<table>
<thead>
<tr>
<th>Title</th>
<th>A Short Course on b-Functions and Vanishing Cycles (Algebraic Geometry and Hodge Theory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>SAIOT, Mutsumi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1992), 803: 48-64</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1992-08</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/82897</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
A Short Course on b-Functions and Vanishing Cycles

SAITO, Mutsumi (Tohoku Univ.)

§0. Introduction.

In this article, we use the notation appearing in [H] freely, and a \mathcal{D}-module means a left \mathcal{D}-module. Let X be a complex manifold, f a holomorphic function on X, and \mathcal{M} a regular holonomic system on X. By Riemann-Hilbert (RH) correspondence, $\text{DR}(\mathcal{M})$ is a perverse sheaf. Hence its nearby cycle $p\psi_f(\text{DR}(\mathcal{M}))$ and vanishing cycle $p\phi_f(\text{DR}(\mathcal{M}))$ are perverse sheaves on $f^{-1}(0)$. If $f^{-1}(0)$ is a smooth hypersurface, again by RH correspondence there should be holonomic $\mathcal{D}_{f^{-1}(0)}$-modules \mathcal{M}' and \mathcal{M}'' such that $p\psi_f(\text{DR}(\mathcal{M})) = \text{DR}(\mathcal{M}')$ and $p\phi_f(\text{DR}(\mathcal{M})) = \text{DR}(\mathcal{M}'')$. Malgrange [Ma] and Kashiwara [Kv] have given such \mathcal{M}' and \mathcal{M}'' by using the notion of V-filtration. When $f^{-1}(0)$ is not smooth, the situation is reduced to the smooth case by the graph map of f. There are already excellent surveys [MS], [S] of this topic. This article may be considered as a very short version of [MS] or [S]. Although most proofs of assertions are omitted, those of Proposition 4.2 and 4.4 are exposed in order to convince readers that morphisms T, can, and var correspond to the counterparts mentioned there.
In §1 we define b-functions and look at some examples. In §2 we define V-filtrations, which can be calculated by b-functions. We also look at some examples again. In §3 we state the stability under standard operations of the category of coherent $c\!l\!D$-modules which admit the canonical V-filtrations. In §4 we define moderate nearby cycles and moderate vanishing cycles, which turn out to be quasi-isomorphic to certain graded pieces of the canonical V-filtration. In §5 we recall nearby cycles and vanishing cycles, and state the main theorem (Theorem 5.1).

§1. b-Functions.

Let X be a complex manifold and f a holomorphic function on it. We set $\mathcal{D}_X[s] := \mathcal{D}_X \otimes_{\mathbb{C}} \mathbb{C}[s]$ where s is an indeterminate central element.

Let \mathcal{I}_f denote the left ideal of $\mathcal{D}_X[s]$ consisting of all operators $P(s, x, D)$ in $\mathcal{D}_X[s]$ such that $P(s, x, D)f(x)^s = 0$ holds for a generic x. A $\mathcal{D}_X[s]$-module $\mathcal{N}_f := \mathcal{D}_X[s]/\mathcal{I}_f$ has a \mathcal{D}_X-linear endomorphism t defined by $P(s)f^s \mapsto P(s+1)f^{s+1}$. Since we have $[t, s] = t$, $\mathcal{M}_f := \mathcal{N}_f/t\mathcal{N}_f$ is a $\mathcal{D}_X[s]$-module.

Definition 1.1 [SSM], [Be]: The minimal polynomial $b(s)$ of the multiplication by s on \mathcal{M}_f is said to be the b-function of f.

Theorem 1.2 [Be], [Bj], [Kb]. The \mathcal{D}_X-module \mathcal{M}_f is holonomic and the
b-function of f locally exists.

Example 1.3 [Mi], [Y]: Let $X = \mathbb{C}^n$, x_1, \ldots, x_n a coordinate system on X and $D_i = \frac{\partial}{\partial x_i}$ ($1 \leq i \leq n$). We assume f to have an isolated singularity at the origin and $f(0) = 0$. We suppose that there exist $v = \sum_{i=1}^{n} r_i x_i D_i$, $r \in \mathbb{Z}_{>0}$, $r_1, \ldots, r_n \in \mathbb{Z}_{\geq 0}$ such that $v(f) = f$. The b-function of f at a point where df does not vanish is $s + 1$. Hence $s + 1$ is also a factor of the b-function $b(s)$ of f at the origin. Since $vf^* = sf^*$, \mathcal{M}_f is a singly generated \mathcal{D}_X-module. Let $\bar{\mathcal{M}}_f = (s + 1)\mathcal{M}_f$ and $\bar{b}(s)$ denote the minimal polynomial of s on $\bar{\mathcal{M}}_f$. Then we see that $b(s) = (s + 1)\bar{b}(s)$ and $\mathcal{M}_f = \mathcal{D}_X/\mathcal{D}_X f_1 + \cdots + \mathcal{D}_X f_n$ where $f_i = D_i(f)$. Let v^* be the adjoint operator of v, i.e., $v^* = -\sum_{i=1}^{n} \frac{r_i}{r}(x_i D_i + 1)$. Then we see $\bar{b}(s)$ is the minimal polynomial of s on $\bar{\mathcal{M}}_f = \text{the minimal polynomial of } v \text{ on } \bar{\mathcal{M}}_f = \text{the minimal polynomial of } v^* \text{ on } \mathcal{O}_X/(f_1, \ldots, f_n)$. For a monomial x^α where α is a multi-index, we have $v^*(x^\alpha) = -\sum_{i=1}^{n} \frac{r_i}{r}(\alpha_i + 1)x^\alpha$. We define a set R by $R = \{ \sum_{i=1}^{n} \frac{r_i}{r}(\alpha_i + 1) | \{ x^\alpha \}_\alpha \text{ is a basis for } \mathcal{O}_X/(f_1, \ldots, f_n) \}$. Then we obtain $b(s) = (s + 1)\prod_{\beta \in R}(s + \beta)$.

