ooooboooao
8020 19920 83-102

Analysis of Variance of Partially Balanced Fractional

9M1*M2 pactorial Designs of Resolution IV

LEXK 48 #H IFE ( Masahide Kuwada )

Abstract
In this paper, attention is focused on the analysis
of variance of partially balanced fractional 2m!*™2 fac-
torial designs of resolutidn IV by using the algebraic
structure. They can be obtained by partially balanced

arrays with some conditions.

1. Introduction
A partially balanced array (PB-array), which is a special
case of an asymmetrical balanced array of type 2 as introduced by
Nishii [14], has been studied by several researchers (e.g., [4]).
Necessary and sufficlent conditions for the existence of a PB-
array were obtained by Kuwada and Kuriki [10]. - A PB-array yields

Mi*M2  pactorial (20! 02_pRpF)

a partially balanced fractional 2
design under some conditions (see [5,6]). However a 2%!*M2_pppp
design does not always mean a PB-array.

It is generally difficult to obtain»the designs of resolu-
tion 2£ since there is a little information about the £-factor
interactions. For earlier works on such designs, see for exam-
ple, Kuwada and/or Matsuura [3,11], Margolin [12,13], Shirakura
[17-20], Srivastava and/or Anderson [1,22], and Webb [23]. Espe-

cially, by using the triangular multidimensional partially bal-
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anced (TMDPB) association scheme and its algebra, Shirakura [17]
showed that a balanced array with index up,=0 turns out to be a
balanced fractional 2™ factorial design of resolution 2¢ under
some conditions. Such a design permits to estimate all factorial
effects up to the (£-1)-factor interactions and some 1linear
combinations of the f-factor ones.

The analysis of variance (ANOVA) 1s a statistical technique
for handling the data or observations derived from an experiment
(cf. [9,15,16]). The ANOVA of 2™!*M2_PBFF designs of resolution
V which are derived from PB-arrays has been studied by Kuwada
[8]. In this paper, we present the ANOVA and the hypothesis
testing of 212 _pppp designs of resolution IV, which are PB-
arrays. The designs considered here pérmit estimation of the
general mean, all main effects and (A) all (2‘)+(22) two-factor
interactions and some linear combinations of the mym, ones, (B)
all (21) ones and some linear combinations of the (22) ones and
of the miym, ones, or (C) some linear combinations of the (gk)

ones (k=1,2) and of the miym; ones (see [3,11]).

2. Preliminaries

Consider a factorial experiment with m;+m, factors at two
levels (0 and 1, say) of each, where mg=2. Further consider the
situation in which three-~factor and higher order interactions are
assumed to be negligible., The vector of unknown factorial ef-
fects to be estimated is then given by (0%0;010;0%1:020;0%2;071)
(=0, say), where 0%5,=({6(0;0)}), ©10=({6(u;0)}), Bo1=({6(0;Vv)}),
020=({0(u1u2;0)}), ©o2=({6(0;viv2)}) and ©7:=({6(u;v)}). Here

1=<u=<m,, 1<v=m,;, lsu;<u;=<m; and 1<v;<vy<my;, and A’ denotes the



transpose of a matrix A. Note that the total number of factorial

effects to be estimated is 1+(m,+m2)+(m1;m2)

(=v(mym,), say).
Let [T!?;T(®») ](=T, say) be a fraction with N assemblies (or
treatment combinations), where T'*’’s are (0,1)-matrices of size
Nxmgx. Then the ordinary linear model is given by

yr = E10 + er, (2.1)
where yr and Er are the vector of N observations and the design
matrix of size Nxy(m;m;), respectively, and er is an error vector
distributed as N(On,0%Inx). Here 0, and I, denote the pxl vector
with all zero and the i1dentity matrix of order p, respectively.
The normal equation for estimating © is given by MT@=E}yT, where
Mr=E7Er. If the information matrix Mr is nonsingular, the BLUE
of © and its variance-covariance matrix are given by @=M%‘E&y1
and Var[8]=02Mi!, respectively.

