<table>
<thead>
<tr>
<th>Title</th>
<th>Rank two reflexive sheaves which are constructed from the prime field F_p (Analytic varieties and singularities)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Sasakura, Nobuo; Enta, Yoichi; Kagesawa, Masatake</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1992(807): 163-187</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1992-09</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/82950</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
FP (AUG/92):

Rank two reflexive sheaves which are constructed
from the prime field F_p

Nobuo Sasakura Yoichi Ena and Masatake Kagesawa
(Tokyo Metropolis University)

The purpose of this manuscript is to construct rank two
reflexive sheaves on the projective spaces from the prime field F_p
($p \equiv 1 \pmod{4}$). The central part is some combinatorics which are
related to a certain graph, which is obtained from the theory of
quadratic residue. This manuscript may be regarded also an
introduction to our theory of 'construction of reflexive sheaves
from divisor configurations, cf. [Sa-1,2,3].

The present note requires some refinements for the final
publication. Also references are far from adequate.

1. Let p be a prime number of the form $p = 4q + 1$ with a
positive integer $q(p = 5,13,17,29,37,...)$, and let $F_p = \mathbb{Z}/p\mathbb{Z}$ be
the prime field of characteristic p. Moreover, let $F_p^\times = F_p - \{0\}$
denote the multiplicative group of F_p and let ρ be a generator
(primitive root) of F_p^\times. For an element $i \in F_p$ we set:

$$S_i^+ (\text{resp. } S_i^-) = \{ j \in F_p - \{i\} : j \sim i (\text{resp. } j \sim / i) \},$$

where $j \sim i$ means that $(i-j) = \rho^a$ with an element $a \in \mathbb{Z}/(p-1)\mathbb{Z}$,
i.e., $(i-j)$ is a quadratic residue. Note that '\sim' is not, in
general, an equivalence relation.

Let $P_{p-1} = P_{p-1}(\mathbb{C})$ be the $(p-1)$-dimensional projective space
with homogeneous coordinates \(z_i \), \(i \in F_p \). Writing \(X = P_{p-1} \) we set
\[
X_i^1 = Z(z_i), \quad i \in F_p, \quad \text{and} \quad X^1 = \bigcup_{i \in F_p} X_i^1.
\]
We write \(\mathcal{O} \) for the line bundle \(\mathcal{O}(X^1) \cong \mathcal{O}(p) \), where \(\mathcal{O} \) denote the structure sheaf of \(X \) and \(\mathcal{O}(p) \) is the \(p \)-times twist of \(\mathcal{O} \) by the hyperplane bundle \(\mathcal{O}(1) \).

Now to each hyperplane \(X_i^1, \ i \in F_p \), we attach a two term vector \(\in \Gamma(\mathcal{O}_i(2q))^{\otimes 2} \), \(\mathcal{O}_i \) being the structure sheaf of \(X_i^1 \), as follows:
\[
g_i = t(jz_j, kz_k), \quad \text{where} \ j(\text{resp.} k) \ \text{satisfies} \ j \sim i(\text{resp.} k \sim i),
\]
Writing \(\mathcal{G}_i \) for \(\mathcal{O}_i(2q+1) \), the multiplication by \(g_i \) defines an \(\mathcal{O}_i \)-morphism:
\[
g_i : \mathcal{G}_i \otimes \mathcal{G}_i \rightarrow \mathcal{G}_i \otimes \mathcal{G}_i, \quad \text{with} \quad \mathcal{G}_i = \text{the restriction of} \ \mathcal{O} \ \text{to} \ X_i^1.
\]
Let \(\delta = \bigotimes_{i \in F_p} \delta_i : \mathcal{O}^{\otimes 2} \rightarrow C^1(\mathcal{O}^{\otimes 2}) = \bigotimes_{i \in F_p} \mathcal{G}_i \) be the coboundary morphism, with \(\delta_i = \text{the restriction morphism} : \mathcal{O} \rightarrow \mathcal{G}_i \). Moreover, we set \(g = \bigotimes_{i \in F_p} g_i : \mathcal{G} \rightarrow C^1(\mathcal{O}^{\otimes 2}) = \bigotimes_{i \in F_p} \mathcal{G}_i \), with \(i \in F_p \). Now define an \(\mathcal{O} \)-submodule of \(\mathcal{O}^{\otimes 2} \) as follows:
\[
\mathcal{E} = \delta^{-1}(g(\mathcal{G}^1)).
\]
Clearly \(\mathcal{E}|_{X=X^1} = \mathcal{O}|_{X=X^1} \). Moreover, we have:

Lemma 1. \(\mathcal{E} \) is reflexive (i.e., \(\mathcal{E} \cong \mathcal{E}^* \)). Moreover \(\mathcal{E} \) is locally free on \((X - X^2) \), cf. [Sa-1].

