<table>
<thead>
<tr>
<th>Title</th>
<th>Analysis of Variance of Partially Balanced Fractional $2^{m_1+m_2}$ Factorial Designs of Resolution IV(Combinatorial Aspects on the Analysis of Mathematical Models)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kuwada, Masahide</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1992), 802: 83-102</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1992-08</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/82874</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Analysis of Variance of Partially Balanced Fractional
$2^{m_1+m_2}$ Factorial Designs of Resolution IV

Masahide Kuwada

Abstract

In this paper, attention is focused on the analysis of variance of partially balanced fractional $2^{m_1+m_2}$ factorial designs of resolution IV by using the algebraic structure. They can be obtained by partially balanced arrays with some conditions.

1. Introduction

A partially balanced array (PB-array), which is a special case of an asymmetrical balanced array of type 2 as introduced by Nishii [14], has been studied by several researchers (e.g., [4]). Necessary and sufficient conditions for the existence of a PB-array were obtained by Kuwada and Kuriki [10]. A PB-array yields a partially balanced fractional $2^{m_1+m_2}$ factorial ($2^{m_1+m_2}$-PBFF) design under some conditions (see [5,6]). However a $2^{m_1+m_2}$-PBFF design does not always mean a PB-array.

It is generally difficult to obtain the designs of resolution 2^l since there is a little information about the l-factor interactions. For earlier works on such designs, see for example, Kuwada and/or Matsuura [3,11], Margolin [12,13], Shirakura [17-20], Srivastava and/or Anderson [1,22], and Webb [23]. Especially, by using the triangular multidimensional partially bal-
anced (TMDPB) association scheme and its algebra, Shirakura [17] showed that a balanced array with index \(\mu_g = 0 \) turns out to be a balanced fractional \(2^n \) factorial design of resolution \(2^\ell \) under some conditions. Such a design permits to estimate all factorial effects up to the \((\ell-1)\)-factor interactions and some linear combinations of the \(\ell \)-factor ones.

The analysis of variance (ANOVA) is a statistical technique for handling the data or observations derived from an experiment (cf. [9,15,16]). The ANOVA of \(2^{m_1+m_2} \)-PBFF designs of resolution V which are derived from PB-arrays has been studied by Kuwada [8]. In this paper, we present the ANOVA and the hypothesis testing of \(2^{m_1+m_2} \)-PBFF designs of resolution IV, which are PB-arrays. The designs considered here permit estimation of the general mean, all main effects and (A) all \(\binom{m_1}{2} + \binom{m_2}{2} \) two-factor interactions and some linear combinations of the \(m_1m_2 \) ones, (B) all \(\binom{m_1}{2} \) ones and some linear combinations of the \(\binom{m_2}{2} \) ones and of the \(m_1m_2 \) ones, or (C) some linear combinations of the \(\binom{m_k}{2} \) ones \((k=1,2)\) and of the \(m_1m_2 \) ones (see [3,11]).

2. Preliminaries

Consider a factorial experiment with \(m_1+m_2 \) factors at two levels (0 and 1, say) of each, where \(m_k \geq 2 \). Further consider the situation in which three-factor and higher order interactions are assumed to be negligible. The vector of unknown factorial effects to be estimated is then given by \((\theta_0; \theta_1; \theta_2; \theta_3; \theta_4) \) (=\(\theta' \), say), where \(\theta_0 = (\{\theta(0;0)\}) \), \(\theta_1 = (\{\theta(0;u)\}) \), \(\theta_2 = (\{\theta(0;v)\}) \), \(\theta_3 = (\{\theta(0;u_1v_2)\}) \), \(\theta_4 = (\{\theta(0;u_1v_2)\}) \) and \(\theta_1 = (\{\theta(u;v)\}) \). Here \(1 \leq u \leq m_1 \), \(1 \leq v \leq m_2 \), \(1 \leq u_1 < u_2 \leq m_1 \) and \(1 \leq v_1 < v_2 \leq m_2 \), and A' denotes the
transpose of a matrix A. Note that the total number of factorial effects to be estimated is \(1 + (m_1 + m_2) + \binom{m_1 + m_2}{2} = \nu(m_1 m_2), \) say. Let \([T^{(1)}, T^{(2)}] = T, \) say be a fraction with N assemblies (or treatment combinations), where \(T^{(k)}\)'s are \((0,1)\)-matrices of size \(N \times m_k.\) Then the ordinary linear model is given by

\[y_T = E_T \theta + e_T, \]

(2.1)

where \(y_T \) and \(E_T \) are the vector of \(N \) observations and the design matrix of size \(N \times \nu(m_1 m_2), \) respectively, and \(e_T \) is an error vector distributed as \(N(0_N, \sigma^2 I_N).\) Here \(0_p \) and \(I_p \) denote the \(p \times 1 \) vector with all zero and the identity matrix of order \(p, \) respectively. The normal equation for estimating \(\theta \) is given by \(M_T \hat{\theta} = E_T y_T, \) where \(M_T = E_T' E_T. \) If the information matrix \(M_T \) is nonsingular, the BLUE of \(\theta \) and its variance-covariance matrix are given by \(\hat{\theta} = M_T^{-1} E_T y_T \) and \(\text{Var}[\hat{\theta}] = \sigma^2 M_T^{-1}, \) respectively.

Suppose a relation of association is defined among the sets \(\{(u_1 \cdots u_{a_1}, v_1 \cdots v_{a_2})\}, \) where \(1 \leq u_1 < \cdots < u_{a_1} \leq m_1 \) and \(1 \leq v_1 < \cdots < v_{a_2} \leq m_2, \) in such a way that \((u_1 \cdots u_{a_1}, v_1 \cdots v_{a_2}) \) and \((u_1' \cdots u_{a_1}', v_1' \cdots v_{a_2}') \) are the \((a_1 a_2)\)th associates if

\[|\{u_1, \cdots, u_{a_1}\} \cap \{u_{a_1}', \cdots, u_{a_1}'\}| = \min(a_1, b_1) - \alpha_1 \]

and

\[|\{v_1, \cdots, v_{a_2}\} \cap \{v_{a_2}', \cdots, v_{a_2}'\}| = \min(a_2, b_2) - \alpha_2, \]