Suppose a relation of association is defined among the sets

{(uy++-u_ ;vy--+v_ )}, where l<u;<---<u. =m; and 1sv;<-:-.-.<vV_ <m,,
ai as a az

in such a way that (uy:.--u_ ;vye--v_ ) and (ui-+--u’ ;
ai as b1

are the (aia2)th associates if

I{u1,~--,ua1} n {ui.-'-.ugl}l min(a;,b1) - ai

and

l{vll'°°’va2} N {Vi:'°°,vl')2}| min(azva) - A2,

where |S| and min(a,b) denote the cardinality of a set S and the
minimum value of integers a and b, respectively. The scheme thus
defined is called the extended TMDPB (ETMDPB) association scheme

(see [5]), which is regarded as a generalization of the TMDPB

A(a1az.b1b2)

association scheme (e.g., [24,25]1). Let a1z

and
D(a132,b1b2)

Q1ds be the local association matrices of size n(ajajs)x
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n(bibs) and the ordered association matrices of order v{(m;m,) of

the ETMDPB association scheme, respectively (see [5]), where

#(aijas,biby) _,#(ai,by),#(az2,b2)
B1B2 =ATg, ®A" g, '

where A*{2'®)’s are the matrices which are linearly linked with

m

n(ajas)=( 1)(mz). Further let A
ai as

the local association matrices Al®*'®) of the TMDPB association
scheme (e.g., [25]), and ® denotes the Kronecker product. A

relationship between A{®'®)’'s and A*{®*'?)’s is given by

AL®P) = (ALY = T oz{e DA% P for Osasb=m
[
and
AR (R P) o AR (BLAY Y o E z%%, pyAlE D) for O<a<b=<m,
where
&
2% ™ = I CDPTECR) GIR (T (RN (BT (PR
for a=<b,
z08. by = Pezia P /{(D () (b%220)} for asb
and

¢p = (?) - (aTI)

(e.g., [7,21,25]). The matrices a¥laiaz,biba) 00 he following

BiB2
properties:
#(aiaz,b1by)
AT ot 1R [l/{n(a1az)Xn(b1bz)}”]Gn(alaz)xn(blbz), (2.2)
#(ajajz,azaz) _
858, P BBy = Th(aia,) (2.3)
#(ajaz,cyica2) ,#(cyic2,b1ba) _ #(ajaz,bi1by)
A Bi1B2 A T1i72 - 631T1632T2A BiB2 (2.4)
and .
#(ajaz,bib2), _ _
rank (A 5152 ) = ¢ﬂ1x¢52 (—¢ﬂ152’ say) (2.5)

(see [5]), where Gpxq and d,4 denote the pxq matrix with all
unity and the Kronecker delta, respectively.
Let T be a PB-array of strength t;+t, and size N having m;+

m, constraints, two levels, and index set {u(i;i,) | Osix<ty=<mg},



where
My if mg=2,3,
tk = { (26)
4 if myg=4.
This array 1s written as PBA(N,m;+m2,2,t+t,;{u(i,i,2)}) for brev-
ity. The information matrix Mr associated with T, which is a PB-

array with (2.6), can be expressed as
(ajaz,biby)

Mr = a%ag b§b2 a§az Tla;-bil1+2ay, laz-bs | +2a2 a1 a2

_ aiaz,biby #(ajaz,biby)

B a§az b§b2 B%ﬂz Kﬁxﬁz D BiB2 ’ (2.7)
where D#é?ka’b‘bz)’s are the matrices of order v(mim,) which are
given by some linear combinations of D;?;iz'b‘bz)’s,

t ta 2 Jx :
= _11\Pk Jx Tk-Jx . .
Ti1.32 i§=0 i§=0 [kgl {P§=0 -1 (pk)(ik'Jk+pk)}]#(lllz)
and
aijaz,bibgy _ 2 (ax,bx)
Kﬁlﬁz - a?ﬁz [xg1 {Zﬁkdk }]T|a1‘b1|+201.laz—b2|+zaz
(see [5]).

3. 2Mt*™M2_pRFF designs of resolution IV
Throughout this paper, we consider a design, which is a PBA

(N,m;+mz,2,t1+t2;{u(iii,)}) with (2.8). Let Kﬁlﬂz="”2i2:’blb2"

for B182=00,10,01,20 (if m;=4),02 (if m,=24),11. Then a necessary
and sufficient condition for the information matrix Mt to be non-

singular, i.e., T 1s of resolution V, ‘is that every Kﬁ1ﬁz is

positive definite (see [5]). ©Note that a PBA(N,m;+m.,2,t;+t:;
{u(iiiz)}) yields a oM1*M2_ppERr design of resolution V provided
Mt is nonsingular. However the converse is not always true.