Example 1.4: Let $X = \mathbb{C}^n$ and $f = x_1^{e_1} \cdots x_n^{e_n}$ where $e_i \in \mathbb{Z}_{\geq 0}$ ($1 \leq i \leq n$). It is easy to check $D_1^{e_1} \cdots D_n^{e_n} f^{s + 1} = \prod_{i=1}^{n} \prod_{k=1}^{e_i}(e_i s + k)f^s$. On the other hand we suppose that there exist an operator $P(s) \in \mathcal{D}_X[s]$ and a nonzero
polynomial $b'(s) \in \mathbb{C}[s]$ such that $P(s)f^{s+1} = b'(s)f^s$. By the relative invariance under the action of $(\mathbb{C}^*)^n$, it is easy to see that there exists $Q(s) \in \mathbb{C}[x_1D_1, \ldots, x_nD_n, s]$ such that $P(s) = Q(s)D_1^{e_1} \cdots D_n^{e_n}$. Therefore we see that the b-function of f at the origin is $\prod_{i=1}^n \prod_{k=1}^{e_i} (s + \frac{k}{e_i})$.

There are many other examples of b-functions which can be calculated. See [Y], for instance, and [SKKO] for b-functions of relative invariants of prehomogeneous spaces. More generally Kashiwara has proved in [K2] that for a holonomic \mathcal{D}_X-module \mathcal{M} and a section $u \in \mathcal{M}$ there exists locally an operator $P(s) \in \mathcal{D}_X[s]$ and a nonzero polynomial $b(s) \in \mathbb{C}[s]$ such that $P(s)f^{s+1}u = b(s)f^su$. As an application, the holonomicity of $\mathcal{H}_{[X,f^{-1}(0)]}(\mathcal{M})$ has been proved there.

§2. V-Filtration.

First of all we introduce the lexicographical order in $\mathbb{C} = \mathbb{R} \oplus \mathbb{R}\sqrt{-1}$. Let Y be a smooth closed submanifold of X of codimension one, \mathcal{I}_Y the defining ideal of Y. For $k \in \mathbb{Z}$ we define

$$V_k \mathcal{D}_X := \{ P \in \mathcal{D}_X \mid PT^j_Y \subset I^{-k}_Y \quad (\forall j \in \mathbb{Z}) \}$$

where $I^j_Y = \mathcal{O}_X$ for $j \leq 0$. Then $\{ V_k \mathcal{D}_X \}_{k \in \mathbb{Z}}$ is an exhaustive increasing
filtration. Let t be a local equation of Y and D_t a local vector field such that $[D_t, t] = 1$. We have $t \in V_{-1}D_X$, $D_t \in V_1D_X$, $\text{gr}^Y_0D_X := V_0D_X/V_{-1}D_X = D_Y[tD_t]$ and $V_kD_X = \{ \sum_{k \geq i-j} a_{ij}(y, D_y) t^i D_t^j \}$.

DEFINITION 2.1 [Kv], [Ma]: Let \mathcal{M} be a coherent D_X-module. An increasing filtration $\{ V_\alpha \mathcal{M} \}_{\alpha \in \mathbb{C}}$ satisfying the following conditions is called the canonical V-filtration.

1. $\mathcal{M} = \bigcup_{\alpha \in \mathbb{C}} V_\alpha \mathcal{M}$. Each $V_\alpha \mathcal{M}$ is a coherent V_0D_X-submodule.
2. $(V_iD_X)(V_\alpha \mathcal{M}) \subset V_{\alpha+i} \mathcal{M} (\forall \alpha \in \mathbb{C}, \forall i \in \mathbb{Z})$.
3. $t(V_\alpha \mathcal{M}) = V_{\alpha-1} \mathcal{M} (\forall \alpha < 0)$.
4. The action of $(tD_t + 1 + \alpha)$ on $\text{gr}^Y_\alpha \mathcal{M}$ $(\forall \alpha \in \mathbb{C})$ is nilpotent where $\text{gr}^Y_\alpha \mathcal{M} = V_\alpha \mathcal{M}/V_{<\alpha} \mathcal{M}$ and $V_{<\alpha} \mathcal{M} = \bigcup_{\beta < \alpha} V_\beta \mathcal{M}$.