where \(|S|\) and \(\min(a,b)\) denote the cardinality of a set \(S\) and the minimum value of integers \(a\) and \(b, \) respectively. The scheme thus defined is called the extended TMDPB (ETMDPB) association scheme (see [5]), which is regarded as a generalization of the TMDPB association scheme (e.g., [24, 25]). Let \(A_{a_1 a_2}^{(a_1 a_2, b_1 b_2)}\) and \(D_{a_1 a_2}^{(a_1 a_2, b_1 b_2)}\) be the local association matrices of size \(n(a_1 a_2) \times\)
\(n(b_1b_2)\) and the ordered association matrices of order \(\nu(m_1m_2)\) of the ETMDPB association scheme, respectively (see [5]), where \(n(a_1a_2)=(m_1)(m_2)\). Further let \(A^{\#}(a_1a_2,b_1b_2)=A^{\#}(a_1,b_1) \otimes A^{\#}(a_2,b_2)\), where \(A^{\#}(\cdot,\cdot)\)'s are the matrices which are linearly linked with the local association matrices \(A^{\#}_{a,b}\) of the TMDPB association scheme (e.g., [25]), and \(\otimes\) denotes the Kronecker product. A relationship between \(A^{\#}_{a,b}\)'s and \(A^{\#}(\cdot,\cdot)\)'s is given by
\[
A^{\#}_{a,b} = \{A^{\#}_{a,b}\}' = \sum_{a} z^{a,b}_{\#} A^{\#}(a,b) \quad \text{for } 0 \leq a \leq b \leq m
\]
and
\[
A^{\#}(a,b) = \{A^{\#}_{a,b}\}' = \sum_{a} z^{a,b}_{\#} A^{\#}(a,b) \quad \text{for } 0 \leq a \leq b \leq m,
\]
where
\[
z^{a,b}_{\#} = \sum_{p=0}^{\#} (-1)^{p-a}(\begin{pmatrix} a \\ p \end{pmatrix})^{(m-a-b)}(\begin{pmatrix} m-a-b-p \end{pmatrix})^{(b-a)}(\begin{pmatrix} b-a \end{pmatrix})^{(m-b-a)} \quad \text{for } a \leq b,
\]
\[
z^{a,b}_{\#} = \phi_{\#} z^{a,b}_{\#}/\{(\begin{pmatrix} a \\ a \end{pmatrix})^{(b-a)}\} \quad \text{for } a \leq b
\]
and
\[
\phi_{\#} = (\begin{pmatrix} m \\ a \end{pmatrix}) - (\begin{pmatrix} m \\ a-1 \end{pmatrix})
\]
(e.g., [7, 21, 25]). The matrices \(A^{\#}(a_1a_2,b_1b_2)\) have the following properties:
\[
A^{\#}(a_1a_2,b_1b_2) = [1/n(a_1a_2) \times n(b_1b_2)]^{m} g_{n(a_1a_2) \times n(b_1b_2)}, \quad (2.2)
\]
\[
\sum_{\beta_1\beta_2} A^{\#}(a_1a_2,a_1a_2) = I_{n(a_1a_2)}, \quad (2.3)
\]
\[
A^{\#}(a_1a_2,c_1c_2) A^{\#}(c_1c_2,b_1b_2) = \delta_{a_1\beta_1} \delta_{c_1\beta_2} A^{\#}(a_1a_2,b_1b_2) \quad (2.4)
\]
and
\[
\text{rank}(A^{\#}(a_1a_2,b_1b_2)) = \phi_{\#} \times \phi_{\#} = \phi_{\#} \beta_{1\beta_2}, \quad \text{say} \quad (2.5)
\]
(see [5]), where \(G_{p \times q}\) and \(\delta_{p,q}\) denote the \(p \times q\) matrix with all unity and the Kronecker delta, respectively.

Let \(T\) be a PB-array of strength \(t_1+t_2\) and size \(N\) having \(m_1+m_2\) constraints, two levels, and index set \(\{\mu(i_1i_2) \mid 0 \leq i_k \leq t_k \leq m_k\}\).
where
\[t_k = \begin{cases} m_k & \text{if } m_k = 2,3, \\ 4 & \text{if } m_k \geq 4. \end{cases} \quad (2.6) \]

This array is written as \(\text{PBA}(N,m_1+m_2,2,t_1+t_2;\{\mu(1,1_2)\})\) for brevity. The information matrix \(M_T \) associated with \(T \), which is a PB-array with (2.6), can be expressed as
\[M_T = \alpha_1 a_2 \beta_1 b_2 \alpha_1 a_2 \alpha_1 a_2 \beta_1 \beta_2 \alpha_2^{a_1} b_1^{b_1} b_2^{b_2} D_{\alpha_1 \alpha_2}^{(a_1 a_2, b_1 b_2)} \]
\[= \alpha_1 a_2 \beta_1 \beta_2 \alpha_1 a_2 \beta_1 \beta_2 \alpha_1 a_2 \beta_1 \beta_2 \quad (2.7) \]

where \(D_{\alpha_1 \alpha_2}^{(a_1 a_2, b_1 b_2)} \),s are the matrices of order \(\nu(m_1 m_2) \) which are given by some linear combinations of \(D_{\alpha_1 \alpha_2}^{(a_1 a_2, b_1 b_2)} \),s,
\[\beta_1 \beta_2 \]
\[\gamma_{j_1,j_2} = \sum_{i_1=0}^{t_1} \sum_{i_2=0}^{t_2} \sum_{k=0}^{\nu(m_1 m_2)} \left(\prod_{k=0}^{\nu(m_1 m_2)} \right) (-1)^{p_k} \left(\sum_{k=0}^{\nu(m_1 m_2)} \right) \mu(1,1_2) \]

and
\[\kappa_{\beta_1 \beta_2}^{a_1 a_2, b_1 b_2} = \sum_{k=1}^{\nu(m_1 m_2)} \left(\sum_{k=1}^{\nu(m_1 m_2)} \right) \gamma_{a_1 a_2, b_1 b_2}^{a_1 a_2, b_1 b_2} \]
(see [5]).

3. \(2^{m_1+m_2} \)-PBFF designs of resolution IV

Throughout this paper, we consider a design, which is a PBA \((N,m_1+m_2,2,t_1+t_2;\{\mu(1,1_2)\}) \) with (2.6). Let \(K_{\beta_1 \beta_2} = \kappa_{\beta_1 \beta_2}^{a_1 a_2, b_1 b_2} \)
for \(\beta_1 \beta_2 = 00,10,01,20 \) (if \(m_1 \geq 4 \)), 02 (if \(m_2 \geq 4 \)). Then a necessary and sufficient condition for the information matrix \(M_T \) to be nonsingular, i.e., \(T \) is of resolution V, is that every \(K_{\beta_1 \beta_2} \) is positive definite (see [5]). Note that a PBA \((N,m_1+m_2,2,t_1+t_2;\{\mu(1,1_2)\}) \) yields a \(2^{m_1+m_2} \)-PBFF design of resolution V provided \(M_T \) is nonsingular. However the converse is not always true.

In this paper, we consider three cases as follows:

(A) \(\det(K_{\beta_1 \beta_2}^{a_1 a_2, b_1 b_2}) \neq 0 \) for \(\beta_1 \beta_2 = 00,10,01,20 \) (if \(m_1 \geq 4 \)), 02 (if \(m_2 \geq 4 \)).
and $\det(K_{11})=0$,

(B) $\det(K_{\beta_1\beta_2})\neq 0$ for $\beta_1\beta_2=00,10,01,20$ (if $m_1\geq 4$), and $\det(K_{02})$

$=\det(K_{11})=0$ for $m_2\geq 4$

and

(C) $\det(K_{\beta_1\beta_2})\neq 0$ for $\beta_1\beta_2=00,10,01$, and $\det(K_{02})=\det(K_{02})$

$=\det(K_{11})=0$ for $m_k\geq 4$

(see [3,11]), where $\det(A)$ denotes the determinant of a matrix A.