Here we set:
\[
X^2 = \bigcup_{i \neq j} X_i^2, \quad \text{with} \quad X_i^2 = X_i^1 \cap X_j^1.
\]
The main task of the remainder of the present paper is to examine the structure of \(\mathcal{E} \) on \(X^2 \). Concerning this we remark the following:

An element \(\xi \in \mathcal{G}_p \), \(p \in X \), is in \(\mathcal{G}_p \), if and only if there is an element \(g_i \in \mathcal{G}_i, \ p \) satisfying
\[
(1) \quad \xi|_i = g_i \otimes g_i \quad \text{for each} \quad i \in F_p.
\]
If \(p \notin X_1^1 \), then the two sides = 0. Note that, by restricting \((1) \) to
\(X_{ij}^2 \) we have the coboundary relation:

\[
\partial (g_i \oplus g_j)_{ij} = (g_j \oplus g_i)_{ij}.
\]

Conversely, if a collection \((g_i)_{ij}, \sigma_i \in \mathcal{G}_{ij}\) satisfies (2), then there is an element \(\xi \in \mathfrak{L}^{\oplus 2} \) satisfying (1). Thus the determination of \(\mathfrak{L}_{ij}^p \)-module \(\mathfrak{E}_p \) is reduced to that of a collection \((g_i')_{ij}\) satisfying (2).

2. Multiplier. Take elements \(i \neq j \in F_p \). We set:

\[
\bar{S}^+_{ij}(\text{resp.} S^-_{ij}) = \{k \in F_p - (i,j): k \sim i \text{ and } k \sim j(\text{resp. } k \sim i, k \sim j)\}.
\]

Thus subsets \(\bar{S}^+_{ij} \) and \(\bar{S}^-_{ij} \) of \(F_p \) is defined similarly to the above.

Now we restrict the vectors \(g_i \) and \(g_j \) on \(X_{ij}^2 \). Clearly we have:

Proposition 2.1. \(\#S^+_{ij}, \#S^-_{ij}, \#S^+_{ij} \) and \(\#S^-_{ij} \) are independent of \(i, j \).

Actually

\[
\#S^-_{ij} = \#S^+_{ij} = q, \quad \text{and} \quad (\#S^+_{ij}, \#S^-_{ij}) = (q-1, q) \text{ or } (q, q-1),
\]

according to whether \(i \sim j \) or \(i \succ j \).

Proof. This follows from an elementary consideration. Note that if \(k \neq l \in F_p \) satisfies: \(i-k = (j-l) + \rho^2 a \), \(a \in Z/(p-1)Z \), then \(\#S_{ij}^{\alpha \beta} = S_{jk}^{\alpha \beta} \), where \(\alpha, \beta = + \) or \(- \). From this it suffices to consider the pair \((i,j) = (0,1), (0,\rho) \).

Now define \(\mathcal{O}_{ij} \)-invertible sheaves as follows:

\[
\mathfrak{M}_{ij} = \mathcal{O}_{ij}(q), \quad \mathfrak{M}_{ij} = \mathcal{O}_{ij}(q) \quad \text{and} \quad \mathfrak{G}_{ij} = \mathcal{O}_{ij}(q).
\]

These three sheaves coincide. But the role of them differ, cf. [Sa-1].

Define elements \(g_{ij} \in \Gamma(\mathfrak{G}_{ij})^{\oplus 2} \) and \(\psi_{ij} \in \Gamma(\mathfrak{M}_{ij}), \psi_{ij} \in \Gamma(\mathfrak{M}_{ij}) \) as follows:

\[
g_{ij} = \tilde{t}(\mathfrak{m}_{ij}^2, 0), \quad \psi_{ij} = \mathfrak{m}_{ij}^2 \text{ and } \psi_{ij} = \mathfrak{m}_{ij}^2, \quad \text{if } i \sim j.
\]

where according to whether \(i \sim j \) or \(i \not\sim j \), \(k, l \) and \(m \) run through those elements satisfying

\[
k \in S^-_{ij}, \quad l \in S^+_{ij} \text{ and } m \in S^-_{ij} \quad \text{or} \quad k \in S^+_{ij}, \quad l \in S^-_{ij} \text{ and } m \in S^+_{ij}.
\]
Now we restrict g_i and g_j to X_{ij}^2. Then, according to whether $i \sim j$ or $i \not\sim j$, the second or first component of $g_{ij} = 0$. From the definition of g_{ij} and $\psi_{i,j}, \psi_{j,i}$, we have:

Lemma 2.2. The vectors g_i and g_j are decomposed as follows:

\[g_{i|ij} = g_{ij} \otimes \psi_{i,j} \quad \text{and} \quad g_{j|ij} = g_{ij} \otimes \psi_{j,i}. \]

Next, take a point $x \in X_{ij}^2$, and take elements $\sigma_\alpha \in \mathcal{G}_{x, x'}$, $\alpha = i,j$, satisfying the coboundary relation (2), § 1. Then, from Lemma 2.2

\[\sigma_{i|ij} \otimes \psi_{i,j} = \sigma_{j|ij} \otimes \psi_{j,i}. \]

Thus we obviously have:

Lemma 2.3. The elements σ_i and σ_j are decomposed as follows:

\[\sigma_{i|ij} = \sigma_{ij} \otimes \psi_{j,i} \quad \text{and} \quad \sigma_{j|ij} = \sigma_{ij} \otimes \psi_{i,j} \text{ with a unique element} \]

\[\sigma_{ij} \in \mathcal{G}_{ij,p}, \text{ where we set: } \mathcal{G}_{ij} = \mathcal{O}_{ij}[q+1]. \]

Next we introduce the following.

Definition 2.2. (1) We say the 'matrix' $\Psi := (\psi_{i,j})_{i,j \in F_p}$ is the multiplier of \mathcal{G}.

Here we understand that $\psi_{i,i} = \phi(\text{empty set}), i \in F_p$.

The multiplier Ψ is regarded as a boundary value of \mathcal{G} at X^2. In our general frame work, cf. [Sa 1], the notion of the multiplier plays a central role. Theoretically the multiplier Ψ should be taken as the starting point, and the vectors $g_{i,i} \in F_p$ should be regarded as its invariant, cf. [Sa-3]. Next we set $\phi_{i,j} = \psi_{j,i}$, and form a matrix

\[\phi^2 = (\phi_{i,j})_{i,j \in F_p} \text{ with } \phi_{i,i} = 0. \]

The matrix ϕ is essentially a transpose of Ψ. But it is good to regard that the role of ϕ is independent of Ψ.

3. Inductive structure. The purpose here is to give a similar decomposition law to (3) for codimension three and four. First
we discuss it at codimension three. Take a subset $I = (i, j, k)$ of P, with $\# I = 3$. We form a graph by using \sim, cf. § 2.

Type 3: Type 2: Type 1: Type 0

$\sim i \sim j \sim \sim k \sim j \sim k \sim j \sim k$

Clearly, the above exhausts all possible graphs by arranging indices. We use the above normal form. Note that Type 3 and Type 0 (resp. Type 2 and Type 1) are dual in the sense that the later is obtained from the former by replacing ' \sim ' by ' \sim /'. The arguments are done dually. We will concern Type 3 and Type 2.

Now, for each type, the following 3×3-matrices play important roles:

\[
\begin{pmatrix}
 ij & ik & jk \\
 i & -\psi_{i,j} & \psi_{i,k} & 0 \\
 j & \psi_{j,i} & 0 & \psi_{j,k} \\
 k & 0 & \psi_{k,j} & -\psi_{k,i}
\end{pmatrix}
\]

$(\gamma \Psi)_I^* = (\gamma \psi_{j,i}^* \psi_{i,k}^* \psi_{j,k}^* 0 0 -\psi_{j,k}^* \psi_{k,i}^*)$

The matrix $(\delta \Phi^2)_I$ is defined similarly, by changing ψ to φ. The above may be regarded as a coboundary of Ψ and Φ, cf. [Sa-], and the symbol ' δ ' is used. These matrices are regarded, respectively, as G_1-morphism: $(\mathcal{G}_{ij}^* \mathcal{G}_{ik}^* \mathcal{G}_{jk}^*) \to (\mathcal{G}_{ij}^* \mathcal{G}_{jk}^* \mathcal{G}_{k})$ (resp. $(\mathcal{G}_{ij}^* \mathcal{G}_{ik}^* \mathcal{G}_{jk}^*) \to (\mathcal{G}_{ij}^* \mathcal{G}_{jk}^* \mathcal{G}_{k})$). We examine the kernel of these morphisms.

Proposition 3.1. For type 3, no element $\psi_{i,j} \in (\text{resp. } \varphi_{i,j} \in)$, $\alpha \neq \beta \neq 0$. For type 2, $\psi_{j,i} \in$, $\psi_{k,i} \in$ and $\varphi_{i,j} \in$ and $\varphi_{i,k} \in = 0$.