REMARKS 2.2: (1) The definition of the canonical V-filtration does not depend on the choice of t and D_t. The canonical V-filtration is unique if it exists.

2. Since the adjoint of $(tD_t + 1 + \alpha)$ is $-(tD_t - \alpha)$, the eigenvalue of tD_t on $\text{gr}^Y_\alpha \mathcal{N}$ is α for a right D_X-module \mathcal{N}.

3. $t : \text{gr}^Y_\alpha \mathcal{M} \to \text{gr}^Y_{\alpha-1} \mathcal{M}$ and $D_t : \text{gr}^Y_{\alpha-1} \mathcal{M} \to \text{gr}^Y_\alpha \mathcal{M}$ are bijective for
$\alpha \neq 0$.

Definition 2.3: We say that a coherent D_X-module \mathcal{M} is specializable along Y and we denote $\mathcal{M} \in B_Y$ if the following equivalent conditions are satisfied:

1. For any system of local generators u_1, \ldots, u_l of \mathcal{M} there exists a nonzero polynomial $b(s) \in \mathbb{C}[s]$ such that $b(tD_t)u_i \in \sum_{j=1}^{l}(V_{-1}D_X)u_j$ $(1 \leq i \leq l)$.

2. \mathcal{M} admits the canonical V-filtration with respect to Y and there exists a finite set $A \subset \mathbb{C}$ such that $\{ \alpha \in \mathbb{C} | \text{gr}_\alpha^V\mathcal{M} \neq 0 \} \subset A + \mathbb{Z}$.

Let $\mathcal{M} \in B_Y$ and $u \in \mathcal{M}$. Then there exists a nonzero polynomial $b(s) \in \mathbb{C}[s]$ such that $b(tD_t)u \in (V_{-1}D_X)u$. The minimal polynomial among such is called the b-function of the section u. The canonical V-filtration of \mathcal{M} is known to be given by $V_{\alpha}\mathcal{M} = \{ u \in \mathcal{M} \mid \text{all roots of the } b\text{-function of } u \text{ are greater than or equal to } -\alpha - 1 \}$.

Proposition 2.4. Let $0 \rightarrow \mathcal{M}' \rightarrow \mathcal{M} \rightarrow \mathcal{M}'' \rightarrow 0$ be an exact sequence of coherent D_X-modules. Then we have

1. $\mathcal{M} \in B_Y \iff \mathcal{M}', \mathcal{M}'' \in B_Y$.

2. The induced sequence $0 \rightarrow V_\alpha\mathcal{M}' \rightarrow V_\alpha\mathcal{M} \rightarrow V_\alpha\mathcal{M}'' \rightarrow 0$ is exact for
\(\forall \alpha \in C \text{ if } \mathcal{M} \in B_Y. \)

(3) The induced sequence \(0 \to \text{gr}^V_{\alpha} \mathcal{M}' \to \text{gr}^V_{\alpha} \mathcal{M} \to \text{gr}^V_{\alpha} \mathcal{M}'' \to 0 \) is exact for \(\forall \alpha \in C \text{ if } \mathcal{M} \in B_Y. \)

REMARK 2.5: Let \(\mathcal{M} \in B_Y. \) Then \(\text{gr}^V_{\alpha} \mathcal{M} \) is a coherent \(\text{gr}^V_{v} \mathcal{D}_X = \mathcal{D}_Y[tD_t] \)-module for any \(\alpha \in C. \) Since the action of \((tD_t + 1 + \alpha) \) is nilpotent on \(\text{gr}^V_{\alpha} \mathcal{M}, \) it is a coherent \(\mathcal{D}_Y \)-module.

EXAMPLE 2.6: Let \(\mathcal{M} \) be a coherent \(\mathcal{D}_X \)-module with \(\text{Supp}(\mathcal{M}) \subset Y, \) and \(u \in \mathcal{M}. \) Then there exists \(i \in \mathbb{Z}_{>0} \) such that \(t^i u = 0. \) So we have \(\prod_{k=1}^{i} (tD_t + k)u = D^i_t t^i u = 0. \) Hence we obtain \(\mathcal{M} = \bigoplus_{i \in \mathbb{Z}_{>0}} \mathcal{M}_i \) where \(\mathcal{M}_i = \{ u \in \mathcal{M} \mid (tD_t + 1 + i)u = 0 \}, \) and \(V_\alpha \mathcal{M} = \bigoplus_{i \leq \alpha} \mathcal{M}_i. \)