Let $\Psi_A = (\Theta_0: \Theta_1: \Theta_2: \Theta_3: (H^A_{11}; \Theta_{11}'))$, $\Psi_B = (\Theta_0: \Theta_1; \Theta_2: \Theta_3: (H^B_{22}\times \Theta_0); (H^B_{11}; \Theta_{11}'))$, $\Psi_C = (\Theta_0; \Theta_1: \Theta_2: (H^C_{22}\Theta_0); (H^C_{11}; \Theta_{11}'))$, for $m_2\geq 4$ and $\Psi_C = (\Theta_0; \Theta_1; \Theta_2: (H^C_{22}\Theta_0); (H^C_{11}; \Theta_{11}'))$, for $m_k\geq 4$, where

$$H^A_{11} = h^A_{00}A^{\#(11,11)} + h^A_{10}A^{\#(11,11)} + h^A_{11}A^{\#(11,11)}$$

$$H^B_{11} = h^B_{00}A^{\#(11,11)} + h^B_{10}A^{\#(11,11)} + h^B_{11}A^{\#(11,11)}$$

$$H^B_{22} = h^B_{00}A^{\#(20,20)} + h^B_{01}A^{\#(20,20)}$$

$$H^C_{11} = h^C_{00}A^{\#(11,11)} + h^C_{10}A^{\#(11,11)} + h^C_{11}A^{\#(11,11)}$$

$$H^C_{22} = h^C_{00}A^{\#(20,20)} + h^C_{01}A^{\#(20,20)}$$

$$H^C_{20} = h^C_{00}A^{\#(20,20)} + h^C_{01}A^{\#(20,20)}$$

and $h^A_{\beta_1\beta_2}$, $h^B_{\beta_1\beta_2}$, and $h^C_{\beta_1\beta_2}$ are real constants. Then we have the following (see [3,11]):

Proposition 3.1. Let T be a design which satisfies Condition (A)

((B) or (C)). Then Ψ_A (or Ψ_B or Ψ_C) is an estimable function of Θ,

and the BLUE of Ψ_A (or Ψ_B or Ψ_C) is given by $\hat{\Psi_A} = X_AE_T^TY_T$ ($\hat{\Psi_B} = X_BE_T^TY_T$ or $\hat{\Psi_C} = X_CE_T^TY_T$), where X_A (or X_B or X_C) is a matrix of order $\nu (m_1m_2)$

which satisfies $X_AM_T = Z_A$ ($X_BM_T = Z_B$ or $X_CM_T = Z_C$), $Z_A = \text{diag}(I_{\nu_A}; H^A_{11})$

($Z_B = \text{diag}(I_{\nu_B}; H^B_{22}; H^B_{11})$ or $Z_C = \text{diag}(I_{\nu_C}; H^C_{22}; H^C_{20}; H^C_{11})$) and $\nu_A = 1 + m_1 + m_2$

$+ (m_1^2)$ and $\nu_B = 1 + m_1 + m_2 + (m_1^2)$ or $\nu_C = 1 + m_1 + m_2$.

Note that a design satisfying Condition (A) ((B) or (C)) is of course of resolution IV.
4. Algebraic structure

It is empirically known that the main effects are more important than the two-factor interactions. Thus we are interested in testing the hypotheses such that there exist some linear combinations of the two-factor interactions or not. If they do not exist, we wish to test the hypotheses such that there exist another linear combinations of them (or some linear combinations of the main effects) or not, and so on.

Using the properties of $A_{\beta_1\beta_2}^#(a_1a_2,a_1a_2)$'s as in (2.3), the linear model (2.1) can be rewritten as

$$y_\tau = \sum_{\beta_1\beta_2} \sum_{a_1a_2} E_{a_1a_2} A_{\beta_1\beta_2}^#(a_1a_2,a_1a_2) \Theta_{a_1a_2} + e_\tau,$$

where $E_{a_1a_2}$'s are $N\times n(a_1a_2)$ submatrices of E_τ corresponding to $\Theta_{a_1a_2}$, i.e., $E_\tau = [E_{00}; E_{01}; E_{10}; E_{02}; E_{20}; E_{01}; E_{11}]$. By (2.2), (2.4) and (2.5), (1) every element of the vector $A_{\beta_1\beta_2}^#(a_1a_2,a_1a_2)\Theta_{a_1a_2}$ represents the average of $\Theta_{a_1a_2}$ for $a_1a_2=00, 10, 01, 20, 02, 11$, (ii) the elements of $A_{\beta_1\beta_2}^#(a_1a_2,a_1a_2)\Theta_{a_1a_2}$ for $\beta_1\beta_2=10, 01, 20$ (if $m_1 \geq 4$), 02 (if $m_2 \geq 4$), 11 represent the contrasts between these effects and any two contrasts are orthogonal, and (iii) there exist $\phi_{\beta_1\beta_2}$ independent parametric functions of $\Theta_{a_1a_2}$ in $A_{\beta_1\beta_2}^#(a_1a_2,a_1a_2)\Theta_{a_1a_2}$, respectively (e.g., [17]).

Let $p_{a_1a_2,b_1b_2} E_{a_1a_2} A_{\beta_1\beta_2}^#(a_1a_2,b_1b_2) E_{b_1b_2}'$. Then by (2.4) and (2.7), we get the following (see [8]):

Lemma 4.1.

$$F_{a_1a_2,c_1c_2,d_1d_2,b_1b_2} = \delta_{\beta_1\tau_1} \delta_{\beta_2\tau_2} c_{1c_2,d_1d_2} F_{a_1a_2,b_1b_2}$$

Let $K_{\beta_1\beta_2}(a_1a_2)$ be the matrices which are composed of the
initial, \ldots, the a_1a_2\textit{th} rows and the initial, \ldots, the a_1a_2\textit{th} columns of $K_{\beta_1\beta_2}$. Further let $K_{\beta_1\beta_2}^{-1}(a_1a_2) = \eta_{\beta_1\beta_2}^{c_1c_2,d_1d_2}(a_1a_2)$, if $K_{\beta_1\beta_2}(a_1a_2)$ is nonsingular. In addition, let $K_{\beta_1\beta_2}^{-1}(a_1a_2) = \eta_{\beta_1\beta_2}^{e_1e_2,f_1f_2}(a_1a_2)$, if $K_{\beta_1\beta_2}^{-1}(a_1a_2)$ is nonsingular, where $K_{\beta_1\beta_2}^{-1}(a_1a_2)$ is the matrix which is obtained by deleting the last row and the last column of $K_{\beta_1\beta_2}(a_1a_2)$, and $\eta_{\beta_1\beta_2}^{\beta_1\beta_2}(\beta_1\beta_2)=0$ for $\beta_1\beta_2=00,01,01,20$ (if $m_1 \geq 4$), 02 (if $m_2 \geq 4$), 11.

Let

$$p_{a_1a_2}^{\beta_1\beta_2} = \sum_{x} \sum_{x} p_{a_1a_2}^{\beta_1\beta_2} \eta_{\beta_1\beta_2}^{c_1c_2,d_1d_2}(a_1a_2)F_{c_1c_2,d_1d_2}^{\beta_1\beta_2} - \sum_{x} \sum_{x} p_{a_1a_2}^{\beta_1\beta_2} \eta_{\beta_1\beta_2}^{e_1e_2,f_1f_2}(a_1a_2)F_{e_1e_2,f_1f_2}^{\beta_1\beta_2},$$

where $\sum_{x} \sum_{x} p_{a_1a_2}^{\beta_1\beta_2}$ and $\sum_{x} \sum_{x} p_{a_1a_2}^{\beta_1\beta_2}$ are the summations over all the values of w_1w_2 and s_1s_2 such that (I) if $\beta_1\beta_2=00$ and (1) $a_1a_2=00$, then $w_1w_2=00$ and s_1s_2 vanishes, (2) $a_1a_2=10$, then $w_1w_2=00,10$ and $s_1s_2=00$, (3) $a_1a_2=01$, then $w_1w_2=00,10,01$ and $s_1s_2=00,10$, (4) $a_1a_2=20$, then $w_1w_2=00,10,01,20$ and $s_1s_2=00,10,01$, (5) $a_1a_2=02$, then $w_1w_2=00,10,01,20,02$ and $s_1s_2=00,10,01,20$, and (6) $a_1a_2=11$, then $w_1w_2=00,10,01,20,02,11$ and $s_1s_2=00,10,01,20,02$, (II) if $\beta_1\beta_2=10$ and (1) $a_1a_2=10$, then $w_1w_2=10$ and s_1s_2 vanishes, (2) $a_1a_2=20$ (if $m_1 \geq 3$), then $w_1w_2=10,20$ and $s_1s_2=10$, and (3) $a_1a_2=11$, then $w_1w_2=10,20$ (if $m_1 \geq 3$), 11 and $s_1s_2=10,20$ (if $m_1 \geq 3$), (III) if $\beta_1\beta_2=01$ and (1) $a_1a_2=01$, then $w_1w_2=01$ and s_1s_2 vanishes, (2) $a_1a_2=02$ (if $m_2 \geq 3$), then $w_1w_2=01,02$ and $s_1s_2=01$, and (3) $a_1a_2=11$, then $w_1w_2=01,02$ (if $m_2 \geq 3$), 11 and $s_1s_2=01,02$ (if $m_2 \geq 3$), (IV) if $\beta_1\beta_2=20$ (if $m_1 \geq 4$) and $a_1a_2=20$, then $w_1w_2=20$ and s_1s_2 vanishes, (V) if $\beta_1\beta_2=02$ (if $m_2 \geq 4$) and $a_1a_2=02$, then $w_1w_2=02$ and s_1s_2 vanishes, and (VII) if $\beta_1\beta_2=a_1a_2=11$, then $w_1w_2=11$ and s_1s_2 vanishes, respectively. Then the
following can be proved easily (see [8]):

