{n-1}bc^2). \]

and so we get an element \(d_3 \in \mathcal{P}^{(3)} \) such that

\[Yd_3 = - Zbd_2 + X^{n-1}ac^2. \]

As \(Yd_2 = - ab \mod (X) \), we know

\[Yd_2 = - Z^{3m-1}(- YZ^{2m-1}); \]
hence $d_2 = Z^{5m-2} \mod (X)$. As $Yd_3 = -Zbd_2 \mod (X)$, we get

$$Yd_3 = -Z(-YZ^{2m-1})Z^{5m-2} \mod (X);$$

hence $d_3 = Z^{7m-2} \mod (X)$. Notice that $Yd_3 = X^{n-1}ac^2 = X^{n-1}(X^{2n-1}Y^2)(Y^3)^2 \mod (Z)$ and we have

$$d_3 = -X^{3n-2}Y^7 \mod (Z),$$

so that

$$Xd_3 + Ybc^2 = X(-X^{3n-2}Y^7) + Y \cdot X^{3n-1} \cdot (Y^3)^2 \equiv 0 \mod (Z).$$

Thus there is an element d_3' of $p(3)$ such that

$$Xd_3 + Ybc^2 + Zd_3' = 0.$$

Clearly $d_3' = Y^8Z^{2m-2} \mod (X)$. This proves the lemma.

Proposition $p^{(2)} = p^2 + (d_2)$, $p^{(3)} = pp^{(2)} + (d_3, d_3')$, and $p^{(4)} = pp^{(3)} + (p^{(2)})^2$.

For example, let $I = p^2 + (d_2)$. Then as $(X) + I = (X) + (Z^{3m-1}, YZ^{2m-1}, Y^3)^2 + (Z^{5m-2})$, you have

$$l_A(A/(X) + I) = 3 \cdot (7m - 3)$$

$$= 3 \cdot l_A(A/(X) + p).$$

On the other hand, because $l_A(A/(X) + p^{(2)}) = e_{X_A}(A/p^{(2)}) = l_A(A/(X) + p) \cdot l_A(A/p^2A) = 3 \cdot l_A(A/(X) + p)$, you get that
\[\ell_A(A/(X) + I) = \ell_A(A/(X) + p^{(2)}) ; \text{ hence } (X) + I = (X) + p^{(2)}, \]
because \(I \subseteq p^{(2)} \). Consequently \(p^{(2)} = I + (X) \cap p^{(2)} = I + X \cdot p^{(2)} \). Thus we have \(p^{(2)} = I \) by Nakayama's lemma. Similarly you can show that \(p^{(3)} = pp^{(2)} + (d_3, d_3') \). As
\[
\ell_A(A/(X) + p^{(4)}) = e_{\Delta}(A/p^{(4)}) \\
= \ell_A(A/(X) + p) \cdot \ell_A(A/p^4A_p) \\
= 10 \cdot \ell_A(A/(X) + p) \\
< \ell_A(A/(X) + pp^{(3)} + (p^{(2)})^2),
\]
we have
\[p^{(4)} = pp^{(3)} + (p^{(2)})^2. \]

Corollary The ring \(A/(c) + p^{(3)} \) is not Cohen-Macaulay.

In fact, notice that
\[
\ell_A(A/(X, c) + p^{(3)}) = 3 \cdot (7m - 3) + 1 \\
> e_{\Delta}(A/(c) + p^{(3)}) \\
= 3 \cdot (7m - 3);
\]
hence \(A/(c) + p^{(3)} \) cannot be a Cohen-Macaulay ring.