EXAMPLE 2.7: Let \(\mathcal{M} \) be a coherent \(\mathcal{D}_X \)-module. We assume \(Y \) to be non-characteristic for \(\mathcal{M}, \) i.e., \(\text{Ch}(\mathcal{M}) \cap T_Y^*X \subset T_X^*X. \) Then \(\mathcal{M} \in B_Y. \) The proof could be reduced to the case of \(\mathcal{D}_X v = \mathcal{D}_X / \mathcal{D}_X P \) with \(P \in V_N \mathcal{D}_X, \) \(\bar{P} = \bar{D}_t^N \in V_N \mathcal{D}_X / V_{N-1} \mathcal{D}_X \) and \(N \in \mathbb{Z}_{>0} \) where the bar indicates the canonical image. Since \(Pv = 0, \) in \((V_N \mathcal{D}_X)v / (V_{N-1} \mathcal{D}_X)v \) we have \(\bar{P} \bar{v} = \bar{D}_t^N \bar{v} = 0, \) i.e., \(D^N_t v \in V_{N-1} \mathcal{D}_X v. \) Hence we obtain \(\prod_{k=0}^{N-1} (tD_t - k)v = t^N D^N_t v \in V_{-1} \mathcal{D}_X v. \)

In general, any root of the \(b \)-function of any section of \(\mathcal{M} \) is a nonnegative
integer. Therefore we see by Definition 2.1 (3)

\[V_{\alpha} \mathcal{M} = \begin{cases} t^{-[\alpha]-1} \mathcal{M} & \alpha < -1 \\ \mathcal{M} & \alpha \geq -1 \end{cases} \]

where \([\alpha] = \max\{ n \in \mathbb{Z} | n \leq \alpha \} \).

Let \(f \) be a holomorphic function, \(\mathcal{M} \) a holonomic \(\mathcal{D}_X \)-module, \(u \in \mathcal{M} \) and \(Y = f^{-1}(0) \). Let \(i_f \) denote the graph of \(f : X \to X \times \mathbb{C} \) and \(t \) the coordinate of \(\mathbb{C} \) in \(X \times \mathbb{C} \). Then we see \(\mathcal{M} \in B_Y \iff i_{f*} \mathcal{M} \in B_{X \times \{0\}} \).

Furthermore there is the following correspondence under the isomorphism of \(\mathcal{D}_X[s, t] \) onto \(V_0(\mathcal{D}_X[t, D_t]) = \mathcal{D}_X[t, D_t] \):

\[s \longleftrightarrow -D_t t \]

\[\mathcal{D}_X[s] f^s u \longleftrightarrow V_0(\mathcal{D}_X[t, D_t]) u \otimes \delta(t - f) \]

\[P(s) f^{s+1} u = b(s) f^s u \longleftrightarrow P(-D_t t) tu \otimes \delta(t - f) = b(-D_t t) u \otimes \delta(t - f). \]

By Kashiwara’s result recalled in §1, we obtain:

Proposition 2.8. All holonomic \(\mathcal{D}_X \)-modules belong to \(B_Y \).

§3. Operations in \(B_Y \).

Proposition 3.1. Let \(Y = \{ t = 0 \} \) and \(\mathcal{M} \in B_Y \). Then
(1) \(\mathcal{M}[t^{-1}] \in B_Y \).

(2) \(\mathcal{H}^j(\mathcal{M}^*) \in B_Y \) for \(\forall j \). Moreover for \(\forall j \) locally we have isomorphisms

\[
\text{gr}_\alpha^V(\mathcal{H}^j(\mathcal{M}^*)) \sim \mathcal{H}^j(\text{gr}_{-\alpha-1}^V(\mathcal{M}^*)) \quad (-1 < \alpha < 0)
\]

and

\[
\text{gr}_\beta^V(\mathcal{H}^j(\mathcal{M}^*)) \sim \mathcal{H}^j(\text{gr}_{\beta}^V(\mathcal{M}^*)) \quad (\beta = -1, 0).
\]

Under these isomorphisms the transpose \(t^j : \mathcal{H}^j(\text{gr}_1^V(\mathcal{M}^*)) \to \mathcal{H}^j(\text{gr}_0^V(\mathcal{M}^*)) \) corresponds to \(-D_1 : \text{gr}_{-1}^V(\mathcal{H}^j(\mathcal{M}^*)) \to \text{gr}_0^V(\mathcal{H}^j(\mathcal{M}^*)) \) and the transpose \(t^j : \mathcal{H}^j(\text{gr}_1^V(\mathcal{M}^*)) \to \mathcal{H}^j(\text{gr}_{-1}^V(\mathcal{M}^*)) \) corresponds to \(t : \text{gr}_0^V(\mathcal{H}^j(\mathcal{M}^*)) \to \text{gr}_{-1}^V(\mathcal{H}^j(\mathcal{M}^*)) \).