Proof. This is checked combinatorially. For type 3, the indices i, j, k are treated evenly.

$|\psi_{i,j}| = S_{ij}^*$ (resp. $|\varphi_{i,j}| = S_{ij}^*$) and does not contain k.

For type 2,
\[|\psi_{i,j}| = |\varphi_{i,j}| = S_{ij}^{\pm} \quad \text{(resp. } |\psi_{k,i}| = |\varphi_{i,k}| = S_{ik}^{\pm} \text{)}, \]
\[|\psi_{i,j}| = |\varphi_{j,i}| = S_{ij}^{\pm} \quad \text{(resp. } |\psi_{i,k}| = |\varphi_{i,k}| = S_{ik}^{\pm} \text{)}. \]
\[|\psi_{k,j}| = |\varphi_{k,j}| = S_{jk}^{\pm} \quad \text{(resp. } |\psi_{j,k}| = |\varphi_{j,k}| = S_{jk}^{\pm} \text{)} \quad \text{q.e.d.} \]

Proposition 3.2. \(\det(\delta\Psi)_{i} = \det(\delta\Phi)_{i} = 0. \)

Proof. For type 2, this is clear. For type 3, we have:
\[
|\psi_{i,j}| \cup |\psi_{j,k}| \cup |\psi_{k,i}| = S_{ij}^{\pm} U_{jk}^{\pm} U_{ki}^{\pm} = S_{ij}^{\pm} U_{jk}^{\pm} U_{ki}^{\pm} U_{ij}^{\pm} U_{jk}^{\pm} U_{ki}^{\pm} U_{ij}^{\pm}
\]
\[
U_{ij}^{\pm} = |\psi_{i,j}| \cup |\psi_{i,k}| \cup |\psi_{k,i}|.
\]
Note that \(\det(\delta\Phi)_{i} = -\det(\delta\Psi)_{i}. \quad \text{q.e.d.} \)

The following matrices are obtained from \((\delta\Psi)_{i}, \ldots, \) by replacing

\[\psi_{i,j} \text{ by } |\psi_{i,j}|. \text{(When the former = 0, we set the later is 0.)} \]

<table>
<thead>
<tr>
<th>Type 3</th>
<th>ij</th>
<th>ik</th>
<th>jk</th>
</tr>
</thead>
<tbody>
<tr>
<td>i (S_{ij}^{\pm}) (S_{ik}^{\pm}) (S_{jk}^{\pm})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>j (S_{ij}^{\pm}) (S_{ik}^{\pm}) (S_{jk}^{\pm})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k (S_{ik}^{\pm}) (S_{jk}^{\pm}) (S_{jk}^{\pm})</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[(\delta\Psi)_{i} \quad (\delta\Psi)_{i} \quad (\delta\Phi)_{i} \]

For type 3, the corresponding fact to \((\delta\Phi)_{i}\) is obtained by replacing + and -. Next we consider the following set theoretical equation for each \(\alpha \in I \):

\[|\psi_{\alpha,\beta}| \cup S_{\alpha,\beta}, \cup (\Psi) = \psi_{\alpha,\gamma}| \cup S_{\alpha,\gamma}, \cup (\Psi) \quad \text{with } \beta, \gamma \in I - (\alpha). \]

\[|\psi_{\alpha,\beta}| \cup S_{\alpha,\beta}, \cup (\Phi) = \psi_{\alpha,\gamma}| \cup S_{\alpha,\gamma}, \cup (\Phi). \]

where the set \(S_{\alpha,\beta}, (\Psi) \) is a set whose element is in \(F_{\beta} \), see below for the precise meaning. We find \((S_{ij}, (\Psi), S_{ik}(\Psi), S_{jk}(\Psi)) \) satisfying the equation and is minimal concerning the inclusion relation (and similarly for \(\Phi \)). For type 2, we understand that

\[S_{jk}(\Psi) = \infty \text{ and we regard that the equation for i-row holds automatically.} \]

Proposition 3.3. For type 3, take a pair \((\alpha, \beta) \subset I\). Then
\[S_{\alpha \beta, 1}(\Psi) = S_{\alpha \beta, \gamma}^{--} \] and \[S_{\alpha \beta, 1}(\Phi) = S_{\alpha \beta, \gamma}^{++} \] with \((\gamma) = 1 - (\alpha, \beta) \).