Now let me assume that \(\text{ch } k = p > 0 \). First of all, assume that \(p \geq 3 \) and write \(p = 2q + 1 \) (hence \(q \geq 1 \)). Then by the equations
\[
X d_3 + Ybc^2 + Zd_3' = 0,
\]
we get
\[
0 = xp d_3^p + yp b pc^{2p} \mod (2p) \\
= xp d_3^p + (y^2 b)q yb^{q+1} c^{2p}.
\]
As \(X^n a + Y^{2b} + Z^{2m-1} c = 0 \), we furthermore have

\[
0 = X^p d_3^p + (-1)^q \sum_{i=0}^{q} \binom{q}{i} X^{n(q-i)} Y Z^{(2m-1)i} a^{q-i} b^{q+1} c^{2p+i}
\]

\[
= X^p d_3^p + (-1)^q \sum_{(2m-1)i < p} \binom{q}{i} X^{n(q-i)} Y Z^{(2m-1)i} a^{q-i} b^{q+1} c^{2p+i}
\]

\(\text{mod } (Z^p) \).

Now recall that \(2m > n + 1 \) and \(n \geq 4 \). Then we have \(n(q-i) \geq p \) or \((2m-1)i \geq p \) for each \(0 \leq i \leq q \).

(In fact, if \(n(q-i) < p \) and \((2m-1)i < p \), then we get \(n(q-i) \leq 2q \) and \((2m-1)i \leq 2q \) so that \(nq + (2m-n-1)i \leq 4q \). Hence we must have \(n = 4 \) and \(i = 0 \) and so \(n(q-i) = 4q \leq 2q \), which is impossible.) Thus

\[
0 = X^p \left\{ d_3^p + (-1)^q \sum_{(2m-1)i < p} \binom{q}{i} X^{n(q-i)-p} Y Z^{(2m-1)i} a^{q-i} b^{q+1} c^{2p+i} \right\}
\]

\(\text{mod } (Z^p) \) and thus we have an element \(h \in \mathbb{F}^{(3p)} \) such that

\[
Z^p h = d_3^p + (-1)^q \sum_{(2m-1)i < p} \binom{q}{i} X^{n(q-i)-p} Y Z^{(2m-1)i} a^{q-i} b^{q+1} c^{2p+i}
\]

As \(Z^p h = d_3^p = Z^{(7m-2)p} \mod (X, c) \), we get \(h = Z^{(7m-3)p} \mod (X, c) \). Thus we have the following
Lemma There exists an element \(h \in \mathfrak{p}^{(3p)} \) such that \(h = z^{(7m-3)p} \mod (X, c) \).

(You can prove this lemma also in the case \(p = 2 \).)

Now recall Huneke's theorem. First we take \(f = c \) and \(g = h \). Then

\[
\lambda_A(A/(X, c, h)) = \lambda_A(A/(X, c, Z^{(7m-3)p}))
\]
\[
= \lambda_A(A/(X, Y^3, Z^{(7m-3)p}))
\]
\[
= 3p \cdot (7m-3)
\]
\[
= 1 \cdot 3p \cdot \lambda_A(A/(X) + \mathfrak{p}) .
\]

Hence \(R_s(\mathfrak{p}) \) is a Noetherian ring by Theorem 2. Because \(A/(c) + \mathfrak{p}^{(3)} \) is not a Cohen-Macaulay ring, \(R_s(\mathfrak{p}) \) cannot be Cohen-Macaulay by Theorem 3.

To study the case of \(\operatorname{ch} k = 0 \), we need further information in the case where \(\operatorname{ch} k = p > 0 \). Let \(F = \{ 0 < \ell \in \mathbb{Z} \mid \exists g \in \mathfrak{p}^{(\ell)} \) such that \(\lambda_A(A/(X, c, g)) = \ell \cdot \lambda_A(A/(X) + \mathfrak{p}) \} \). Then \(3p \in F \).

Let \(\ell_0 = \min F \) and choose \(g_0 \in \mathfrak{p}^{(\ell_0)} \) so that \(\lambda_A(A/(X, c, g_0)) = \ell_0 \cdot \lambda_A(A/(X) + \mathfrak{p}) \). Then we have

Lemma

1. \(\ell_0 | \ell \) for all \(\ell \in F \).
2. \(R_s(\mathfrak{p}) = A[\{ \mathfrak{p}^{(n)}t^n \} \}_{1 \leq n \leq \ell_0 \cdot 1}, \text{ct, } g_0 t^{\ell_0}] \).
3. \(g_0 t^{\ell_0} \) is not contained in \(A[\{ \mathfrak{p}^{(n)}t^n \} \}_{1 \leq n \leq \ell_0 \cdot 1}] \).