Proposition 3.2. Let \(\mathcal{M} \) be a holonomic \(\mathcal{D}_X \)-module and \(i \) the inclusion of \(Y \) into \(X \). Then

(1) The restriction \(i^* \mathcal{M} \) is quasi-isomorphic to \(0 \to \text{gr}_{-1}^V \mathcal{M} \xrightarrow{D_1} \mathcal{D}_Y \text{gr}_0^V \mathcal{M} \to 0 \)

where the dot indicates the place of degree zero.

(2) For any \(\alpha \in C \), \(\text{gr}_\alpha^V \mathcal{M} \) is a holonomic \(\mathcal{D}_Y \)-module.

Proof: (1) By Remark 2.2 (3) and Proposition 3.1 (2) we have

\[
i^* \mathcal{M}^* \xrightarrow{\sim} (0 \to \text{gr}_0^V(\mathcal{M}^*) \xrightarrow{i^*} \text{gr}_{-1}^V(\mathcal{M}^*) \to 0)
\]

\[
\xrightarrow{\sim} (0 \to (\text{gr}_0^V \mathcal{M})^* \xrightarrow{i^*D_1} (\text{gr}_{-1}^V \mathcal{M})^*) \to 0).
\]

Since \(i^* \mathcal{M} = (i^* \mathcal{M}^*)^* \), we obtain the assertion.
(2) We know that
\[\mathcal{M} : \text{holonomic} \Leftrightarrow \mathcal{H}^j(\mathcal{M}^*) = 0 \quad \text{for} \ j \neq 0. \]
Hence by Proposition 3.1 (2) we obtain \(\mathcal{H}^j((\text{gr}_V^\alpha \mathcal{M})^*) = 0 \) for \(j \neq 0 \). This means the holonomicity of \(\text{gr}_V^\alpha \mathcal{M} \).

PROPOSITION 3.3. Let \(g : X' \to X \) be a proper morphism of smooth manifolds. We suppose that \(Y' := g^{-1}(Y) \) is a smooth hypersurface and \(\mathcal{M} \in B_Y \), has a global good filtration. Then for any \(j \), we have \(\mathcal{H}^j(\mathbb{R}g_* \mathcal{M}) \in B_Y \) and the canonical \(V \)-filtration of \(\mathcal{M} \) induces the one for \(\mathcal{H}^j(\mathbb{R}g_* \mathcal{M}) \).

§4. Moderate Nearby Cycles and Moderate Vanishing Cycles.

Let \(Y \) be a smooth hypersurface defined by \(t : X \to \mathbb{C} \). For a coherent \(\mathcal{D}_X \)-module \(\mathcal{M} \in B_Y \), \(p \in \mathbb{Z}_{\geq 0} \) and \(-1 \leq \alpha < 0 \), we define
\[\mathcal{M}_{\alpha,p} := \bigoplus_{0 \leq k \leq p} \mathcal{M}[t^{-1}] \otimes e_{\alpha,k} \]
where \(e_{\alpha,k} = t^{\alpha+1}(\log t)^k/k! \). It is clear that for any \(\beta \in \mathbb{C} \)
\[V_\beta \mathcal{M}_{\alpha,p} = \bigoplus_{0 \leq k \leq p} V_{\beta + \alpha + 1}(\mathcal{M}[t^{-1}]) \otimes e_{\alpha,k}. \]
Then the monodromy $T = \exp(2\pi itD_t)$ induces a D_Y-automorphism on $\mathcal{M}_{\alpha,p}$ by $T(m \otimes e_{\alpha,k}) = m \otimes T(e_{\alpha,k})$, and accordingly on $\text{gr}_{\beta}^V(\mathcal{M}_{\alpha,p})$.

Definition 4.1: For $-1 \leq \alpha \leq 0$, we define the moderate nearby cycle $\psi_{t,\alpha}^m(\mathcal{M})$ by

$$\psi_{t,\alpha}^m(\mathcal{M}) := \lim_{p} \psi_{t,\alpha,p}^m(\mathcal{M})$$

where $\psi_{t,\alpha,p}^m(\mathcal{M}) := i^*(\mathcal{M}_{\alpha,p})[-1]$.

By Proposition 3.2 we see

$$\psi_{t,\alpha,p}^m(\mathcal{M}) \xrightarrow{\text{qis}} (0 \to \text{gr}_{-1}^V(\mathcal{M}_{\alpha,p}) \xrightarrow{D_t} \text{gr}_{0}^V(\mathcal{M}_{\alpha,p}) \to 0).$$

We remark that T acts on $\psi_{t,\alpha}^m(\mathcal{M})$ as well.

Proposition 4.2. For $\mathcal{M} \in B_Y$ and $-1 \leq \alpha < 0$, we have a quasi-isomorphism $\text{gr}_{\alpha}^V \mathcal{M} \xrightarrow{\text{qis}} \psi_{t,\alpha}^m(\mathcal{M})$. Here the action of T on $\psi_{t,\alpha}^m(\mathcal{M})$ corresponds to that of $\exp(-2\pi itD_t)$.

