テータリフトニングのカスプ形の例

渡部 隆夫

数理解析研究所講究録 数論的表現論の現代

渡部 隆夫

渡部 隆夫
Theta lifting of cusp forms on the unitary group $U(d, d)$

渡部 隆夫（東北大 教養）

0. Notation

F を素実代数体とし，$E = F(\sqrt{-1})$ とする。Z^n を E 上 2n-次元のベクトル空間で，Witt−指数 n
の skew Hermitian form \langle, \rangle_n をもつとする。基底 $e_1, \ldots, e_n, f_1, \ldots, f_n$ によって \langle, \rangle_n は行列

$$J_n = \begin{pmatrix} 0 & 1_n \\ -1_n & 0 \end{pmatrix}$$

に対応するものとする。$(Z^n, \langle, \rangle_n)$ に対する ユーリ群を G^n とおく。群 $GL_q^E = \text{Res}_{E/F}(GL_q)$,
G^{n-q} $(1 \leq q \leq n)$ を次の様に G^n に埋め込む。

$$\iota_n(GL_q^E) = \left\{ \iota_n(A) = \begin{pmatrix} A & 1_{n-q} \\ -A^{-1} & 1_{n-q} \end{pmatrix} \mid A \in GL_q^n \right\}$$

$$\iota_n(G^{n-q}) = \left\{ \iota_n(g) = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \mid g = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in G^{n-q} \right\}$$

さらに次の様に G^n の部分群を定義する。

$Q_q^n = \text{the stabilizer of the totally isotropic subspace } \langle e_1, \ldots, e_q \rangle$
$\overline{M}_q^n = \iota_n(GL_q^E)\iota_n(G^{n-q}) = \text{a Levi subgroup of } Q_q^n$
$\overline{U}_q^n = \text{the unipotent radical of } Q_q^n$
$P_q^n = Q_1^n \cap Q_2^n \cap \ldots \cap Q_q^n$
$M_q^n = \overline{M}_1^n \cap \overline{M}_2^n \cap \ldots \cap \overline{M}_q^n = \text{a Levi subgroup of } P_q^n$
$U_q^n = \text{the unipotent radical of } P_q^n$
$\Delta_q^n = \iota_n(GL_q^E) \cap U_q^n$
$L_q^n = \iota_n(GL_q^{E}) \cap \overline{U}_q^n$
$N_q^n = \overline{U}_q^n \cap \overline{U}_q^n$
$V_q^n = \text{the derived group of } U_q^n$
$W_{q-1}^n = V_q^n \cap U_{q-1}^n$

上で与えた群の 1 つを H とするとき，$H(F)$ を H の F-有理点の子群とし，$H(A)$ をその adele 群
とする。また $H(F \backslash A) = H(F) \backslash H(A)$ とおく。$U_n^n(A)$ の元 u を

$$u = \begin{pmatrix} A & 0 \\ 0 & A^{-1} \end{pmatrix} \begin{pmatrix} 1_n & B \\ 0 & 1_n \end{pmatrix}$$

$A = (a_{ij}) \in GL_n(A_E)$，$B = \overline{B} = (b_{ij}) \in M_n(A_E)$
と表示したときに
\[t_{i,j}^{n}(u) = a_{ij}, \quad t_{i,j}^{n+}(u) = b_{ij} \quad \text{for } 1 \leq i < j \leq n \]
\[u_{i}^{n,+}(u) = b_{ii}, \quad \text{for } 1 \leq i \leq n \]
とする．最後に \(G^{n}(A) \) 上の保型形式のなす空間を \(A(G^{n}) \) とか、cusp form のなす空間を \(A_0(G^{n}) \) とかく．\(F \setminus A \) 上の自明でない character \(\mu \) を１つ固定しておく．