Lemma 4.2. (i) The $P_{\beta_1 \beta_2}^{a_1 a_2}$'s are symmetric, mutually orthogonal and idempotent matrices.

(ii) $\text{rank}(P_{\beta_1 \beta_2}^{a_1 a_2}) = \beta_1 \beta_2$.

First we consider a $2^{m_1+m_2}$-PBFF design which is a PB-array with Condition (A). If $N \geq \nu(m_1m_2)$, then there may exist a design of resolution V. However if $N = \nu(m_1m_2)$, there is no d.f. due to error. Thus we consider the case in which $\{3(m_1m_2) + m_1^2 + m_2^2\}/2 = \nu^A(m_1m_2)$, say $N \geq \nu(m_1m_2)$. Let $P_{\epsilon}^A = I_N - \sum_{\beta_1 \beta_2} \sum_{a_2} P_{\beta_1 \beta_2}^{a_1 a_2}$, where the summation is extended over all the values of $\beta_1 \beta_2$ such that $\beta_1 \beta_2 = 00, 10, 01, 20$ (if $m_1 \geq 4$), 02 (if $m_2 \geq 4$). Then it follows from Lemma 4.2 that $(P_{\epsilon}^A)^2 = P_{\epsilon}^A$, $P_{\epsilon}^A P_{\beta_1 \beta_2}^{a_1 a_2} P_{\beta_1 \beta_2}^{a_1 a_2} = 0_{N \times N}$ and $\text{rank}(P_{\epsilon}^A) = N - \nu^A(m_1m_2)$, where $0_{p \times q}$ denotes the $p \times q$ matrix with all zero. Let

$$R_{\beta_1 \beta_2}^{a_1 a_2} = R(a_1 a_2; \beta_1 \beta_2) (R(a_1 a_2; \beta_1 \beta_2))^{-1},$$

where

$$R(a_1 a_2; \beta_1 \beta_2) = [E_{\beta_1 \beta_2} A^{\#}(\beta_1 \beta_2, \beta_1 \beta_2); \ldots; E_{a_1 a_2} A^{\#}(a_1 a_2, a_1 a_2)]$$

for $\beta_1 \beta_2 = 00, 10, 01,$

$$R(20; 20) = \begin{cases} 0_N & \text{if } m_1 = 2, 3, \\
 [E_{2^0 \beta_2} A^{\#}(2^0 \beta_2, 2^0 \beta_2)] & \text{if } m_1 \geq 4,
\end{cases}$$

$$R(02; 02) = \begin{cases} 0_N & \text{if } m_2 = 2, 3, \\
 [E_{0^2 \beta_2} A^{\#}(0^2 \beta_2, 0^2 \beta_2)] & \text{if } m_2 \geq 4
\end{cases}$$

and $R(a_1 a_2; \beta_1 \beta_2)$'s are the matrices which are obtained by deleting $E_{a_1 a_2} A^{\#}(a_1 a_2, a_1 a_2)$ from $R(a_1 a_2; \beta_1 \beta_2)$, and $R(\beta_1 \beta_2; \beta_1 \beta_2) = 0_N$.

Here $A^\perp(B)$ is the orthocomplement subspace of $A(B)$ relative to B for the case $A(A) \subset B$, where $A(A)$ denotes the linear subspace spanned by the column vectors of a matrix A. Then Lemma
4.2 and the properties of P^A yield the following:

Theorem 4.1. Let T be a $2^{m_1+m_2}$-PBFF design which is derived from a PB-array with Condition (A). Then we have

$$R^N = \begin{cases} R_{00} \oplus R_{10} \oplus R_{01} \oplus R_{11}^c & \text{if } m_1,m_2=2,3, \\
R_{00} \oplus R_{10} \oplus R_{01} \oplus R_{12} \oplus R_{12}^c & \text{if } m_1=4, m_2=2,3, \\
R_{00} \oplus R_{10} \oplus R_{01} \oplus R_{02} \oplus R_{02}^c & \text{if } m_1=2,3, m_2\geq 4, \\
R_{00} \oplus R_{10} \oplus R_{01} \oplus R_{20} \oplus R_{20}^c & \text{if } m_1,m_2\geq 4, \\
\end{cases}$$

where R^N is an N-dimensional vector space, \oplus denotes the direct sum, $R^A=R^A_{E_1}$, which is the orthocomplement subspace of $R(E_1)$ relative to R^N, and

$$R_{00}=R_{00}^i \oplus R_{00}^j \oplus R_{00}^k \oplus R_{00}^l \oplus R_{00}^m \oplus R_{00}^n \oplus R_{00}^o,$$

$$R_{10} = \begin{cases} R_{10}^i \oplus R_{10}^j & \text{if } m_1=2, \\
R_{10}^i \oplus R_{10}^k \oplus R_{10}^l & \text{if } m_1\geq 3, \\
\end{cases}$$

$$R_{01} = \begin{cases} R_{01}^i \oplus R_{01}^j & \text{if } m_2=2, \\
R_{01}^i \oplus R_{01}^k \oplus R_{01}^l & \text{if } m_2\geq 3 \\
\end{cases}$$

and

$$R_{\beta_1\beta_2} = R(R(\beta_1\beta_2; \beta_1\beta_2)) \text{ for } \beta_1\beta_2=00 \text{ (if } m_1\geq 4), 02 \text{ (if } m_2\geq 4).$$

Next consider a $2^{m_1+m_2}$-PBFF design being a PB-array with Condition (B), and $(3(m_1+2m_2)+m_1^2)/2 = \nu^B(m_1m_2)$, say $N=\nu^A(m_1m_2)$, where $m_2\geq 4$. Let $P^B_e=I_N-\sum_{\beta_1\beta_2}^{\beta_1\beta_2=00, 10, 01, 20} P_{\beta_1\beta_2}$, where $\sum_{\beta_1\beta_2}$ is the summation over all the values of $\beta_1\beta_2$ such that $\beta_1\beta_2=00, 10, 01, 20$ (if $m_1\geq 4$). Then $(P^B_e)^2=P^B_e$, $P^B_e P_{\beta_1\beta_2} P^B_e = P_{\beta_1\beta_2}$, $P^B_e P^B_e = 0_{N,N}$ and $\text{rank}(P^B_e)=N-\nu^B(m_1m_2)$.