Proof: Since $V_{<0}\mathcal{M} = V_{<0}(\mathcal{M}[t^{-1}])$, we have

$$\text{gr}_{-1}^V(\mathcal{M}_{\alpha,p}) = \bigoplus_{0 \leq k \leq p} \text{gr}_{\alpha}^V(\mathcal{M}[t^{-1}]) \otimes e_{\alpha,k} = \bigoplus_{0 \leq k \leq p} \text{gr}_{\alpha}^V(\mathcal{M}) \otimes e_{\alpha,k}.$$

As $\mathcal{M}_{\alpha,p} = \mathcal{M}_{\alpha,p}[t^{-1}]$, we know $\mathcal{H}^0(\psi_{t,\alpha,p}^m(\mathcal{M})) = \text{Ker}(D_t) = \text{Ker} (tD_t : \text{gr}_{-1}^V(\mathcal{M}_{\alpha,p}) \to \text{gr}_{-1}^V(\mathcal{M}_{\alpha,p})).$ Since $tD_t(m \otimes e_{\alpha,k}) = [(tD_t + \alpha + 1)m] \otimes$
we see \(\sum_{k=0}^{p} m_{k} \otimes e_{\alpha,k} \in \text{Ker}(tD_{t}) = \mathcal{H}^{0}(\psi^{m}_{t,\alpha,p}(\mathcal{M})) \Leftrightarrow (tD_{t}\alpha+1)m_{k}+m_{k+1} = 0 \) (0 \(\forall k \leq p-1\) \(\Leftrightarrow m_{k} = [(tD_{t}\alpha+1)]^{k}m_{0} \) (0 \(\forall k \leq p\)). Hence for \(p \) such that \((tD_{t}\alpha+1)^{p} = 0 \) on \(\text{gr}_{\alpha}^{V}(\mathcal{M}) \), the morphism \(\text{gr}_{\alpha}^{V}(\mathcal{M}) \ni m_{0} \mapsto \sum_{k=0}^{p} [(tD_{t}+\alpha+1)]^{k}m_{0} \otimes e_{\alpha,k} \in \mathcal{H}^{0}(\psi^{m}_{t,\alpha,p}(\mathcal{M})) \) is isomorphic.

Let \(x = \sum_{k=0}^{p} [(tD_{t}+\alpha+1)]^{k}m_{0} \otimes e_{\alpha,k} \in \text{Ker}(tD_{t}) \). Then we have
\[
0 = (tD_{t}x) = \sum_{k=0}^{p} [(tD_{t}+\alpha+1)]^{k}(tD_{t})m_{0} \otimes e_{\alpha,k} + \sum_{k=0}^{p} [(tD_{t}+\alpha+1)]^{k}m_{0} \otimes (tD_{t})e_{\alpha,k},
\]
and thus \(\sum_{k=0}^{p} [(tD_{t}+\alpha+1)]^{k}m_{0} \otimes (2\pi itD_{t})e_{\alpha,k} = \sum_{k=0}^{p} [(tD_{t}+\alpha+1)]^{k}((-2\pi itD_{t})m_{0}) \otimes e_{\alpha,k} \). Hence the monodromy \(T \) corresponds to \(\exp(-2\pi itD_{t}) \).

Since \(t \) induces an isomorphism \(\text{gr}_{0}^{V}(\mathcal{M}_{\alpha,p}) \xrightarrow{\sim} \text{gr}_{-1}^{V}(\mathcal{M}_{\alpha,p}) \), we see
\[
\mathcal{H}^{1}(\psi^{m}_{t,\alpha,p}(\mathcal{M})) = \text{Coker}(D_{t}) = \text{Coker}(D_{t}t : \text{gr}_{0}^{V}(\mathcal{M}_{\alpha,p}) \rightarrow \text{gr}_{0}^{V}(\mathcal{M}_{\alpha,p})).
\]
For \(\sum_{k=0}^{p} m_{k} \otimes e_{\alpha,k} \in \bigoplus_{0 \leq k \leq p} \text{gr}_{\alpha+1}^{V}(\mathcal{M}[t^{-1}]) \otimes e_{\alpha,k} = \text{gr}_{0}^{V}(\mathcal{M}_{\alpha,p}) \), we have
\[
D_{t}(\sum_{k=0}^{p} m_{k} \otimes e_{\alpha,k}) = \sum_{k=0}^{p} ((D_{t}\alpha+1)m_{k} \otimes e_{\alpha,k} + m_{k} \otimes e_{\alpha,k-1}) = \sum_{k=0}^{p} m'_{k} \otimes e_{\alpha,k}
\]
where \(m'_{k} = (D_{t}\alpha+1)m_{k} + m_{k+1} \). Hence for \(l \) such that \((D_{t}\alpha+1)^{l} = 0 \) on \(\text{gr}_{\alpha+1}^{V}(\mathcal{M}[t^{-1}]) \), we have \(m \otimes e_{\alpha,k} = D_{t}(\sum_{i=1}^{l} [(D_{t}\alpha+1)]^{i-1}m \otimes e_{\alpha,k+i}) \) and thus \(\mathcal{H}^{1}(\psi^{m}_{t,\alpha}(\mathcal{M})) = 0 \).