In this paper, we consider three cases as follows:

(A) det(KB1B2)¢O for B1$2:=00,10,01,20 (if mi=4),02 (if m,=4),
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and det(K;;)=0,

(B) det(Kﬂ132)¢O for B1B2=00,10,01,20 (if m;=4), and det(Ko2)

=det(K;;1)=0 for m,=4
and

(C) det(K5152)¢0 for B1B2:=00,10,01, and det(Kzo)=det(Ko2)

=det(Ki11)=0 for my=24
(see [3,11]), where det(A) denotes the determinant of a matrix A.
Let Wa=(0003;010:001:020:002;(H1011)" ), ¥p=(000;010;0%1;0%0; (HS,
x002)" ; (H}1011)") for my24 and ¥c=(0%0;0710;0%1;(HS0020)" ; (HS:

X@oz)';(H?1@11)’) for mgx=4, where

HY1 = h§oA®§s P +htoA* {31 1D +hg A*§I 1),
H?l =hB(l)éAﬂo((l)l'1‘1)+hBi(1)A”1((1)1'11)+hBé},A”(§{l'll),
Hf, = hB33A*§82 92 +nB3ia%§i2 %),
H?l =hCééAﬁéél,ll)_'_hC%éAﬁ{él.11)+hC11Aﬂ(11 11),
HS, = h@33A%§82: °2)+n3iAa*§72%:°2),
Hgo = hcggA“620,20)+hC20A”(20 20),
and hg 8, ’ 32‘22’5 and hcz‘zz’s are real constants. Then we

have the following (see [3,11]):

Proposition 3.1. Let T be a design which satisfies Condition (A)
((B) or (C)). Then ¥, (¥s or ¥c) is an estimable function of O,
and the BLUE of ¥a (¥p or ¥c) is given by Ba=XaEryr (85=XsEryr or
$C=XCE&yT), where Xao (Xg or Xc¢) is a matrix of order y(mim;)

which satisfies XaMr=Za (XsMr=Zp or XcMr=Z¢), ZA=diag(IVA;H?1)
(ZB=di&g(IUB;H§2;H?1) or Zc=diag(lvc;Hgo;ng;H?1)) and va=l+m;+m,
+(51)+(5?) (ve=lemi+ma+(5') or ve=l+mi+m,).

Note that a design satisfying Condition (A) ((B) or (C)) 1is

of course of resolution IV.
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4. Algebraic structure
It is empirically known that the main effects are more im-
portant than the two-factor interactions. Thus we are interested
in testing the hypotheses such that there exist some linear com-
binations of the two-faétor interactions or not; If they do not
exist, we wish fo test the hypotheses such that there exist an-
other linear combinations of them (or some linear combinations of

the main effects) or not, and so on.
Using the properties of A#éaéiz’alaz)’s as in (2.3); the
linear model (2.1) can be rewritten as

#(a;az,aaz)

yr = ﬁ§ﬂ2 a§az Ea1az BiB2 aja, & €T

where Ealaz,s are Nxn(a;a;) submatrices of Et corresponding to

aia,’ i.e., Er=[Eco0;E10;E01;E20;E02;E11]. By (2.2), (2.4) and

(2.5), (i) every element of the vector A#(alaz'ala”@ala2 re-

presents the average of © for a;a»=00,10,01,20,02,11, (ii)

ajaz

#( a1az»alaz)@

the elements of A B1 B2 for B182=10,01,20 (if m;24),02

142
(if m.=4),11 represent the contrasts between these effects and

any two contrasts are orthogonal, and (iii) there exist ¢5152

. , #(ajaz,aaz)
t f t f : i ’
independent parametric functions o ®a1a2 n A B1B2 aja,

respectively (e.g., [17]).

ajaz,biba_ #(aiaz,bi1b2) .
Let Fﬁlﬁz EalazA B1B2 Ebrbz' Then by (2.4) and

(2.7), we get the following (see [8]):

Lemma 4.1.