1. A filtration of \(A(G^{n}) \)
まず保型形式の Fourier 展開を与える．
\[\hat{U}^{n}_{q} = \text{Hom}(V_{q}^{n} \setminus U_{q}^{n}(F \setminus A), \mathbb{C}^{*}), \quad \hat{\Delta}^{n}_{q} = \text{Hom}((\Delta^{n}_{q} \cap V_{q}^{n}) \setminus \Delta^{n}_{q}(F \setminus A), \mathbb{C}^{*}) \]
\[Z^{n}_{q} = \langle e_{q+1}, \cdots, e_{n} \rangle + \langle f_{q+1}, \cdots, f_{n} \rangle \]
とおく．\(\Delta^{n}_{q} \cong \hat{U}^{n}_{q} \setminus U^{n}_{q} \) だから \(\chi \in \hat{\Delta}^{n}_{q} \) は自然に \(\hat{U}^{n}_{q} \) の元とみなせる．いま \(\chi \in \hat{\Delta}^{n}_{q}, z \in Z^{n}_{q}, \ u \in U^{n}_{q}(A) \) に対して
\[\chi^{*}(z)(u) = \chi(u) \mu(\text{tr}_{E/F}(\sum_{i=q+1}^{n} <z, f_{i}>_{n}u_{q}^{n} - <z, e_{i}>_{n}u_{q,i}^{n,+}(u))) \]
と定義する．このとき \(\chi^{*}(z) \in \hat{U}^{n}_{q} \) であり
\[\hat{U}^{n}_{q} = \bigsqcup_{x \in \hat{\Delta}^{n}_{q}} \chi^{*}(Z^{n}_{q}), \quad \{ \psi \in \hat{U}^{n}_{q} \mid \psi|_{W^{n}_{q}(A)} \equiv 1 \} = \bigsqcup_{x \in \hat{\Delta}^{n}_{q}} \chi^{*}(\langle e_{q+1} \rangle) \]
をもつ．そこで \(\varphi \in A(G^{n}), \psi \in \hat{U}^{n}_{q}, \alpha \in F \) に対して
\[\lambda^{n}_{q}(g; \psi; \varphi) = \int_{U_{q}^{n}(F \setminus A)} \psi^{-1}(u) \varphi(ug) du \]
\[\xi^{n}_{q}(g; \psi, \alpha; \varphi) = \int_{V_{q}^{n+1}(F \setminus A)} \mu^{-1}(\alpha u_{q}^{n} \wedge \dot{\perp}^{n+1}(v)) \left(\int_{W_{q}^{n}(F \setminus A)} \lambda^{n}_{q}(vug; \psi; \varphi) dv \right) dv \]
と定義する．ただし，\(q = n-1 \) のときに限り \(\xi^{n}_{n-1}(g; \psi, \alpha; \varphi) \) の定義に現われる \(V_{n-1}^{n}(F \setminus A) \) 上の積分は \(V_{n-1}^{n}U_{n}^{n}(F \setminus A) \) 上の積分で置き換えるものとする．ここで \(U^{n+}_{n} \) は成分 \(u^{n+}_{n}(\cdot) \) に対応する one parameter subgroup とする．\(1 \leq q \leq n-1 \) のとき，次の Fourier 展開をもつ
\[\int_{V_{q}^{n}(F \setminus A)} \varphi(vg) dv = \sum_{x \in \hat{\Delta}^{n}_{q}} \sum_{z \in Z^{n}_{q}} \lambda^{n}_{q}(g; \chi^{*}(z); \varphi) \]
\[\int_{W_{q}^{n}(F \setminus A)} \varphi(wg) dw = \sum_{x \in \hat{\Delta}^{n}_{q}} \sum_{\alpha \in F} \xi^{n}_{q}(g; \chi^{*}(z), \alpha; \varphi) \]
\[\Delta_q^n \text{の元} \chi \text{は各} u_{j,j+1}^q(\cdot) \ (1 \leq j \leq q-1) \text{に対応する one parameter subgroup 上 trivial でなければ非退化とよばれる。非退化な character 全体の集合を} \Delta_q^n[0] \text{とおく。このとき上で与えた Fourier 展開の部分和を次の様にする。} \]

\[
\Lambda_q^n(\varphi)(g) = \sum_{\chi \in \hat{\Delta}_q^n[0]} \sum_{z \in \mathbb{Z}_q^n} \lambda_q^n(g; \chi^*(z); \varphi)
\]

\[
\Lambda_{q+\frac{1}{2}}^n(\varphi)(g) = \sum_{\chi \in \hat{\Delta}_q^n[0]} \sum_{\alpha \in F^+} \xi_q^n(g; \chi^*(z), \alpha; \varphi)
\]