For type 2,
\[
S_{i \alpha, 1}(\Psi) = S_{i \alpha \beta}^{--}, \quad (\alpha, \beta) = (j, k) \text{ or } (k, j),
\]
\[
S_{i \alpha, 1}(\Phi) = 2S_{i \alpha \beta}^{--} \cup S_{i \alpha \beta}^{++} = S_{i \alpha \beta}^{--} \cup S_{i \alpha \beta}^{++} \text{ with } (\alpha, \beta) = (j, k) \text{ or } (k, j),
\]
\[
S_{j k, 1}(\Phi) = S_{i j k}^{++} \cup S_{i j k}^{--} = S_{i j k}^{--} - S_{i j k}^{--}.
\]

Here
\[S_{i j k}^{++} \text{ (resp. } S_{i j k}^{--}) = \{ l \in F_p - \{ i, j, k \} : l = i, j, k \text{ (resp. } l = i, j, k) \}. \]

The sets \(S_{i j k}^{--}, S_{i j k}^{++} \) are understood similarly.

Proof. For type 3, let \(S_{\alpha}(\Psi) = \|\psi_{\alpha, \beta} \|^1 \cap \|\psi_{\beta, \gamma} \|^1 \), and we replace \(\|\psi_{\alpha, \beta} \|^1 \) by \(\|\psi_{\alpha, \beta} \|^1 - S_{\alpha}(\Psi) \). The equation is not changed. Then we have \(S_{\alpha \beta, 1}(\Psi) = \|\psi_{\alpha, \beta} \|^1 - S_{\alpha}(\Psi) \cup \|\psi_{\beta, \gamma} \|^1 - S_{\beta}(\Psi) \), cf. Appendix. The case for type 2 is a modification of the above. Q.E.D.

FPII(Aug. 6)

Now we define \(O_1 \)-invertible sheaves as follows:
\[m_{\alpha \beta, 1} = O_1(m_{\alpha \beta, 1}), \text{ with } m_{\alpha \beta, 1} = S_{\alpha \beta, 1}(\Psi) \]
\[n_{\alpha \beta, 1} = O_1(n_{\alpha \beta}), \text{ with } n_{\alpha \beta} = S_{\alpha \beta, 1}(\Phi) \]
where \((\alpha, \beta) \subset 1 \) and \((\gamma) = 1 - (\alpha, \beta) \).

(If \(I \) is of type 2, we understand that \(M_{j k, 1} = 0 \).)

Moreover, we set:
\[G_{\alpha \beta, 1} = O_1(m_{1}) \cong G_{\alpha \beta, 1} \otimes m_{\alpha \beta, 1} \text{ for any } (\alpha, \beta) \subset 1, \]
\[G_{\alpha \beta, 1} = O_1(n_{1}) \cong G_{\alpha \beta, 1} \otimes n_{\alpha \beta, 1} \text{ for any } (\alpha, \beta) \subset 1. \]
(If \(I \) is of type 2, then we omit \((\alpha \beta) = (jk) \) from the first definition.)

That the right hand sides in independent of the choice of indices follow from the definition of \(S_{\alpha \beta, 1}(\Psi), \ldots \), cf. also Appendix. The
explicit form of m_I and n_I are computed from the above equation:

$$m_I = q - #S_{\alpha \beta, I}(\psi) = q - S^{-\psi}_{\alpha \beta, I}(S^{-\psi}_{\alpha \gamma, I} - S^{-\psi}_{\alpha \delta, I}) = S^{-\psi}_{\alpha \beta, I}. $$

$$n_I = (q+1) - S^{++}_{\alpha \beta, I}$$ for type 3

$$n_I = (q+1) - #(S_{\alpha \beta, I} - S_{\alpha \beta, I}) = (q+1) - (2q - #S_{\alpha \beta, I}) = #S_{\alpha \beta, I} - (1-q).$$

Define sections $\psi_{\alpha \beta, I} \in \Gamma(\Omega_{\alpha \beta, I})$ and $\varphi_{\alpha \beta, I} \in \Gamma(\Omega_{\alpha \beta, I})$ as follows:

$$\psi_{\alpha \beta, I} = \frac{1}{\mu} \mu_z \mu$$ and $\varphi_{\alpha \beta, I} = \frac{1}{\nu} \nu_z \nu,$ with $\mu \in S_{\alpha \beta, I}(\psi)$ and $\nu \in S_{\alpha \beta, I}(\varphi).$

(If I is of type 2, then we understand that $\psi_{jk, I} = 0$.)