3132,0102Fd1d2,b1b2 _ 0102,d1d2Fa1az.b1b2

B1B2 7172 - ﬂlrl ﬁsz KB1B2 B1iB2

Let Kﬁlﬁz(alaz) be the matrices which are composed of the
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initial,--+-, the aiasth rows and the initial,-:--, the aja.th

-1_j,C1C2,d1d2
columns of KB1B2' Further let Kﬁlﬁz(alaz) "nﬁlﬁz (aja)ll,

if K (aiaz) 1s nonsingular. In addition, let K (aia,*) !
BiB2 BiB2

=156 T2 ara, ),

—Hnﬁlﬁz

if Kﬁlﬁz(alaz*) is nonsingular, where
Kﬁlﬁz(alazx) is the matrix which is obtained by deleting the last

BiB2,B1B2 Xy _
row and the last column of Kﬁlﬁz(alaz)’ and nﬁxﬁz (B:1B27)=0
for B182.=00,10,01,20 (if m,;=4),02 (if m,=4),11.

Let
ai1as aiaz
aja; X X cicz,d1d> cicz,d1d2
P = F
Big, = .83 & Q1P Mg g, (a122)Fg g,
a;a» aiaaz
_ yvXX X X ei1ez2,ff, xypei1€2,f1T2
gleg152 Flfélﬁz nﬂxﬁz (aja; )Fﬂ1ﬂz ,
aias aijaaz

where @Tééﬁz and gf;élﬁz are the summations over all the values

of wyw, and s;s, such that (I) if B:B.=00 and (1) a;a»=00, then
wiw2=00 and s;s, vanishes, (2) a;a,=10, then w;w,=00,10 and s;:s,
=00, (3) a;a,=01, then w;w;=00,10,01 and s;s:=00,10, (4) aia»=20,
then w,w,=00,10,01,20 and s:s,=00,10,01, (5) aj;a,=02, then w;wz=
00,10,01,20,02 and s;:s.,=00,10,01,20, and (6) aia.=11, then wiwy=
00,10,01,20,02,11 and s;:s:=00,10,01,20,02, (II) if B1B.=10 and
(1) a;a2=10, then w;w;=10 and s:s, vanishes, (2) aja;=20 (if m;=
3), then wiw.=10,20 and s;s»,=10, and (3) ai;a=11, then w;w,=10,20
(if m;=23),11 and s:8,=10,20 (if m;=3), (III) if B1B2=01 and (1)
aia,=01, then wiw,=01 and s;s; vanishes, (2) a a,=02 (if m,=3),
then wiw,=01,02 and s;s,=01, and (3) aia.=11, then w,w,=01,02 (if
m;=3),11 and s;:52=01,02 (if m,23), (IV) if B{B2=20 (m,;=4) and
aia=20, then w;w;=20 and s;s, vanishes, (V) if B1Bf2=02 (m.=4)
and a;a.=02, then w;w,=02 and s;s, vanishes, and (VII) if B:B:=

ajaz=11, then w;iw,=11 and s;s. vanishes, respectively. Then the



following can be proved easily (see [8]):

Lemma 4.2. (1) The 2122’5 are symmetric, mutually orthogonal

and idempotent matrices.
aijas

(i1) rank(PﬁlﬁZ) = ¢5132'

First we consider a 2™!*M2_pgpp design which is a PB-array
with Condition (A). If Nzv(mym,;), then there may exist a design
of resolution V. However if N=v(mim,), there is no d.f. due to
error. Thus we consider the case in which {3(m;+m;)+m?+m}}/2

3182

—pA A
(=v*(mymz), say)<Nsv(mim,). Let Pe=In- 315 a?az BiB:’ where the

summation 522 is extended over all the values of B;f: such that

B182=00,10,01,20 (if m;=4),02 (if m»=24). Then it follows from

Lemma 4.2 that (PA)2=p3, PAlez: P%lzz =Onxny and rank(P2)=N

-v4(mim2), where Op,xq denotes the pxq matrix with all zero. Let

a1a2

5 B, = %R(a1az*;ﬁ1ﬁz)*(R(a1a2;BlﬂZ))'

where
. _ #(51B2,ﬂ1ﬁ2) ..... #(ajaz,ajas)
R(ala2,51}32) [EBIﬁZ Bllg Ea1a2A ﬁlﬁz ]
for B1ﬁz=00,10,01,
ON if m1=2’3!
R(20;20) = {
’ [E;oA* {5029 if m;24,
On if m.=2,3,
R(02;02) = {
[Eo2A%§82%:°2)] if my=4

and R(aja,*;B8:1B82)’s are the matrices which are obtained by delet-

#(aijajz,ajaz)

ing Ea1a2A B:B2 from R(aia2;B182), and R(B1B2%;8182)=0x.