Let me use this lemma without proof. First, we have by (1) that \(\ell_0 | 3p \); hence \(\ell_0 = 1, 3, p, \) or \(3p \). But if \(\ell_0 = p, 3p \), then
we have by (2) that
\[R_S(p) = A[pt, p(2)t^2, p(3)t^3], \]
which is impossible because \(p(4) \neq pp(3) + (p(2))^2 \). Thus \(l_0 \geq p \) and by (3) we get \(g_0 t^l_0 \) is not contained in \(A[(p(n)t^n)_{1 \leq n \leq l_0 - 1}] \).

This means, to generate the \(A \)-algebra \(R_S(p) \), you need at least one new element of degree \(\geq p \), depending on the characteristic \(p = \text{ch} \ k \). On the other hand, if \(R_S(p) \) were a Noetherian ring in the case where \(\text{ch} \ k = 0 \), say \(k = \mathbb{Q} \), then because everything is defined over \(\mathbb{Z} \), you can find a system of generators for the algebra \(R_S(pQ) \) so that passing to the field \(k = \mathbb{Z}/p\mathbb{Z} \) for \(p \gg 0 \), the system still generates the algebra \(R_S(p_k) \) (see the theorem below). This is impossible, because you need at least one new element of degree \(\geq p \). Thus \(R_S(pQ) \) cannot be a Noetherian ring for our example \(p \).

Let me state the required theorem more explicitly.

Theorem. Let \(C = \mathbb{Z}[X, Y, Z] \) and let \(I = \text{Ker} \ (\varphi : C \to \mathbb{Z}[t]) \)
where \(\varphi(X) = t^{n_1}, \ \varphi(Y) = t^{n_2}, \) and \(\varphi(Z) = t^{n_3} \). Then if \(R_S(p) \)
is a Noetherian ring for the prime ideal \(p = pQ(n_1, n_2, n_3) \) in \(\mathbb{Q}[[X, Y, Z]] \), there exist positive integers \(l \) and \(N \) and elements \(f \) and \(g \) of \(I(l) \) such that for all prime numbers \(p \geq N \), we have

1. \(I(l) A_k = p_k(l) \) and
2. \(l A_k(A_k/(X, f, g)A_k) = l^2 \cdot l A_k(A_k/(X + p_k)) \),

where \(k = \mathbb{Z}/p\mathbb{Z} \).

Here \(A_k = k[[X, Y, Z]] \) and \(p_k = p_k(n_1, n_2, n_3) \).

Before closing my talk, let me give a few open problems.
Problems Let $\mathbf{p} = \mathbf{p}_k(n_1, n_2, n_3)$ and $n = \min\{n_1, n_2, n_3\}$.

1. $\text{ch } k = p > 0 \implies R_s(\mathbf{p})$ is a Noetherian ring?

2. $\text{ch } k = 0$ and $R_s(\mathbf{p})$ is Noetherian $\implies R_s(\mathbf{p})$ is a Gorenstein ring?

3. $n \leq 8$, $n \neq 7 \implies R_s(\mathbf{p})$ is a Gorenstein ring? (For $\mathbf{p} = \mathbf{p}_k(9, 10, 13)$ you can show that $R_s(\mathbf{p})$ is a Noetherian ring but not Cohen-Macaulay, if $\text{ch } k = 2, 3, 7$.)

4. $n = 5 \implies R_s(\mathbf{p})$ is a Noetherian ring?

5. $n = 6 \implies R_s(\mathbf{p})$ is a Gorenstein ring? (The Noetherian property of this case was guaranteed by Cutkosky.)

6. $\mathbf{p} = \mathbf{p}_k(11, 16, 13) \implies \ ????$

References

25.