DEFINITION 4.3: We define the moderate vanishing cycle \(\psi^{m}_{t,0}(\mathcal{M}) \) to be the inductive limit of the mapping cone \(\psi^{m}_{t,0,p}(\mathcal{M}) \) of the natural morphism
\[i^*\mathcal{M}[-1] \to i^*\mathcal{M}_{-1,p}[-1] = \psi_{t,-1,p}^m(\mathcal{M}), \text{ i.e.,} \]

\[\phi_{t,0,p}^m = (0 \to \text{gr}_{-1}^V\mathcal{M} \xrightarrow{j \odot D_t} \text{gr}_{-1}^V\mathcal{M}_{-1,p} \oplus \text{gr}_0^V\mathcal{M} \xrightarrow{D_t + j} \text{gr}_0^V\mathcal{M}_{-1,p} \to 0) \]

where \(j \) is the natural morphism \(\mathcal{M} \to \mathcal{M}_{-1,p} = \bigoplus_{0 \leq k \leq p} \mathcal{M}[t^{-1}] \otimes e_{-1,k} \).

We define morphisms can: \(\psi_{t,-1}^m(\mathcal{M}) \to \phi_{t,0}^m(\mathcal{M}) \) and var: \(\phi_{t,0}^m(\mathcal{M}) \to \psi_{t,-1}^m(\mathcal{M}) \) by the morphisms \(\text{id} : \psi_{t,-1}^m(\mathcal{M}) \to \phi_{t,0}^m(\mathcal{M}) \) and \(T - \text{id} : \phi_{t,0}^m(\mathcal{M}) \to \psi_{t,-1}^m(\mathcal{M}) \) respectively.

Proposition 4.4. For \(\mathcal{M} \in B_Y \), we have a quasi-isomorphism \(\text{gr}_0^V\mathcal{M} \xrightarrow{\sim} \phi_{t,0}^m(\mathcal{M}) \). Moreover can corresponds to \(D_t : \text{gr}_{-1}^V\mathcal{M} \to \text{gr}_0^V\mathcal{M} \) and var to \(\left[\frac{\exp(-2\pi itD_t)-1}{itD_t}\right]t : \text{gr}_0^V\mathcal{M} \to \text{gr}_{-1}^V\mathcal{M} \).

Proof: Let \(x = \sum_{k=0}^p m_k \otimes e_{-1,k} + n_0 \in \text{gr}_{-1}^V\mathcal{M}_{-1,p} \oplus \text{gr}_0^V\mathcal{M} = (\bigoplus_{k=0}^p \text{gr}_{-1}^V\mathcal{M} \otimes e_{-1,k}) \oplus \text{gr}_0^V\mathcal{M} \). Then we can check

\[x \in \text{Ker}(D_t + j) \iff (*) \begin{cases} m_1 = -tD_tm_0 - tn_0 \\ m_{k+1} = -tD_tm_k \quad (k \geq 1). \end{cases} \]

Hence we obtain an isomorphism \(\text{gr}_{-1}^V\mathcal{M} \oplus \text{gr}_0^V\mathcal{M} \xrightarrow{\sim} \text{Ker}(D_t + j) \) defined by \(m_0 + n_0 \mapsto \sum m_k \otimes e_{-1,k} + n_0 \) with \((*)\). So we see \(\text{gr}_0^V\mathcal{M} \xrightarrow{\sim} \mathcal{H}^0(\phi_{t,0}^m) \). Since \(m \equiv D_tm \mod \text{Im}(j \oplus -D_t) \) for \(m \in \text{gr}_{-1}^V\mathcal{M} \), the morphism can corresponds to \(D_t : \text{gr}_{-1}^V\mathcal{M} \to \text{gr}_0^V\mathcal{M} \). The element \(\sum_{k \geq 1} (-tD_t)^{k-1}(-tn) \otimes e_{-1,k} + \)
$n \in \text{Ker}(D_t + j)$ corresponds to $n \in \text{gr}_0^V \mathcal{M}$. Since the coefficient of $(T - \text{id})(\sum_{k \geq 1}(-tD_t)^{k-1}(-tn) \otimes e_{-1,k})$ at $e_{-1,0}$ is $\sum_{k \geq 1}(2\pi i)^k \frac{(-tD_t)^{k-1}}{k!}(-tn)$, the morphism var corresponds to $[\frac{\exp(-2\pi itD_t)-1}{itD_t}]t : \text{gr}_0^V \mathcal{M} \to \text{gr}_{-1}^V \mathcal{M}$.