Theorem 4.2. For a $2^{m_1+m_2}$-PBFF design T, which is a PB-array with Condition (B), we have

$$R^N = \begin{cases} R_{00} \oplus R_{10} \oplus R_{01} \oplus R_{11}^c & \text{if } m_1=2,3, \\
R_{00} \oplus R_{10} \oplus R_{01} \oplus R_{20} \oplus R_{20}^c & \text{if } m_1\geq 4, \\
\end{cases}$$

where $R_{\beta_1\beta_2}$'s for $\beta_1\beta_2=00, 10, 01, 20$ (if $m_1\geq 4$) are given in Theorem
4.1, and \(R_{\alpha} = R_{E_1} \).

Finally consider a \(2^{m_1+m_2} \)-PBFF design which is derived from a PB-array with Condition (C), where \(3(m_1+m_2) = \nu^C(m_1m_2) \), say) \(N \leq \nu^b(m_1m_2) \) and \(m_k \geq 4 \). Let \(P_\alpha = I_{N} - \Sigma_{\beta_1\beta_2} \beta_2 a_1 a_2 \Sigma_{\beta_1\beta_2} \), where \(\Sigma_{\beta_1\beta_2} \) is the summation over all the values of \(\beta_1\beta_2 \) such that \(\beta_1\beta_2 = 00,10,01 \). Then \((P_\alpha^c)^2 = P_\alpha^c \), \(P_\alpha^c P_{\beta_1\beta_2} a_1 a_2 = P_{\beta_1\beta_2} a_1 a_2 P_\alpha^c = 0_{N \times N} \) and \(\text{rank}(P_\alpha^c) = N - \nu^c(m_1m_2) \).

Theorem 4.3. Let \(T \) be a \(2^{m_1+m_2} \)-PBFF design which is a PB-array with Condition (C). Then

\[R^N = R_0 \oplus R_1 \oplus R_01 \oplus R_c, \]

where \(R_{\beta_1\beta_2} \)'s (\(\beta_1\beta_2 = 00,10,01 \)) are the same as in Theorem 4.1, and

\[R^c_{\alpha} = R_{E_1}. \]

5. ANOVA and hypothesis testing

We first consider the ANOVA and the hypothesis testing of \(2^{m_1+m_2} \)-PBFF designs of resolution IV satisfying Condition (A). Let \(S_{\beta_1\beta_2} = y_\beta p_{\beta_1\beta_2} y_\gamma \) and \(S_{\alpha} = y_\beta p_{\alpha} y_\gamma \). Then by Theorem 4.1, we have the following:

Theorem 5.1. Let \(T \) be a \(2^{m_1+m_2} \)-PBFF design which is a PB-array with Condition (A) and \(\nu^A(m_1m_2) < N \leq \nu(m_1m_2) \). Then we have

\[y_\beta y_\gamma = \Sigma_{\beta_1\beta_2} a_1 a_2 \frac{S_{\beta_1\beta_2} + S_{\alpha}}{2}. \]

Theorem 5.2. For a design \(T \) of Theorem 5.1, an unbiased estimator of \(\sigma^2 \) is given by

\[\hat{\sigma}^2 = \frac{S_{\alpha}}{N - \nu^A(m_1m_2)}. \]

The noncentrality parameters, say, \(\lambda_{\beta_1\beta_2} / \sigma^2 \), of the quadratic forms \(y_\beta p_{\beta_1\beta_2} y_\gamma / \sigma^2 \) are defined by \(\delta([y_\beta] p_{\beta_1\beta_2} [y_\gamma] / \sigma^2 \), where
\(\xi[y] \) denotes the expected value of a random vector \(y \). Let

\[
\begin{align*}
 c_{00}(p_1 p_2, q_1 q_2; a_1 a_2) &= \frac{a_1 a_2}{\sum{x}} \frac{a_1 a_2}{\sum{x}} \frac{c_1 c_2, d_1 d_2 (a_1 a_2)}{\sum{x}} p_1 p_2, c_1 c_2, d_1 d_2, q_1 q_2 \\
 &= a_1 a_2 \sum{x} \frac{a_1 a_2}{\sum{x}} e_1 e_2, f_1 f_2 (a_1 a_2) p_1 p_2, e_1 e_2, f_1 f_2, q_1 q_2 \\
 &= \begin{cases}
 \frac{a_1 a_2}{\sum{x}} \frac{a_1 a_2}{\sum{x}} e_1 e_2, f_1 f_2 (a_1 a_2) p_1 p_2, e_1 e_2, f_1 f_2, q_1 q_2
 & \text{if (1) } p_1 p_2 = q_1 q_2 = 11 \text{ for } a_1 a_2 = 11, \\
 & \text{(2) } p_1 p_2, q_1 q_2 = 02, 11 \text{ for } a_1 a_2 = 02, \\
 & \text{(3) } p_1 p_2, q_1 q_2 = 20, 02, 11 \text{ for } a_1 a_2 = 20, \\
 & \text{(4) } p_1 p_2, q_1 q_2 = 01, 20, 02, 11 \text{ for } a_1 a_2 = 01, \\
 & \text{(5) } p_1 p_2, q_1 q_2 = 10, 01, 20, 02, 11 \text{ for } a_1 a_2 = 10, \\
 & \text{(6) } p_1 p_2, q_1 q_2 = 00, 10, 01, 20, 02, 11 \text{ for } a_1 a_2 = 00, \\
 0 & \text{otherwise,}
 \end{cases}
\end{align*}
\]

where \(\sum{x}^{(0)} \) and \(\sum{x}^{(0)} \) are extended over all the values of \(w_1 w_2 \) and \(s_1 s_2 \) such that if \(a_1 a_2 = 11 \), then \(w_1 w_2 = 11 \) and \(s_1 s_2 \) vanishes, if \(a_1 a_2 = 02 \), then \(w_1 w_2 = 02, 11 \) and \(s_1 s_2 = 11 \), if \(a_1 a_2 = 20 \), then \(w_1 w_2 = 20, 02, 11 \) and \(s_1 s_2 = 02, 11 \), if \(a_1 a_2 = 01 \), then \(w_1 w_2 = 01, 20, 02, 11 \) and \(s_1 s_2 = 20, 02, 11 \), if \(a_1 a_2 = 10 \), then \(w_1 w_2 = 10, 01, 20, 02, 11 \) and \(s_1 s_2 = 01, 20, 02, 11 \), and if \(a_1 a_2 = 00 \), then \(w_1 w_2 = 00, 10, 01, 20, 02, 11 \) and \(s_1 s_2 = 10, 01, 20, 02, 11 \), respectively. Let

\[
\begin{align*}
 c_{10}(p_1 p_2, q_1 q_2; a_1 a_2) &= \frac{a_1 a_2}{\sum{x}} \frac{a_1 a_2}{\sum{x}} \frac{c_1 c_2, d_1 d_2 (a_1 a_2)}{\sum{x}} p_1 p_2, c_1 c_2, d_1 d_2, q_1 q_2 \\
 &= a_1 a_2 \sum{x} \frac{a_1 a_2}{\sum{x}} e_1 e_2, f_1 f_2 (a_1 a_2) p_1 p_2, e_1 e_2, f_1 f_2, q_1 q_2 \\
 &= \begin{cases}
 \frac{a_1 a_2}{\sum{x}} \frac{a_1 a_2}{\sum{x}} e_1 e_2, f_1 f_2 (a_1 a_2) p_1 p_2, e_1 e_2, f_1 f_2, q_1 q_2
 & \text{if (1) } p_1 p_2 = q_1 q_2 = 11 \text{ for } a_1 a_2 = 11, \\
 & \text{(2) } p_1 p_2, q_1 q_2 = 20 (m_1 = 3), 11 \text{ for } a_1 a_2 = 20, \\
 & \text{(3) } p_1 p_2, q_1 q_2 = 10, 20 (m_1 = 3), 11 \text{ for } a_1 a_2 = 10, \\
 0 & \text{otherwise,}
 \end{cases}
\end{align*}
\]

