Factorization of graphs with common transversal sets

近畿大理工 潮 和彦 (Kazuhiko Ushio)

Abstract. In this paper, S_{κ} -factorization algorithm of an edge-disjoint sum of two K_{κ} -factors of K_{κ} is given.

1. Introduction

Let G and H be graphs. A spanning subgraph F of G is called an H-factor if and only if each component of F is isomorphic to H. If G is expressible as an edge-disjoint sum of H-factors, then this sum is called an H-factorization of G. Let S_k be a star with k vertices. Let K_k and K_v be a complete graph with k vertices and v vertices, respectively.

2. Common transversal sets

We use common transversal sets on S_k -factorization of an edge-disjoint sum of two K_k -factors of K_v .

Consider a set N of v elements, where v=kt. Divide N into t subsets $A_1,A_2,...,A_t$ so that they are mutually disjoint subsets of same size k. And divide N into another t subsets $B_1,B_2,...,B_t$ so that they are mutually disjoint subsets of same size k. Let T be a t-element subsets of N. Then T is called a *common transversal* set of $\{A_1,A_2,...,A_t\}$ and $\{B_1,B_2,...,B_t\}$ when it hold that $|T \cap A_j| = |T \cap B_j| = 1$, $1 \le j \le t$.

Lemma 1. Let $\{A_1, A_2, ..., A_t\}$ be a mutually disjoint partition of N and $\{B_1, B_2, ..., B_t\}$ be another mutually disjoint partition of N. Then there exists a common transversal set T of $\{A_1, A_2, ..., A_t\}$ and $\{B_1, B_2, ..., B_t\}$.

3. S_k -factorization algorithm of an edge-disjoint sum of two K_k -factors of K_k

For $k \ge 3$, we have the following:

Lemma 2. An edge-disjoint sum of two K_k -factors of K_v can be factorized into k S_k -factors.

Proof. Let F_1 and F_2 be edge-disjoint K_k -factors of K_v . And let G be a sum of F_1 and F_2 . Then $V(F_1)=V(F_2)=V(G)=V(K_v)$. Put $F_1=K_k^{(1)}\cup K_k^{(2)}\cup ...\cup K_k^{(k)}$ and $F_2=K_k^{(k+1)}\cup K_k^{(k+2)}\cup ...\cup K_k^{(k+2)}$. And let $A_j=V(K_k^{(j)})$ and $B_j=V(K_k^{(k+j)})$, $1\leq j\leq k$. Then $\{A_1,A_2,...,A_t\}$ is a mutually disjoint partition of V(G) and $\{B_1,B_2,...,B_t\}$ is another mutually disjoint partition of V(G). Let T_1 be a common transversal set of $\{A_1,A_2,...,A_t\}$ and $\{B_1,B_2,...,B_t\}$. Let T_j be a common transversal set of $\{A_1,A_2,...,A_t-T\}$ and $\{B_1-T,B_2-T,...,B_t-T\}$, where $T=T_1+T_2+...+T_{j-1}$ ($2\leq j\leq k$). Consider 2k-2 subgraphs G_j of G such as $G_1=F_1$, $G_2=F_2$, $G_j=G_{j-2}-T_{j-2}$ ($3\leq j\leq k-2$), where $T_{k+j}=T_{k-j+1}$ ($1\leq i\leq k-2$). Consider 2k-2 subgraphs H_j of G such as $H_j=G_j-E(G_j-T_j)$ ($1\leq j\leq 2k-4$), $H_{2k-3}=G_{2k-3}$, $H_{2k-2}=G_{2k-2}$.

Note that every component of G_j is a complete graph with (2k-j+1)/2 vertices (j:odd) or (2k-j+2)/2 vertices (j:even) and that every component of H_j is a star with (2k-j+1)/2 vertices (j:odd) or (2k-j+2)/2 vertices (j:even).

Then we can construct k edge-disjoint S_k -factors F_1 ', F_2 ', F_3 , ..., F_k of G as follows:

 $F_1'=H_1$, $F_2'=H_2$, $F_j=H_j \cup H_{2k-j+1}$ ($3 \le j \le k$).

Therefore, it holds that $G=F_1'(+)F_2'(+)F_3(+)...(+)F_k$, which is an S_k -factorization. \square

Note 1. The symbol (+) is used to denote the sum of factors.

As a resolvable BIBD(v,b,r,k, λ =1) is just a K_k -factorization of K_v , we have the following lemmas.

Lemma 3. If there exists a resolvable BIBD($v,b,r,k,\lambda=1$) (r:even), then K_v has an S_k -factorization.

Lemma 4. If there exists a resolvable $BIBD(v,b,r,k, \lambda = 1)$ (r:odd, m=v/k), then K(m;k) has an S_k -factorization.

Note 2. K(m;k) is a complete multipartite graph with m partite sets of k vertices each.

References

- [1] G. Chartrand and L. Lesniak, Graphs & Digraphs, 2nd ed. (Wadsworth, California, 1986).
- [2] H. Enomoto, T. Miyamoto and K. Ushio, C_{κ} -factorization of complete bipartite graphs, Graphs and Combinatorics, 4 (1988), pp. 111-113.
- [3] M. Hall Jr., Combinatorial Theory (Blaisdell, Waltham, 1967)
- [4] H. Hanani, D. K. Ray-Chaudhuri and R. M. Wilson, On resolvable designs, Discrete Math., 3 (1972), pp. 343-357.
- [5] F. Harary, Graph theory (Addison-Wesley, Massachusetts, 1972).
- [6] K. Ushio, P_3 -factorization of complete bipartite graphs, Discrete Math., 72 (1988), pp. 361-366.
- [7] K. Ushio and R. Tsuruno, P_3 -factorization of complete multipartite graphs, Graphs and Combinatorics, 5 (1989), pp. 385-387.
- [8] K. Ushio and R. Tsuruno, Cyclic S_{κ} -factorization of complete bipartite graphs, Proc. Second Inter. Conf. Graph Theory, San Francisco, 1989 (SIAM, 1991).