From the above definition we have:

Lemma 3.4. The morphisms

$$\left(\psi_{ij, I}^{\alpha \psi}, \psi_{jk, I}^{\beta \psi}, \psi_{ik, I}^{\gamma \psi}\right): \mathcal{G}_I \rightarrow \left(\mathcal{G}_{ij, I}^{\alpha \psi}, \mathcal{G}_{ik, I}^{\beta \psi}, \mathcal{G}_{jk, I}^{\gamma \psi}\right)$$

$$\left(\varphi_{ij, I}^{\alpha \varphi}, \varphi_{jk, I}^{\beta \varphi}, \varphi_{ik, I}^{\gamma \varphi}\right): \mathcal{G}_I \rightarrow \left(\mathcal{G}_{ij, I}^{\alpha \varphi}, \mathcal{G}_{ik, I}^{\beta \varphi}, \mathcal{G}_{jk, I}^{\gamma \varphi}\right)$$

gives isomorphism between \mathcal{G}_I and $\text{ker}(\delta \psi)_I,$ (resp. \mathcal{G}_I and $(\delta \psi)_I$).

Decomposition law. Note that we have the following coboundary relation:

$$\theta_{\alpha \beta, I} = \left(\theta_{\alpha \gamma, I}^{\alpha \psi}, \theta_{\beta \gamma, I}^{\beta \psi}\right), \alpha \in I \text{ and } (\beta, \gamma) = I - \alpha,$$

and we have:

$$(\delta \psi)_I \left(\theta_{\alpha \beta, I}, \theta_{\alpha \gamma, I}, \theta_{\beta \gamma, I}\right) = 0.$$

Lemma 3.5. The vectors $g_{\alpha \beta}$ are decomposed as follows:

$$g_{\alpha \beta, I} = g_{\alpha \psi}^{\alpha \beta, I} \text{ for any } (\alpha, \beta) \subset I, \text{ where } g_{\alpha \psi}^{\alpha \beta, I} \text{ is a (unique)}$$

$$\text{element of } \Gamma(\mathcal{G}_I^{\alpha \psi}).$$

Note that, in the case of type 2, $g_{jk, I} = 0.$ In the other cases, $g_{\alpha \beta, I} \neq 0.$

Explicitly, regardless of type 3 or type 2, we have:

$$g_{\alpha \psi}^{\alpha \beta, I} \in \mathcal{G}_I^{\alpha \psi}, \alpha \in I, \text{ satisfying the coboundary relation, } \text{cf. (2), } \S 2.
\((g_\alpha \otimes g_\beta) | \alpha \beta = (g_\beta \otimes g_\beta) | \alpha \beta\) for any \((\alpha, \beta) \in I\).

By the decomposition law at codimension two, we write:

\[\sigma | \alpha \beta = \sigma_{\alpha \beta} \otimes \sigma, \quad \text{with a unique element } \sigma_{\alpha \beta} \in \mathcal{G}_{\alpha \beta}, \quad \text{p}. \]

Thus we see that \(i(\sigma_{ijkl}, \sigma_{ijl}, \sigma_{jkl}, \sigma_{jkl})\) is in the kernel of \((\delta \Phi)_1\).

and, for any \((\alpha, \beta) \in I\).

Lemma 3.5. The elements \(\sigma_{\alpha \beta}\) are decomposed as follows:

\[\sigma_{\alpha \beta} | I = \sigma_{1} \otimes \sigma_{\alpha \beta}, \quad \text{with a unique element } \sigma_{1} \in \mathcal{G}_{1,x}. \]

4. Inductive structure 2. Here we are concerned with the case

of codimension four. The situation is much subtle then the case of
codimension three. We fix a subset \(I = (i, j, k, l)\) of \(F_p\) with \# \(I = 4\).

As in § 3, we first consider the graph formed by \('\sim'\):

Type 6: \(\alpha \sim \beta\) for any \(\alpha \sim \beta\) for any \(i \sim l\)

pair \((\alpha, \beta) \in I\) pair \((\alpha, \beta) \in I\) except one pair, \((i, l)\)

Type 3a:

\(\sim i \sim l\)

\(j \sim \sim k\)

We see easily that the above graphs and their dual (obtained by
replacing \(\sim\) and \(\sim\)) exhaust all graphs with arrangements of indices.