これを用いて \(A(G^n) \) の不変部分空間を次で定義する：半整数 \(r \) に対して

\[
A^r(G^n) = \begin{cases} A(G^n) & \text{if } n \leq r \\ \{ \varphi(g) \in A(G^n) \mid \Lambda_q^n(\varphi)(g) \equiv 0 \} & \text{if } 1 \leq r \leq n - \frac{1}{2} \\ \{ 0 \} & \text{if } r \leq \frac{1}{2} \end{cases}
\]

これは filtration

\[
\{ 0 \} \subset A^1(G^n) \subset A^{\frac{3}{2}}(G^n) \subset \cdots \subset A^{n-\frac{1}{2}}(G^n) \subset A(G^n)
\]
を与える。また

\[
A_0^r(G^n) = A_0(G^n) \cap A^r(G^n)
\]
とおく。

例：\(\pi \) を \(G^n(A) \) の既約保型表現とするとき

1. \(\pi \) が cuspidal holomorphic ⇒ \(\pi \hookrightarrow A^{3/2}(G^n) \)
2. \(\pi \) が generic ⇒ \(\pi \hookrightarrow A^n(G^n)/A^{n-1/2}(G^n) \)
3. \(\pi \) が Weil 表現 ⇒ \(\pi \hookrightarrow A^2(G^n) \) で，この場合次は同値になる。

\[
\pi \text{ cuspidal} \iff \pi \hookrightarrow A^{3/2}(G^n) \iff \pi \hookrightarrow A^1(G^n)
\]

2. Theta lifting

整数 \(d \geq 1 \) を固定する。Hermitian space \((\mathbb{Z}^d \otimes \mathbb{Z}^n, \langle, \rangle_I = \langle, \rangle_{d \otimes
langle, \rangle_n})\) を考えることにより，自然な写像

\[
G^d \times G^n \to G^{2dn} \to S_{P_{2dn}} = Sp(Z^d \otimes Z^n, \text{tr}_{E/F}(<, >))
\]
を考える。\(M_{P_{2dn}}(A) \) を \(S_{P_{2dn}}(A) \) 上の metaplectic 群とし，\(\omega, \nu \) を \(\mu \) に対応する \(M_{P_{2dn}}(A) \) の Weil 表現とする。いま \(E^* \setminus A^*_{E_C} \) 上の character \(\nu \) で，その \(\nu^* \) への制限が類体論から従う２次拡大 \(E/F \) に対応する character であるようなものを 1 つ固定する。このとき Gelbart - Rogawski ([1]) により，splitting \(s_{\mu,\nu} : G^{2dn}(A) \to M_{P_{2dn}}(A) \) が構成できる。これから \(G^{2dn}(A) \) の Weil 表現 \(\omega = \omega_{\mu} \circ s_{\mu,\nu} \) を考える。\(\omega \) は \(\mathcal{Y}^n(A) = Z^2(A)_{E^n} \) 上の Schwarz - Bruhat 空間 \(S(\mathcal{Y}^n(A)) \) に実現される。\(f \in S(\mathcal{Y}^n(A)) \), \(h \in G^n(A), g \in G^n(A) \) に対して

\[
\theta^d_{f,h}(g) = \sum_{x \in \mathcal{Y}^n} \omega(h \cdot g)f(\tilde{x})
\]
とおく。各 cusp form \(\varphi \in \mathcal{A}_0(G^d) \) に対し

\[
\theta^n(\varphi|f)(g) = \int_{G^d(F\backslash A)} \varphi(h) \theta^{d,n}_f(h,g) dh
\]

とすれば、これは \(G^n(A) \) 上の保型形式を与える。\(G^d(A) \) の既約 cuspidal 表現 \(\pi \) に対し

\[
\Theta^n(\pi) = \{ \theta^n(\varphi|f) | \varphi \in \pi, \ f \in \mathcal{S}(Y^n(A)) \}
\]