where \(\sum{x}^{(0)} \) and \(\sum{x}^{(0)} \) are the summations over all the values of \(w_1 w_2 \) and \(s_1 s_2 \) such that \(w_1 w_2 = 11 \) and \(s_1 s_2 \) vanishes if \(a_1 a_2 = 11 \),
\[w_1 w_2 = 20 \text{ (if } m_1 \geq 3), 11 \text{ and } s_1 s_2 = 11 \text{ if } a_1 a_2 = 20, \text{ and } w_1 w_2 = 10, 20 \text{ (if } m_1 \geq 3), 11 \text{ and } s_1 s_2 = 20 \text{ (if } m_1 \geq 3), 11 \text{ if } a_1 a_2 = 10, \text{ respectively. Let}
\]
\[c_{01}(p_1 p_2, q_1 q_2; a_1 a_2) \]
\[= \left\{ \begin{array}{ll}
\frac{a_1 z_2}{w_1} \frac{z_1}{w_2} & \text{for } a_1 a_2 = 11, \\
\frac{a_1 z_2}{w_1} \frac{z_1}{w_2} & \text{for } a_1 a_2 = 02, \\
\frac{a_1 z_2}{w_1} \frac{z_1}{w_2} & \text{for } a_1 a_2 = 01, \\
\text{if (1) } p_1 p_2 = q_1 q_2 = 11, \\
\text{if (2) } p_1 p_2 = q_1 q_2 = 02 (m_2 \geq 3), 11, \\
\text{if (3) } p_1 p_2 = q_1 q_2 = 01, 02 (m_2 \geq 3), 11, \\
\text{otherwise,}
\end{array} \right.
\]
\[\text{where } \frac{a_1 z_2}{w_1} \frac{z_1}{w_2} \text{ and } \frac{a_1 z_2}{w_1} \frac{z_1}{w_2} \text{ are extended over all the values of } w_1 w_2 \]
\[\text{and } s_1 s_2 \text{ such that } w_1 w_2 = 11 \text{ and } s_1 s_2 \text{ vanishes if } a_1 a_2 = 11, w_1 w_2 = 02 \]
\[(\text{if } m_2 \geq 3), 11 \text{ and } s_1 s_2 = 11 \text{ if } a_1 a_2 = 02, \text{ and } w_1 w_2 = 01, 02 \text{ (if } m_2 \geq 3), 11 \]
\[\text{and } s_1 s_2 = 02 \text{ (if } m_2 \geq 3), 11 \text{ if } a_1 a_2 = 01, \text{ respectively. Further let}
\]
\[c_{20}(p_1 p_2, q_1 q_2; a_1 a_2) = \left\{ \begin{array}{ll}
\kappa_{00}^{\frac{1}{2}} & \text{if } p_1 p_2 = q_1 q_2 = a_1 a_2 = 20, \\
0 & \text{otherwise,}
\end{array} \right.
\]
\[\text{if } \det(K_{20}) \neq 0 \text{ and } m_1 \geq 4, \text{ and}
\]
\[c_{02}(p_1 p_2, q_1 q_2; a_1 a_2) = \left\{ \begin{array}{ll}
\kappa_{02}^{\frac{1}{2}} & \text{if } p_1 p_2 = q_1 q_2 = a_1 a_2 = 02, \\
0 & \text{otherwise,}
\end{array} \right.
\]
\[\text{if } \det(K_{02}) \neq 0 \text{ and } m_2 \geq 4. \text{ Then the following yields:}
\]

Theorem 5.3. Let \(T \) be a design of Theorem 5.1, then the non-centrality parameters of the quadratic forms \(y_{p}^{\beta_1 a_2} \gamma_{p}^{\beta_2} y_{p}^{2} \sigma_{p}^{2} \) for \(\beta_1 \beta_2 = 00, 10, 01, 20 \) (if \(m_1 \geq 4 \)), 02 (if \(m_2 \geq 4 \)) are
\[\lambda_{\beta_1 \beta_2}^{a_1 a_2} / \sigma^{2} = \sum_{p_1 p_2} \sum_{q_1 q_2} \{ c_{\beta_1 \beta_2}^{a_1 a_2} (p_1 p_2, q_1 q_2; a_1 a_2) / \sigma^{2} \}
\]
\[\times \Theta_{p_1 p_2}^{\#(p_1 p_2, q_1 q_2)} A_{\beta_1 \beta_2}^{a_1 a_2} \Theta_{p_1 p_2}^{q_1 q_2}. \]

Let \(n_{a_1 a_2}^{\beta_1 \beta_2} \) be the hypotheses such that \(A_{\beta_1 \beta_2}^{a_1 a_2} \Theta_{a_1 a_2} = 0_n(a_1 a_2) \) (if they exist). We are first interested in testing the
hypotheses \(H_{\beta_1 \beta_2}^1 \) against \(K_{\beta_1 \beta_2}^1 \) (\(\beta_1 \beta_2 = 00, 10, 01 \)), \(H_{\beta_1 \beta_2}^2 \) against \(K_{\beta_1 \beta_2}^2 \) (if \(m_1 \geq 4 \)), and \(H_{\beta_1 \beta_2}^2 \) against \(K_{\beta_1 \beta_2}^2 \) (if \(m_2 \geq 4 \)), where \(K_{\beta_1 \beta_2}^i \)'s are the hypotheses that \(A_{\beta_1 \beta_2}^{a_1 a_2} \theta_{a_1 a_2} \neq 0 \) for \((a_1, a_2) \). Next, if \(H_{\beta_1 \beta_2}^1 \) (or \(H_{\beta_1 \beta_2}^2 \)) is accepted, we then consider the testing hypothesis \(H_{\beta_1 \beta_2}^3 \) (if \(m_1 \geq 3 \)) or \(H_{\beta_1 \beta_2}^4 \) (if \(m_1 = 2 \)) against \(H_{\beta_1 \beta_2}^1 \) (or \(H_{\beta_1 \beta_2}^3 \) (if \(m_2 \geq 3 \)) or \(H_{\beta_1 \beta_2}^4 \) (if \(m_2 = 2 \)) against \(H_{\beta_1 \beta_2}^4 \)). If \(H_{\beta_1 \beta_2}^3 \) is accepted, then we consider \(H_{\beta_1 \beta_2}^5 \) against \(H_{\beta_1 \beta_2}^4 \). Third, if \(H_{\beta_1 \beta_2}^5 \) (if \(m_1 \geq 3 \)) (or \(H_{\beta_1 \beta_2}^6 \) (if \(m_2 \geq 3 \)) is accepted, then consider \(H_{\beta_1 \beta_2}^3 \) against \(H_{\beta_1 \beta_2}^5 \) (or \(H_{\beta_1 \beta_2}^6 \) against \(H_{\beta_1 \beta_2}^5 \)), and if \(H_{\beta_1 \beta_2}^6 \) is accepted, consider \(H_{\beta_1 \beta_2}^5 \) against \(H_{\beta_1 \beta_2}^6 \). If \(H_{\beta_1 \beta_2}^6 \) is accepted, consider \(H_{\beta_1 \beta_2}^7 \) against \(H_{\beta_1 \beta_2}^6 \), and lastly if \(H_{\beta_1 \beta_2}^7 \) is accepted, then consider \(H_{\beta_1 \beta_2}^8 \) against \(H_{\beta_1 \beta_2}^7 \). This method is the so-called nested test procedure (e.g., [2]). Notice that Theorem 5.3 implies that \(b_{1b_2}^{a_1 a_2} \) \(H_{\beta_1 \beta_2}^1 \) \(b_{1b_2}^{a_1 a_2} \) is accepted if and only if \(A_{\beta_1 \beta_2}^{a_1 a_2} = 0 \), where \(b_{1b_2}^{a_1 a_2} \) denotes the intersection of \(H_{\beta_1 \beta_2}^i \)'s such that the running indices \(b_{1b_2} \) have the same values as \(w_1 w_2 \) of \(\sum_{w_1 w_2}^{a_1 a_2} \beta_1 \beta_2 \) for \(\beta_1 \beta_2 = 00, 10, 01 \), and as \(\beta_1 \beta_2 \) for \(\beta_1 \beta_2 = 20 \) (if \(m_1 \geq 4 \)), 02 (if \(m_2 \geq 4 \)). The test statistics for the nested method are given by