We use the above normal forms. (Type 3b is used for the dual of type

3a, cf. [Sa–]). The following matrices are central subjects in § 4:

\[
\begin{bmatrix}
ijk & ijl & ikl & jkl \\
i & j & i & j \\
\psi_{i,j} & \psi & \psi_{i,j} & \psi \\
i & j & i & j \\
0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

\[
(\delta \Phi)_1 = \begin{bmatrix}
i & j & k & l \\
\psi_{i,j} & \psi & \psi_{i,j} & \psi \\
i & j & k & l \\
0 & 0 & 0 & 0 \\
j & k & j & k \\
0 & 0 & 0 & 0 \\
k & l & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
i & j & k & l \\
\psi_{i,j} & \psi & \psi_{i,j} & \psi \\
i & j & k & l \\
0 & 0 & 0 & 0 \\
j & k & j & k \\
0 & 0 & 0 & 0 \\
k & l & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
i & j & k & l \\
\psi_{i,j} & \psi & \psi_{i,j} & \psi \\
i & j & k & l \\
0 & 0 & 0 & 0 \\
j & k & j & k \\
0 & 0 & 0 & 0 \\
k & l & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{bmatrix}
\]
The matrix \((\delta \Phi)_1\) is defined similarly by changing \(\Psi\) to \(\Phi\).

The behaviour of such matrices are various. The discussion is done according to the type of the graph. We make some preparations.

First we list all coefficients \(\Psi_{\alpha,\beta}\) which vanish on \(X_1\). (Or equivalently \(\gamma \in \Psi_{\alpha,\beta}^\dagger\) with an element \(\gamma \in 1 - (\alpha,\beta)\).)

Proposition 4.1. (i) For type 6, no element \(\Psi_{\alpha,\beta}\) vanishes on \(X_1\).

(ii) For type 5, \(\Psi_{\alpha,\beta}\) with \(\alpha \in (k,l)\) and \(\beta \in (i,j)\), vanish on \(X_1\).

(iii) For type 4b, all \(\Psi_{\alpha,\beta}\) vanish, where \(\alpha \sim \beta\).

(iv) For type 4a, \(\Psi_{\alpha,i}\), \(\alpha = j, k, l\), and \(\Psi_{\beta,l}\), \(\beta = j, k\), vanish.

(v) For type 3c, \(\Psi_{i,l}\), \(\Psi_{j,l}\), \(\Psi_{j,k}\), \(\Psi_{k,l}\), and \(\Psi_{i,j}\), \(\Psi_{l,k}\) vanish.

(vi) For type 3a, \(\Psi_{\alpha,l}\), \(\alpha = i, j, k\), vanish.

Type 5:

<table>
<thead>
<tr>
<th>i</th>
<th>j</th>
<th>k</th>
<th>l</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>j</td>
<td>k</td>
<td>l</td>
</tr>
</tbody>
</table>

Type 4a:

<table>
<thead>
<tr>
<th>i</th>
<th>j</th>
<th>k</th>
<th>l</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>j</td>
<td>k</td>
<td>l</td>
</tr>
</tbody>
</table>

Type 4b:

<table>
<thead>
<tr>
<th>i</th>
<th>j</th>
<th>k</th>
<th>l</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>j</td>
<td>k</td>
<td>l</td>
</tr>
</tbody>
</table>

Type 3a:

<table>
<thead>
<tr>
<th>i</th>
<th>j</th>
<th>k</th>
<th>l</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>j</td>
<td>k</td>
<td>l</td>
</tr>
</tbody>
</table>

Type 3c:

<table>
<thead>
<tr>
<th>i</th>
<th>j</th>
<th>k</th>
<th>l</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>j</td>
<td>k</td>
<td>l</td>
</tr>
</tbody>
</table>

This table indicates all the cases where \(\gamma \in |\Psi_{\alpha,\beta}|\) occur. Also in such a case, we list all elements \(\gamma \in 1 - (\alpha,\beta)\) satisfying the relation. Thus, for type 3a, \((\beta,\gamma) \in |\Psi_{\alpha,\beta}|\) for any permutation \((\alpha,\beta,\gamma)\) of \((j, k, l)\).

Proof. Take elements \(\alpha,\beta\) and \(\gamma \in \dagger\) satisfying \(\gamma \in |\Psi_{\alpha,\beta}|\).

According to whether \(\alpha \sim \beta\) or not, the graph for \((\alpha,\beta,\gamma)\) is as follows:

\[
\begin{array}{ccc}
\alpha & \sim & \beta \\
\gamma & \sim & \gamma
\end{array}
\]
In each case check all \((\alpha, \beta, \gamma)\) satisfying these graphs. q.e.d.

Next we check the coefficients of \((\delta \Psi)\) and \((\delta \Phi)\) which vanish.

Next we examine \((\alpha \beta, \alpha \beta \gamma)\)-coefficients of \((\delta \Psi)\) and \((\delta \Phi)\) which vanish

on \(X\).

Proposition 4.2. The following lists all zero terms of the

\(\psi_{\alpha \beta, \alpha \beta \gamma || 1}\) of the matrix \((\delta \Psi)_{1}\):

(i) No element for type 5, the elements in \(kl\)-row for type 4b,

the elements in \(jl\)- and \(jk\)-rows for type 4a.

