<table>
<thead>
<tr>
<th>Title</th>
<th>Factorization of graphs with common transversal sets (Combinatorial Aspects on the Analysis of Mathematical Models)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ushio, Kazuhiko</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録　1992年度　第802号　137-139</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1992-08</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/82869</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
Factorization of graphs with common transversal sets

近畿大学工　澳 和彦 (Kazuhiko Ushio)

Abstract. In this paper, \(S_k \)-factorization algorithm of an edge-disjoint sum of two \(K_k \)-factors of \(K_v \) is given.

1. Introduction

Let \(G \) and \(H \) be graphs. A spanning subgraph \(F \) of \(G \) is called an \(H \)-factor if and only if each component of \(F \) is isomorphic to \(H \). If \(G \) is expressible as an edge-disjoint sum of \(H \)-factors, then this sum is called an \(H \)-factorization of \(G \).

Let \(S_k \) be a star with \(k \) vertices. Let \(K_k \) and \(K_v \) be a complete graph with \(k \) vertices and \(v \) vertices, respectively.

2. Common transversal sets

We use common transversal sets on \(S_k \)-factorization of an edge-disjoint sum of two \(K_k \)-factors of \(K_v \).

Consider a set \(N \) of \(v \) elements, where \(v=kt \). Divide \(N \) into \(t \) subsets \(A_1,A_2,...,A_t \) so that they are mutually disjoint subsets of same size \(k \). And divide \(N \) into another \(t \) subsets \(B_1,B_2,...,B_t \) so that they are mutually disjoint subsets of same size \(k \). Let \(T \) be a \(t \)-element subsets of \(N \). Then \(T \) is called a common transversal set of \(\{A_1,A_2,...,A_t\} \) and \(\{B_1,B_2,...,B_t\} \) when it hold that \(|T \cap A_j| = |T \cap B_j| = 1, 1 \leq j \leq t \).

Lemma 1. Let \(\{A_1,A_2,...,A_t\} \) be a mutually disjoint partition of \(N \) and \(\{B_1,B_2,...,B_t\} \) be another mutually disjoint partition of \(N \). Then there exists a common transversal set \(T \) of \(\{A_1,A_2,...,A_t\} \) and \(\{B_1,B_2,...,B_t\} \).

3. \(S_k \)-factorization algorithm of an edge-disjoint sum of two \(K_k \)-factors of \(K_v \)

For \(k \geq 3 \), we have the following:
Lemma 2. An edge-disjoint sum of two K_k-factors of K_v can be factorized into k S_k-factors.

Proof. Let F_1 and F_2 be edge-disjoint K_k-factors of K_v. And let G be a sum of F_1 and F_2. Then $V(F_1) = V(F_2) = V(G) = V(K_v)$. Put $F_1 = K_k^{(1)} \cup K_k^{(2)} \cup \ldots \cup K_k^{(t)}$ and $F_2 = K_k^{(t+1)} \cup K_k^{(t+2)} \cup \ldots \cup K_k^{(2t)}$. And let $A_j = V(K_k^{(j)})$ and $B_j = V(K_k^{(t+j)})$, $1 \leq j \leq t$. Then $\{A_1, A_2, \ldots, A_t\}$ is a mutually disjoint partition of $V(G)$ and $\{B_1, B_2, \ldots, B_t\}$ is another mutually disjoint partition of $V(G)$. Let T_1 be a common transversal set of $\{A_1, A_2, \ldots, A_t\}$ and $\{B_1, B_2, \ldots, B_t\}$. Let T_j be a common transversal set of $\{A_1 - T_1, A_2 - T_2, \ldots, A_t - T_t\}$ and $\{B_1 - T_1, B_2 - T_2, \ldots, B_t - T_t\}$, where $T_1 = T_2 + \ldots + T_{t-1}$ $(2 \leq j \leq k)$. Consider $2k-2$ subgraphs G_j of G such as $G_1 = F_1$, $G_2 = F_2$, $G_3 = G_{j-2} - T_{j-2}$ $(3 \leq j \leq 2k-2)$, where $T_{k+i} = T_{k-i+1}$ $(1 \leq i \leq 2k-2)$. Consider $2k-2$ subgraphs H_j of G such as $H_1 = G_j - E(G_j - T_j)$ $(1 \leq j \leq 2k-4)$, $H_{2k-3} = G_{2k-3}$, $H_{2k-2} = G_{2k-2}$. Note that every component of G_j is a complete graph with $(2k-j+1)/2$ vertices (j; odd) or $(2k-j+2)/2$ vertices (j; even) and that every component of H_j is a star with $(2k-j+1)/2$ vertices (j; odd) or $(2k-j+2)/2$ vertices (j; even).

Then we can construct k edge-disjoint S_k-factors $F_1', F_2', F_3', \ldots, F_k$ of G as follows:

$F_1' = H_1$, $F_2' = H_2$, $F_j' = H_j \cup H_{2k-j+1}$ $(3 \leq j \leq k)$.

Therefore, it holds that $G = F_1' + F_2' + F_3' + \ldots + F_k$, which is an S_k-factorization. \qed

Note 1. The symbol (+) is used to denote the sum of factors.

As a resolvable BIBD($v, b, r, k, \lambda = 1$) is just a K_k-factorization of K_v, we have the following lemmas.

Lemma 3. If there exists a resolvable BIBD($v, b, r, k, \lambda = 1$) (r: even), then K_v has an S_k-factorization.

Lemma 4. If there exists a resolvable BIBD($v, b, r, k, \lambda = 1$) (r: odd, $m = v/k$), then $K(m; k)$ has an S_k-factorization.

Note 2. $K(m; k)$ is a complete multipartite graph with m partite sets of k vertices each.
References