Here %AL(B) is the orthocomplement subspace of #(A) relative to
A®(B) for the case R(A)c%(B), where %(A) denotes the linear sub-

space spanned by the column vectors of a matrix A. Then Lemma
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4.2 and the properties of P4 yield the following:

Theorem 4.1. Let T be a 2™ ™2_pprF design which is derived from

a PB-array with Condition (A). Then we have

Roo ® Ri0 ® Ro1 © R5 if my,me=2,3,
%N Roo ® Rio ® %01 (<7] %20 (23] %é if m;=4,my=2,3,
Roo ® 1o ® Ro1 © Ro2 © A if my=2,3,m24,

Roo ® Rio © o1 © R20 ©® Ro2 © Re if my,m2=4,
where A" is an N-dimensional vector space, ® denotes the direct

sum, %2=RE%, which is the orthocomplement subspace of %(Er) rela-

tive to ®Y, and

Roo = RS © REY © %% © R38 © A% © Rbs,
219 @ A1} if my=2,
Byo = {
A% © A1 ®© A1t  if m,=3,
R © R if ma=2,
231 © %3¢ @ A4 if mp=3

and

%BIB2 = R(R(B1B2;B1B2)) for B1B2=20 (if mi24),02 (if ma=24).

Next consider a 2m!"™M2_pBFF design being a PB-array with
Condition (B), and {3(m;+2m;)+m}}/2 (=vB®B(m;m,), say)<N=svA(m;m;),

=4. L B_1y- B alaz, B t1
where mjy=4 et Pe=1IN B?Bza§azpﬂ1ﬁz where 5§52 is the summation

over all the values of B;B8: such that 8,;8,=00,10,01,20 (if m;=4).

Then (P3)2=pB, pBp2182_p182pB_4 = and rank(PB)=N-v®(mim,).

BiB2 " B1B2

Theorem 4.2. For a 2™!"™2_ppfpF design T, which is a PB-array
with Condition (B), we have
v - { Roo ® Rio ® Ro1 © RE if my=2,3,
"\ % ® %0 © %61 © oo ® 42 if miz4,

where %ﬁlﬂZ’s for B1B82.=00,10,01,20 (if mi=4) are given in Theorem



4.1, and %2=%E¢
T

Finally consider a 2™'*™2_pBFF design which is derived from

a PB-array with Condition (C), where 3(m;+m,) (=v®(m;m,), say)<N<

paid2 ¢ is the

g¥6.aTaTp . POTC g,
summation over all the values of fB;82 such that B;8.=00,10,01.

vB(mim,) and myx=4. Let PS=Iy-

aia: Pa1a2

Then (PS)?2=P§, P$S Pﬁ 3,-Pg. 5. P$=0nxn and rank(P$)=N-v¢(m;m,).

Theorem 4.3. Let T be a 2"'"™2_PBFF design which is a PB-array
with Condition (C). Then
AN = Roo ©® Rio © Ro: O RS,

where %51ﬁ2’s (B1B2=00,10,01) are the same as in Theorem 4.1, and

Cc_
%e—%E.’;_

5. ANOVA and hypothesis testing
We first consider the ANOVA and the hypothesis testing of
oM1*M2_pppp designs of resolution IV satisfying Condition (A).

Let S%i%z—y Pﬂ 5 yr and Sh=yTPsyr. Then by Theorem 4.1, we have

the following:

Theorem 5.1. Let T be a 2™'"™2_PBFF design which is a PB-array

with Condition (A) and v*(m;m,)<Nsy(mim,). Then we have

a;az

’ - A A
YtYTr = B%ﬁz a§a2 ﬁ ﬂz + SQ-

Theorem 5.2. For a design T of Theorem 5.1, an unbiased esti-
mator of o is given by
g2 = S&/{N-v*(mimz)}.

