<table>
<thead>
<tr>
<th>Title</th>
<th>Factorization of graphs with common transversal sets (Combinatorial Aspects on the Analysis of Mathematical Models)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ushio, Kazuhiko</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1992), 802: 137-139</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1992-08</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/82869</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Factorization of graphs with common transversal sets

近畿大学理工学院 和彦 (Kazuhiko Ushio)

Abstract. In this paper, S_k-factorization algorithm of an edge-disjoint sum of two K_k-factors of K_v is given.

1. Introduction

Let G and H be graphs. A spanning subgraph F of G is called an H-factor if and only if each component of F is isomorphic to H. If G is expressible as an edge-disjoint sum of H-factors, then this sum is called an H-factorization of G. Let S_k be a star with k vertices. Let K_k and K_v be a complete graph with k vertices and v vertices, respectively.

2. Common transversal sets

We use common transversal sets on S_k-factorization of an edge-disjoint sum of two K_k-factors of K_v.

Consider a set N of v elements, where $v=kt$. Divide N into t subsets A_1, A_2, \ldots, A_t so that they are mutually disjoint subsets of same size k. And divide N into another t subsets B_1, B_2, \ldots, B_t so that they are mutually disjoint subsets of same size k. Let T be a t-element subsets of N. Then T is called a common transversal set of $\{A_1, A_2, \ldots, A_t\}$ and $\{B_1, B_2, \ldots, B_t\}$ when it hold that $|T \cap A_j| = |T \cap B_j| = 1$, $1 \leq j \leq t$.

Lemma 1. Let (A_1, A_2, \ldots, A_t) be a mutually disjoint partition of N and (B_1, B_2, \ldots, B_t) be another mutually disjoint partition of N. Then there exists a common transversal set T of (A_1, A_2, \ldots, A_t) and (B_1, B_2, \ldots, B_t).

3. S_k-factorization algorithm of an edge-disjoint sum of two K_k-factors of K_v

For $k \geq 3$, we have the following:
Lemma 2. An edge-disjoint sum of two K_k-factors of K_v can be factorized into k S_k-factors.

Proof. Let F_1 and F_2 be edge-disjoint K_k-factors of K_v. And let G be a sum of F_1 and F_2. Then $V(F_1)=V(F_2)=V(G)=V(K_v)$. Put $F_1=K_k^{(1)} \cup K_k^{(2)} \cup \ldots \cup K_k^{(t)}$ and $F_2=K_k^{(t+1)} \cup K_k^{(t+2)} \cup \ldots \cup K_k^{(2t)}$. And let $A_j=V(K_k^{(j)})$ and $B_j=V(K_k^{(t+j)})$, $1 \leq j \leq t$. Then $\{A_1,A_2,\ldots,A_t\}$ is a mutually disjoint partition of $V(G)$ and $\{B_1,B_2,\ldots,B_t\}$ is another mutually disjoint partition of $V(G)$. Let T_1 be a common transversal set of $\{A_1,A_2,\ldots,A_t\}$ and $\{B_1,B_2,\ldots,B_t\}$. Let T_j be a common transversal set of $\{A_1-T,A_2-T,\ldots,A_t-T\}$ and $\{B_1-T,B_2-T,\ldots,B_t-T\}$, where $T=T_1+T_2+\ldots+T_{t-1}$ ($2 \leq j \leq k$). Consider $2k-2$ subgraphs G_j of G such as $G_1=F_1$, $G_2=F_2$, $G_3=G_{j-2}-T_j$, $j \leq 2k-2$, $2 \leq j \leq 2k-2$, $2 \leq j \leq 2k-2$. Consider $2k-2$ subgraphs H_j of G such as $H_j=G_j-\{G_j-T_j\}$ ($1 \leq j \leq 2k-4$), $H_{2k-3}=G_{2k-3}$, $H_{2k-3}=G_{2k-2}$.

Note that every component of G_j is a complete graph with $(2k-j+1)/2$ vertices (j odd) or $(2k-j+2)/2$ vertices (j even) and that every component of H_j is a star with $(2k-j+1)/2$ vertices (j odd) or $(2k-j+2)/2$ vertices (j even).

Then we can construct k edge-disjoint S_k-factors F_1,F_2,F_3,\ldots,F_k of G as follows:

$F_1=H_1$, F_2,H_2, $F_j=H_j \cup H_{2k-j+1}$ \mbox{ (3 $\leq j \leq k$)}.

Therefore, it holds that $G=F_1(+)F_2(+)F_3(+)\ldots(+)F_k$, which is an S_k-factorization.

Note 1. The symbol (+) is used to denote the sum of factors.

As a resolvable BIBD$(v,b,r,k,\lambda=1)$ is just a K_k-factorization of K_v, we have the following lemmas.

Lemma 3. If there exists a resolvable BIBD$(v,b,r,k,\lambda=1)$ (r: even), then K_v has an S_k-factorization.

Lemma 4. If there exists a resolvable BIBD$(v,b,r,k,\lambda=1)$ (r: odd, $m=v/k$), then $K(m;k)$ has an S_k-factorization.

Note 2. $K(m;k)$ is a complete multipartite graph with m partite sets of k vertices each.
References