(1) for \(\beta_1 \beta_2 = 00 \),

\[
\frac{S_{10}^{00}/\phi_{00}}{S_{00}^0/(N-\nu^A(m_1 m_2))} = F_{10}^{00} \text{ (say)},
\]

(5.1)

\[
\frac{S_{00}^{00}/\phi_{00}}{(S_{00}^0 + S_{10}^{00})/(N-\nu^A(m_1 m_2) + \phi_{00})} = F_{00}^{00} \text{ (say)}.
\]

(5.2)

\[
\frac{S_{00}^{00}/\phi_{00}}{(S_{00}^0 + S_{10}^{00} + S_{01}^{00})/(N-\nu^A(m_1 m_2) + 2\phi_{00})} = F_{00}^{00} \text{ (say)},
\]

(5.3)

\[
\frac{S_{00}^{00}/\phi_{00}}{(S_{00}^0 + S_{10}^{00} + S_{01}^{00} + S_{11}^{00})/(N-\nu^A(m_1 m_2) + 3\phi_{00})} = F_{00}^{00} \text{ (say)}.
\]

(5.4)

and
\[
\frac{S_{00}^{\hat{\phi}/\phi_0}}{\{S_{\hat{\phi}}^{\hat{\phi}}+S^{\hat{\phi}}_{\hat{\phi}}+S^{\hat{\phi}}_{00}+S^{\hat{\phi}}_{00}\}/\{N-\nu^A(m_1m_2)+4\phi_{00}\}} = F^{A\hat{\phi}/\phi_0}, \text{ say}, \quad (5.5)
\]

(ii) for \(\beta_1\beta_2=10,\)

\[
\frac{S_{10}^{\hat{\phi}/\phi_1}}{S^{\hat{\phi}}_{\phi}/\{N-\nu^A(m_1m_2)\}} = F^{A\hat{\phi}/\phi_1}, \text{ say}, \quad (5.6)
\]

\[
\frac{S_{01}^{\hat{\phi}/\phi_0}}{\{S_{\hat{\phi}}^{\hat{\phi}}+S^{\hat{\phi}}_{\phi_1}\}/\{N-\nu^A(m_1m_2)+\phi_{10}\}} = F^{A\hat{\phi}/\phi_0}, \text{ say} \quad (if \ m_1\geq3)
\]

(5.7a)

(or)

\[
\frac{S_{10}^{\hat{\phi}/\phi_0}}{\{S_{\hat{\phi}}^{\hat{\phi}}+S^{\hat{\phi}}_{\phi_1}\}/\{N-\nu^A(m_1m_2)+\phi_{10}\}} = F^{A\hat{\phi}/\phi_0}, \text{ say} \quad (if \ m_1=2)
\]

(5.7b)

and

\[
\frac{S_{01}^{\hat{\phi}/\phi_1}}{\{S_{\hat{\phi}}^{\hat{\phi}}+S^{\hat{\phi}}_{\phi_1}\}/\{N-\nu^A(m_1m_2)+2\phi_{10}\}} = F^{A\hat{\phi}/\phi_1}, \text{ say} \quad (if \ m_1\geq3)
\]

(5.8)

(iii) for \(\beta_1\beta_2=01,\)

\[
\frac{S_{01}^{\hat{\phi}/\phi_0}}{S^{\hat{\phi}}_{\phi}/\{N-\nu^A(m_1m_2)\}} = F^{A\hat{\phi}/\phi_0}, \text{ say}, \quad (5.9)
\]

\[
\frac{S_{10}^{\hat{\phi}/\phi_1}}{\{S_{\hat{\phi}}^{\hat{\phi}}+S^{\hat{\phi}}_{\phi_1}\}/\{N-\nu^A(m_1m_2)+\phi_{10}\}} = F^{A\hat{\phi}/\phi_1}, \text{ say} \quad (if \ m_2\geq3)
\]

(5.10)

(or)

\[
\frac{S_{01}^{\hat{\phi}/\phi_1}}{\{S_{\hat{\phi}}^{\hat{\phi}}+S^{\hat{\phi}}_{\phi_1}\}/\{N-\nu^A(m_1m_2)+\phi_{10}\}} = F^{A\hat{\phi}/\phi_1}, \text{ say} \quad (if \ m_2=2)
\]

and

\[
\frac{S_{01}^{\hat{\phi}/\phi_0}}{\{S_{\hat{\phi}}^{\hat{\phi}}+S^{\phi}_{\phi_1}\}/\{N-\nu^A(m_1m_2)+2\phi_{10}\}} = F^{A\hat{\phi}/\phi_0}, \text{ say} \quad (if \ m_2\geq3)
\]

(5.11)

(iv) for \(\beta_1\beta_2=20\) and \(m_1\geq4,\)

\[
\frac{S_{10}^{\hat{\phi}/\phi_2}}{S^{\hat{\phi}}_{\phi}/\{N-\nu^A(m_1m_2)\}} = F^{A\hat{\phi}/\phi_2}, \text{ say}, \quad (5.12)
\]

and (v) for \(\beta_1\beta_2=02\) and \(m_2\geq4,\)

\[
\frac{S_{01}^{\hat{\phi}/\phi_2}}{S^{\hat{\phi}}_{\phi}/\{N-\nu^A(m_1m_2)\}} = F^{A\hat{\phi}/\phi_2}, \text{ say}.
\]

All of them have \(F\) distributions, and the nesting procedure is continued until a significant test is obtained for each \(\beta_1\beta_2.\)

Note that \(F^{A\hat{\phi}_{a_1a_2}}\)'s are central or noncentral \(F\) distributions with
\(\phi_{\beta_1 \beta_2} \) and \(\{N-\nu^A(m_1m_2)\}+\tau^A(a_1a_2;\beta_1\beta_2)\phi_{\beta_1 \beta_2} \) d.f., and noncentrality parameters \(\lambda_{\beta_1 \beta_2}/\sigma^2 \) depending on which \(h_{\beta_1 \beta_2}^{a_1a_2}b_1b_2 \) are true, where \(\tau^A(a_1a_2;\beta_1\beta_2) \)'s are some integers as above.

Next consider the ANOVA and the hypothesis testing of \(2^{m_1+m_2} \)-PBFF designs of resolution IV which satisfy Condition (B).

Theorem 5.4. Let \(T \) be a \(2^{m_1+m_2} \)-PBFF design which is a PB-array with Condition (B) and \(\nu^A(m_1m_2) \leq N\nu^A(m_1m_2) \). Then

\[
y_T'y_T = \sum_{\beta_1 \beta_2}^{\nu^A} \sum_{a_1a_2}^{\nu^A} S_{\beta_1 \beta_2}^{a_1a_2} \theta_{a_1a_2} + S_e^B,
\]

where \(S_e^B = y_T'P_e^B y_T \).