The noncentrality parameters, say, 2122/0 of the quad-

ratic forms y&P%i%Zyr/oz are defined by g[y%]Pzizzg[yT]/az, where
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&ly] denotes the expected value of a random vector y. Let

Coo(Pi1P2,91492:a182)

aa a;a
(xFo0 $(xfoo _CiC2 dxdz( ) xB3P2,C1C2 d;d2,q:q2
§1C2 §1d2 700 ajaz) Ko Koo
aa aa
_ 55 00 S1x3) 00 _esen f1f2( Xy D1p2.e1ez f fz,Q1Q2
5162 §1f2 Moo a182 Ko

if (1) pip2=q:1qz2=11 for a;a.=11,

- 4 (2) P1P2,91Q2=02,11 for a;a,=02,

(3) piP2,9192=20,02,11 for a;a:=20,

(4) P1P2,9:192=01,20,02,11 for a;a»=01,

(5) P1P2,9192=10,01,20,02,11 for a;a,=10,
(6) pP1P2,9:192=00,10,01,20,02,11 for a;a.=00,

‘0 otherwise,

aijas aia;
where @‘;’°° and g‘;*’°° are extended over all the values of wiw:
1wa 122

and s;s, such that if a;a,;=11, then w;wz=11 and s;s, vanishes, if
aja=02, then w;w,=02,11 and s;s.=11, if a ;a,=20, then w;w.=20,
02,11 and S1sz=02,11, if a1a2=01,‘then wiw2=01,20,02,11 and s;s:=
20,02,11, if a;a,=10, then w;w,=10,01,20,02,11 and s;s,=01,20,02,
11, and if a;a»=00, then w;w.=00,10,01,20,02,11 and s;s.=10,01,
20,02,11, respectively. Let

ci0(P1P2,41Q2:a1a2)

ajaz
g(x)1o §(x)1o ﬂ 1C2 d1d2(a a,) P 1P2,C1C2, 0 dxdz,Q1Q2
1C2
ajas ai1ds
_ v (XX)10 w(xx)10 _€1€2,f 1T, xyxPiP2,€1€2 f1f2,Q1Q2
éxez §1f2 n1o0 (aiaz2”™)k}
= 9 if (1) pip2=q:1qz2=11 for aj;a;=11,

(2) P1P2,9192=20 (m;=3),11 for a;a;=20,
(3) P1P2,9192=10,20 (m;=3),11 for a;a.=10,

0 otherwise,
where é(*’1° and g(**)1° are the summations over all the values

of wiw, and s;s, such that w,w;=11 and s;s, vanishes if a;a,=11,



wiw2=20 (if m;=23),11 and s;s2;=11 if a;a:=20, and w;w=10,20 (if
m=3),11 and s;$2=20 (if m;=3),11 if a;a.,=10, respectively. Let

Coi1(Pi1P2,91923a1a2)

aijaq aiaz
(X301 y(xyo01 ,CiCa2,d1d> PipP2,cic2 d;d2,4Q1q2
§ g q no1 (aja2)Ko1 Ko
1C2 1d2
aiaq a;asz
_ é(xx)01 ;(xx)(ﬂ

ei1e ,f f ,e e f f s 2

= < if (1) pip2=q1q2=11 for a;a,=11,
(2) P1P2,9192=02 (m.23),11 for a;a.=02,
(3) P1P2,9192=01,02 (m.23),11 for a;a,=01,

\ 0 otherwise,

aiaz aias
where @‘;’°1 and E:;:)°‘ are extended over all the values of w;w,
1W2

and s;s; such that wiwz=11 and s;s2 vanishes if a;a:=11, wiw,=02
(if m.=23),11 and s;s,=11 if a;a,=02, and wiw,=01,02 (if m,=3),11

and s:1s,=02 (if m.=3),11 if a;a,=01, respectively. Further let

k38:%° if pip2=qi1Q:=a1a:=20,
c20(P1P2,9192581a2) = {
0 otherwise,
if det(K20)#0 and m;=4, and
k83:°% if pip2=qi1q2=a1a,=02,
Co2(Pi1P2,91Q23a1a2) = { .
0 otherwise,

if det(Ko2)#0 and m;=4. Then the following yields:

Theorem 5.3. Let T be a design of Theorem 5.1, then the non-

centrality parameters of the quadratic forms y&P%i%ZyT/oz for

B1B2=00,10,01,20 (if my=4),02 (if m224) are

aias 2 _ . . 2
Xlgllg2/a p§p2 q§q2 {Cﬁlﬁz(pLPZ.Q1Q2,alaz)/U }
, #(p1P2,491q2)
X@plpzA BiB2 q:1q2°

212: be the hypotheses such that a¥(a1az,a182)g

t H =
ke Blﬁz aia;

On(alaz) (if they exist). We are first interested in testing the
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N
oo

11 11 = 20 ;
hypotheses Hﬁxﬁz against K5152 (B:1B2=00,10,01), H3s against K

(if m.24), and H{} against K33 (if m.=4), where K2!22'g are the

BiB2

#(ajaz,ara,) Next, if H!} (or

hypotheses that A B1B2 a1a2¢0n(a1a2)'
H;i) is accepted, we then consider the testing hypothesis H1{§ (if
m;=3) or HiJ (if m,=2) against His (or H}} (if m,=3) or HEi (if
m,=2) against H§!). If Hi} 1s accepted, then we consider HY}
against Hg{s. Third, if H}§ (if m,;23) (or H$? (if m.=23)) is ac-
cepted, then consider H!J against H?} (or HS! against H}?), and
if H{} 1is accepted, consider H3J against HJ3. If H3{ is ac-
cepted, consider HJ} against H}$, and lastly if H}§ is accepted, .
then consider H}) against HJS. This method is the so-called
nested test procedure (e.g., [21). Notice that Theorem 5.3

aias
implies that .n gR1bz 4 accepted if and only if 12!22-=0, where
bibs Bi82 B1B2

ai1as
n 12102 genotes the intersection of a21P2,g guch that the
bibs BiB2 BiB2

aiaz
running indices b;b, have the same values as wiw, of @:;;ﬁlﬂz for

B182=00,10,01, and as Bi1B2 for B18:=20 (if m,=4),02 (if m.=4).
The test statistics for the nested method are given by

(1) for B:1B2=00,

S58/%00 s |
SA/{N-v*(m,mq) } (=F%00, say), (5.1)
S88/%00 o
[SE+ST0/IN-v (mims) + 003 (F 00> Sa¥), (5.2)
S§8/400 t2o
(SA+S13+808)/{N—v (mms)+2f00] ([ 00, say), (5.3)
S85/%00 ot
{S5+503+553+8331/{N-v2(m.mz) +3F00F (F 00, say) (5.4)

and



S}é
{S5+S55+S35+S50+S9

(ii) for B:B:=10,

(or

and

(iii)

(or

and

Sis/$1o0

SA/{N-vA(mim,)} (=FAi%, say),

S38/410

/{N-v2(mim;)+46,0}

s/ IN mma ) 6.o7 (-F 18, say)

Si8/410

S5SITI/ (N (moms )+ f.ay (F 18, say)

Si8/%10

{S5+S15+SI0}/{N-vA(mim;)+26, 0}

for B182=01,

S61/%01

_pALl
SA/{N-v®(mim,)} (=F*51, say),

S8%/%01

(SE+Ss Y/ {IN-vE(msmz) +Bo0 1}

S81/%01

(SA+S 1/ (N-v A (mima) +Fo:t

S81/%01

{S5+So1+So1}/{N-vA(mm,)+26¢:}

(iv) for B:1f2=20 and m;=24,

S38/%20

_A20
S/ (N-vE(mms))  (F 20, say)

and (v) for B1B2=02 and m.24,

All of them have F distributions,

S03/%02

S&/{N-v*(mm,)} (=F*83, say).

(=F*18,

(=FA31,

(=F*38, say), (5.

(5.

(if m,;=23) (5.

(if my=2)) (5.

say) (if m;=3)

(5.

(5.

(if m2=3) (5.

(1f m2=2))

say) (if m.,=3)

(5.

(5.

5)

6)

7a)

7b)

8)

9)

10)

11)

12)

and the nesting procedure is

continued until a significant test is obtained for each B;82.