とおく、これを \(\pi \) の theta lifting とよぶ。

3. Fourier coefficients of \(\theta^n(\varphi|f) \)

以下では、\(\theta^n(\varphi|f) \) の \(\S 1 \) で述べた Fourier 係数をもとめる。\(\varphi \in \mathcal{A}_0(G^d) \), \(f \in \mathcal{S}(Y^n(A)) \), \(1 \leq q \leq n - 1 \) は固定しておく。また \(Y^n(A) \) の元 \(\vec{x} \) は、しばしば、\(\vec{x} = (x_1, \cdots, x_n) \), \(x_i \in Z^d(A) \) の形にかかれる。\(\vec{x} = (x_1, \cdots, x_n) \)

とする。またこのとき

\[
Y_q^{n-q} = \{ (0, \cdots, 0, z_{q+1}, \cdots, z_n) \in Y^n | x_i \in Z_q^d , \ q + 1 \leq i \leq n \}
\]

とする。

Theorem 1. 任意の \(\chi \in \hat{\Delta}_q^n [0] \) と \(z \in Z_q^n \) について次をもつ。

(1) \(q > d \) のとき

\[
\lambda_q^n(g; \chi^*(z); \theta^n(\varphi|f)) = 0
\]

(2) \(1 \leq q \leq d \) のとき

\[
\lambda_q^n(g; \chi^*(z); \theta^n(\varphi|f)) = \int_{U_q^n(A) \backslash G^n(A)} \int_{\Delta_q^d V_q^d \backslash U_q^d(F \backslash A)} \sum_{\vec{y}_{n-q} \in Y_q^{n-q}} \xi_q^n(uh; \tilde{\chi}; f)(\vec{y}_{n-q}) dudh
\]

ただし

\[
\xi_q^n(h; \chi^*(z); f)(\vec{y}_{n-q}) = \int_{\Delta_q^n(A)} \chi^{-1}(\delta) \int_{L_q^d(A)} \chi^*(z)^{-1}(u) \omega(h \cdot \delta u) f(\vec{e}_q + \vec{e}_{n-q}(z) + \vec{y}_{n-q}) dud\delta
\]

で、また \(\tilde{\chi}(\delta) = \chi(\overline{\delta}) \) とする。

この公式を導く過程で \(\Theta^n(\pi) \) の cuspidality に関する条件がえられる。

Theorem 2. \(G^d(A) \) の既約 cuspidal 表現 \(\pi \) について、\(\Theta^n(\pi) \) が cuspidal であるための必要十分条件は \(\Theta^{n-1}(\pi \otimes \nu \circ \det) = 0 \) となることである。また \(\Theta^1(\pi) \) はいつでも cuspidal 表現になる。

（講演、および以前の preprint のなかで上の定理の \(\nu \) が \(\nu^{-1} \) となっていますが、これは misprint でした。申し訳ありません。）

上の 2つの結果から次が従う。
Theorem 3. \(\pi \)を既約generic non-zero cuspidal表現とするとき, \(\Theta^n(\pi) \) は \(n \geq d+1 \) で non-zeroで, \(n \geq d+2 \) で cuspidalにはならない。

ここで Theta lifting の non-vanishing については, Rallis の論文により, 任意の既約 non-zero cuspidal 表現 \(\pi \) に対して, \(\Theta^{2d}(\pi) \) は non-zeroであることが知られる。上の定理は \(\pi \) が generic ならば "2d" を "d+1" でおきかえてよいということを示している。また Theorem 1 から直接に次が導かれる。

Theorem 4. \(r \) を半整数とする。このとき \(\varphi \in A_0(G^d) \) ならば, 任意の \(f \in S(\mathcal{Y}^n(A)) \) について \(\Theta^n(\varphi|f) \in A^{r+1/2}(G^n) \) である。

これから \(n > d \) のとき \(G^d(A) \) からの theta lifting でえられる \(G^n(A) \) の保型表現は generic にはならないことがわかる。

References

3. T. Watanabe, Theta lifting of cusp forms on the unitary group \(U(d, d) \), preprint.