Theorem 5.5. For a design \(T \) of Theorem 5.4, an unbiased estimator of \(\sigma^2 \) is

\[
\hat{\sigma}^2 = S_e^B/(N-\nu^B(m_1m_2)).
\]

Theorem 5.6. Let \(T \) be a design of Theorem 5.4. Then the noncentrality parameters of the quadratic forms \(y_T'P_{\beta_1 \beta_2}^{a_1a_2}y_T/\sigma^2 \) for \(\beta_1 \beta_2 = 00, 01, 02, 10, 11, 12, 20, 21, 22 \) (if \(m_1 \geq 4 \)) are given by

\[
\lambda_{\beta_1 \beta_2}/\sigma^2 = \sum_{p_1P_2} \sum_{q_1q_2} \{c_{\beta_1 \beta_2}(p_1p_2,q_1q_2;a_1a_2)/\sigma^2\} \times \Theta_{p_1p_2}^{\beta_1 \beta_2} \Theta_{q_1q_2}^{\beta_1 \beta_2}.
\]

We now consider the hypotheses \(H_{\beta_1 \beta_2}^{i1} \) against \(K_{\beta_1 \beta_2}^{i1} \) for \(\beta_1 \beta_2 = 00, 01, 02, 10, 11, 12, 20, 21, 22 \) (if \(m_1 \geq 4 \)). Next if \(H_{\beta_1 \beta_2}^{i1} \) (or \(H_{\beta_1 \beta_2}^{i1} \)) is accepted, consider the testing hypothesis \(H_{\beta_1 \beta_2}^{i1} \) (if \(m_1 = 2 \)) against \(H_{\beta_1 \beta_2}^{i1} \) (or \(H_{\beta_1 \beta_2}^{i1} \) against \(H_{\beta_1 \beta_2}^{i1} \)). If \(H_{\beta_1 \beta_2}^{i1} \) is accepted, then consider \(H_{\beta_1 \beta_2}^{i1} \) against \(H_{\beta_1 \beta_2}^{i1} \). Third, if \(H_{\beta_1 \beta_2}^{i1} \) (if \(m_1 = 2 \)) (or \(H_{\beta_1 \beta_2}^{i1} \)) is accepted, then consider \(H_{\beta_1 \beta_2}^{i1} \) against \(H_{\beta_1 \beta_2}^{i1} \) (or \(H_{\beta_1 \beta_2}^{i1} \) against \(H_{\beta_1 \beta_2}^{i1} \)), and if \(H_{\beta_1 \beta_2}^{i1} \) is accepted, consider \(H_{\beta_1 \beta_2}^{i1} \) against \(H_{\beta_1 \beta_2}^{i1} \). If \(H_{\beta_1 \beta_2}^{i1} \) is accepted, consider \(H_{\beta_1 \beta_2}^{i1} \) against \(H_{\beta_1 \beta_2}^{i1} \), and lastly if \(H_{\beta_1 \beta_2}^{i1} \) is accepted, then consider \(H_{\beta_1 \beta_2}^{i1} \) against \(H_{\beta_1 \beta_2}^{i1} \). Note that Theorem 5.6 means that
\[a_1 a_2 b_1 b_2 \] is accepted if and only if \(\lambda_{\beta_1 \beta_2} = 0 \). The test statistics, say \(F_{\beta_1 \beta_2}^{a_1 a_2 b_1 b_2} \), for the nested method are given by replacing \(S_\beta \) and \(\nu^A(m_1 m_2) \) of (5.1) through (5.12) with \(S_\beta^B \) and \(\nu^B(m_1 m_2) \), respectively. The \(F_{\beta_1 \beta_2}^{a_1 a_2} \)'s have \(F \) distributions similar to \(F_{\beta_1 \beta_2}^{a_1 a_2} \)'s.

We finally consider the ANOVA and the hypothesis testing of \(2^{m_1 + m_2} \)-PBFF designs satisfying Condition (C).

Theorem 5.7. Let \(T \) be a \(2^{m_1 + m_2} \)-PBFF design which is a PB-array with Condition (C) and \(\nu^C(m_1 m_2) < N \nu^B(m_1 m_2) \). Then we have

\[
y_{IYT} = \sum_{\beta_1 \beta_2} \sum_{a_1 a_2} S_{a_1 a_2} + S_c,
\]

where \(S_c = y_{IPT} y_{IY} \).

Theorem 5.8. Let \(T \) be a design of Theorem 5.7, then an unbiased estimator of \(\sigma^2 \) is given by

\[
\hat{\sigma}^2 = S_c / (N - \nu^C(m_1 m_2)).
\]

Theorem 5.9. For a design \(T \) of Theorem 5.7, the noncentrality parameters of the quadratic forms \(y_{IY}^T S_{a_1 a_2} y_{IY} / \sigma^2 \) (\(\beta_1 \beta_2 = 00, 10, 01 \)) are

\[
\lambda_{\beta_1 \beta_2} \sigma^2 = \sum_{p_1 p_2} \sum_{q_1 q_2} \left(c_{\beta_1 \beta_2} (p_1 p_2, q_1 q_2, a_1 a_2) / \sigma^2 \right) \times \theta_{p_1 p_2, \beta_1 \beta_2} \Theta (p_1 p_2, q_1 q_2)
\]

Consider the testing hypotheses \(\hat{H}^{11}_{\beta_1 \beta_2} \) against \(K_{\beta_1 \beta_2}^{11} \) for \(\beta_1 \beta_2 = 00, 10, 01 \). Next if \(\hat{H}^{00} \) (or \(\hat{H}^{01} \)) is accepted, then consider the testing hypothesis \(\hat{H}^{10} \) against \(\hat{H}^{10} \) (or \(\hat{H}^{01} \) against \(\hat{H}^{01} \)). If \(\hat{H}^{00} \) is accepted, then consider \(\hat{H}^{00} \) against \(\hat{H}^{00} \). Third if \(\hat{H}^{00} \) (or \(\hat{H}^{01} \)) is accepted, consider \(\hat{H}^{00} \) against \(\hat{H}^{00} \) (or \(\hat{H}^{01} \) against \(\hat{H}^{01} \)), and if \(\hat{H}^{00} \) is accepted, consider \(\hat{H}^{00} \) against \(\hat{H}^{00} \). If \(\hat{H}^{00} \) is ac-
cepted, consider \(H_{0,1} \) against \(H_{0,2} \), and lastly if \(H_{0,1} \) is accepted, consider \(H_{0,2} \) against \(H_{0,2} \). Note that Theorem 5.9 implies that

\[
\alpha_{1} a_{1} b_{1} b_{2} \beta_{1} \beta_{2}
\]

is accepted if and only if \(\lambda_{1,1}^{\alpha_{1} a_{1}} = 0 \). The test statistics, say \(F_{1}^{\alpha_{1} a_{1}} \beta_{1} \beta_{2} \), for the nested method are given by replacing \(S_{n}^{A} \) and \(v^{A}(m_{1} m_{2}) \) of (5.1) through (5.11) with \(S_{n}^{C} \) and \(v^{C}(m_{1} m_{2}) \), respectively. The \(F_{1}^{\alpha_{1} a_{1}} \beta_{1} \beta_{2} \)'s have \(F \) distributions similar to \(F_{1}^{\alpha_{1} a_{1}} \beta_{1} \beta_{2} \)'s.

References

[5] M. Kuwada (1988), "A-optimal partially balanced fractional \(2^{m_{1}+m_{2}} \) factorial designs of resolution V, with \(4 \leq m_{1} + m_{2} \leq 6 \)", J. Statist. Plann. Inference, 18, 177-193.

[17] T. Shirakura (1976), "Balanced fractional 2^n factorial designs of even resolution obtained from balanced arrays of strength 2^n with index $\mu_1=0$", Ann. Statist., 4, 723-735.