§5. Nearby Cycles and Vanishing Cycles.

Let f be a nonconstant holomorphic function on X, i the inclusion of $f^{-1}(0)$ into X and $K \in D^b_c(C_X)$. Let \tilde{C}^\times denote the universal covering of C^\times and p the natural map $\tilde{X}^\times := X \times_{C} \tilde{C}^\times \to X$. Following [SGA7] we define the nearby cycle $\psi_f(K)$ by $\psi_f(K) := i^{-1}R\rho_*p^{-1}K \in D^b_c(C_{f^{-1}(0)})$. The natural morphism $K \to R\rho_*p^{-1}K$ induces a morphism $i^{-1}K \to \psi_f(K)$, whose mapping cone $\phi_f(K) \in D^b_c(C_{f^{-1}(0)})$ is called the vanishing cycle. By the definition of $\phi_f(K)$ we have the canonical morphism $\text{can} : \psi_f(K) \to \phi_f(K)$. Associated to the canonical generator of $\pi_1(C^\times)$ the monodromy automorphism T acts on $\psi_f(K)$ and $\phi_f(K)$. Since $(T - \text{id})|_{\text{gr}^{-1}K} = 0$, $T - \text{id}$ induces the variation $\text{var} : \phi_f(K) \to \psi_f(K)$. For $\lambda \in C^\times$ we define a subcomplex $\psi_{f,\lambda}(K)$ of $\psi_f(K)$ by

$$\psi_{f,\lambda}(K) := \{ x \in \psi_f(K) | (T - \lambda \text{id})^m x = 0 \ (m >> 0) \}.$$

Since $\psi_f(K) \in D^b_c(C_{f^{-1}(0)})$, we have a quasi-isomorphism $\bigoplus_{\lambda \in C^\times} \psi_{f,\lambda}(K) \xrightarrow{\sim} \psi_f(K)$. Similarly we have $\bigoplus_{\lambda \in C^\times} \phi_{f,\lambda}(K) \xrightarrow{\sim} \phi_f(K)$ as well. For
convenience we set $p\psi_f(K) := \psi_f(K)[-1]$ and $p\phi_f(K) := \phi_f(K)[-1]$.

Let Y be a smooth hypersurface of X defined by $t = 0$. When \mathcal{M} is a regular holonomic D_X-module, we have quasi-isomorphisms

$\text{DR}(\psi_{t,\alpha}^m(\mathcal{M})) \sim p\psi_{t,e^{2\pi i\alpha}}(\text{DR}(\mathcal{M}))$ \hspace{1cm} ($-1 \leq \alpha < 0$)

$\text{DR}(\phi_{t,0}^m(\mathcal{M})) \sim p\phi_{t,1}(\text{DR}(\mathcal{M}))$

(see [SGA7]). Hence we obtain:

Theorem 5.1 [Kv], [Ma]. For a regular holonomic D_X-module \mathcal{M}, we have

$\text{DR}(\text{gr}_{\alpha}^V \mathcal{M}) \sim \begin{cases} p\psi_{t,e^{2\pi i\alpha}}(\text{DR}(\mathcal{M})) & (\alpha \leq 0) \\ p\phi_{t,e^{2\pi i\alpha}}(\text{DR}(\mathcal{M})) & (0 < \alpha \leq 0). \end{cases}$

Moreover under the above quasi-isomorphisms we have the following correspondences:

$\exp(-2\pi itD_t) \leftrightarrow T$

$D_t : \text{gr}_{-1}^V \mathcal{M} \rightarrow \text{gr}_0^V \mathcal{M} \leftrightarrow \text{can} : p\psi_{t,1}(\mathcal{M}) \rightarrow p\phi_{t,1}(\mathcal{M})$

$\frac{[\exp(-2\pi itD_t) - 1]}{tD_t}t : \text{gr}_0^V \mathcal{M} \rightarrow \text{gr}_{-1}^V \mathcal{M} \leftrightarrow \text{var} : p\phi_{t,1}(\mathcal{M}) \rightarrow p\psi_{t,1}(\mathcal{M}).$
COROLLARY 5.2. For a regular holonomic \mathcal{D}_{X}-module \mathcal{M}, we have

$$p\psi_{t}(D_{X}(\text{DR}(\mathcal{M}))) \xrightarrow{\text{qis}} D_{Y}p\psi_{t}(\text{DR}(\mathcal{M}))$$

$$p\phi_{t}(D_{X}(\text{DR}(\mathcal{M}))) \xrightarrow{\text{qis}} D_{Y}p\phi_{t}(\text{DR}(\mathcal{M})).$$

REFERENCES

[H] N. Honda, D-modules, perverse sheaves and the Riemann-Hilbert correspondence, in this volume.

[SKKO] M. Sato, M. Kashiwara, T. Kimura and T. Oshima, Microlocal analysis of