Note that FA%i%:,S are central or noncentral F distributions with
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¢5152 and {N—uA(mlmz)}+1A(a1a2;ﬁ152)¢51ﬂ2 d.f., and noncentrality

aias
parameters 12122/02 depending on which b0b, 2122 are true, where

tA(a;a.;B182)’s are some integers as above.
Next consider the ANOVA and the hypothesis testing of

2m‘+m2—PBFF designs of resolution IV which satisfy Condition (B).

Theorem 5.4. Let T be a 2™'"™2_PBFF design which is a PB-array

with Condition (B) and vB(m;m,)<Ns<vA(m;m;). Then

, - B alaz B
Yryr 5§ﬁ2 a§az 8182 + Se,

where S8=ytPByr.

Theorem 5.5. For a design T of Theorem 5.4, an unbiased esti-
mator of o? is
0% = SB/{N-v®(mm;z)}.

Theorem 5.6. Let T be a design of Theorem 5.4. Then the non-

centrality parameters of the quadratic forms y%PZiZZyr/cz for

B1B2=00,10,01,20 (if m;=24) are given by
2182 = . 2
ﬁ 83 /a? p%pg q?qz {Cﬁlﬁz(Plpz.Q1Q2.axaz)/0 }

@’ #(Ple,Q1Q2)
P1P2 Bi1B2 Q1Q2'

We now consider the hypotheses Hé‘ﬁ against KkIB for BiB

=00,10,01, H3}} against K3§ (if m;=24). Next if Hié (or H3l) is
accepted, consider the testing hypothesis H1§ (if m;=3) or H}}
(if m;=2) against Hi} (or HJ? against H§!). If H{} is accepted,
then consider H$3 against H§§. Third, if HI§ (if m;=23) (or H{P)
is accepted, then consider H{S against H?§ (or HJ! against H?),
and if HJ3 is accepted, consider H3J against H§3. If H39 is ac-

cepted, consider H}§ against HZJ, and lastly if H$} is accepted,

then consider H§$ against H}§. Note that Theorem 5.6 means that



aias
blsz; 22 is accepted if and only if 12122 The test statis-

tics, say FBE‘ZZ, for the nested method are given by replacing Si

and v®(m;m,) of (5.1) through (5.12) with S® and vB(m;m,), re-

spectively. The F32122’s have F distributions similar to
Adi1az2,
F 8182 S.

We finally consider the ANOVA and the hypothesis testing of

m

oMt* M2 _pppp designs satisfying Condition (C).

Theorem 5.7. Let T be a 2™ "™2_pPBFF design which is a PB-array

with Condition (C) and v®(mim,)<N<vB(m;m,). Then we have:

a132

C
856, ata, Spif,
where SS=yrPSyr.

yryr = + S§

Theorem 5.8. Let T be a design of Theorem 5.7, then an unbiased
estimator of o is given by

0% = SS/{N-v (msm,)}.
Theorem 5.9. For a design T of Theorem 5.7, the noncentrality

parameters of the quadratic forms y%PZiZ:yT/Gz (B1B82=00,10,01)

are
a8td2,52 o » ¥ {c (P1P2,9142;8182)/0%}
B B2 PTP2 ATq: B1B2 ’
, #(P1P2.Q1Qz)
X®p1p2 Bi1B2 QQ1Q2'

Consider the testing hypotheses HB B2 against KB B2 for BiB:

=00,10,01. Next if Hig (or H§}{) is accepted, then consider the
testing hypothesis H?J against Hij (or H3? against H}!). If H}S
is accepted, then consider H$j against H§§. Third if HI§ (or

$%) is accepted, consider Hij against H}§ (or H§! against H{?),

and if HY3 is accepted, consider H%) against H$3. If HZ) is ac-
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cepted, consider H}} against H}$, and lastly if H$; is accepted,
consider H}J against HJ}j. Note that Theorem 5.9 implies that

ajaz
n, H2'P2 i accepted if and only if 22'22-0. The test statis-
b1b2 /31B2

B1B2
tics, say FCZizz, for the nested method are given by replacing

SA and v*(mim,) of (5.1) through (5.11) with S§ and v®(mim;),

respectively. The FC%i;:’s have F distributions similar to
Adi1az2,
Bips S
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