(ii) \((jk, jkl)\), \((jl, ijl)\)-and \((kl, ikl)\)-part for type 4a.

\((ij, ijl)\), \((ik, ikl)\)- and \((jk, jkl)\)-parts for type 3a.

(iii) All elements except for the ones in \(il\) and \(jk\)-rows for type 3c.

Proof. By checking the cases.

Type 4b:

}\[\begin{array}{cccc}
ijk & jkl & kli & lij \\
ij & . & . & il \\
jk & . & . & jk \\
kl & . & . & ik \\
il & . & . & jl \\
\end{array} \]

Type 3c:

}\[\begin{array}{cccc}
ijk & ijl & ikj & jkl \\
ij & . & jk & . \\
ij & . & . & ik \\
jl & . & . & jk \\
kl & . & . & . \\
\end{array} \]

Type 4a:

}\[\begin{array}{cccc}
ijk & ijl & ikj & jkl \\
ij & . & jk & . \\
ij & . & . & ik \\
jl & . & . & jk \\
kl & . & . & . \\
\end{array} \]

Type 3a:

}\[\begin{array}{cccc}
ijk & ijl & ikj & jkl \\
ij & . & jk & . \\
ij & . & . & ik \\
jl & . & . & jk \\
kl & . & . & . \\
\end{array} \]

(For type 5, \(\psi_{jk, \alpha kl} = 0, \alpha = i, j, k, i, j,\) Also, for type 4b, \(\psi_{ik, \alpha ik}, \alpha = j, l,\)

and \(\psi_{jl, \beta jk} = 0, \beta = i, k.\)

Proof. Take \((\alpha, \beta, \gamma) \subset I\). Assume that the graph of them is of type 3.

Then \(\delta \alpha, \beta, \gamma \in I\) is contained in \(\psi_{\alpha \beta, \alpha \beta \gamma || 1} = S^{--+}_{1 \delta \gamma, \delta \alpha \beta}

if and only if \(\alpha, \beta, \gamma\) is a permutation of \((\delta jk)\).

\((\alpha \beta)\) is a permutation of \((\delta \gamma)\).

This case occurs only for Type 4a: \(\delta \sim l, \gamma = i\) and \((\alpha \beta) = (jk)\).
If \((\alpha, \beta, \gamma)\) is of type 2: \(\beta \sim \alpha \sim \gamma\), then:

\(\psi_{\beta \gamma, \alpha \beta \gamma} = 0\). This happens for type 5, type 4b, type 4a and type 3c.

Moreover, \(\delta \in \{\psi_{\alpha \beta, \alpha \beta \gamma}\} = S_{\alpha \beta \gamma}^{+++}\) if and only if \(\alpha \sim \beta \sim \gamma\). (This happens for only type 3c.)

Thirdly assume that \((\alpha, \beta, \gamma)\) is of type 1. \(\beta \sim \gamma\). Then

\(\psi_{\beta \gamma, \alpha \beta \gamma} = 0\). (This happens for type 4a, type 3a and type 3c.)

Moreover, \(\delta \in \{\psi_{\alpha \beta, \alpha \beta \gamma}\} = S_{\alpha \beta \gamma}^{+++}\) if and only if \(\alpha \sim \beta \sim \gamma\). (This occurs for type 3c.)

The proposition is shown by checking (i) - (v). q.e.d.

Proposition 4.3. The rank of \((\delta \psi)_{\alpha \beta \gamma} I\) \(\leq 3\). The rank = 2 if and only if 1 is of type 3c.

Proof. The last part is clear. The first part is checked using arguments of Appendix. Except type 4b, it suffices to check the vanishing of the determinant of \(3\times 3\)-matrix(\(\alpha\)-matrix), cf. Appendix.

Such a matrix is of the similar form in § 3, and the proof itself is reduced to the one in § 3. For type 4b, it suffices to check:

\[S_{ijkl}^{+++} \cup S_{jkl}^{+++} \cup S_{kli}^{+++} \cup S_{lij}^{+++} = S_{ijkl}^{+++} \cup S_{jkl}^{+++} \cup S_{kli}^{+++} \cup S_{lij}^{+++} \]

since \(|\psi_{ijkl}| = S_{ijkl}^{+++}\). The check of this is an exercise. q.e.d.

As in § 3 we regard \((\delta \psi)_{\alpha \beta \gamma} I\) as an \(O_{I}\)-morphism:

\[(\psi_{\alpha \beta \gamma, \alpha \beta \gamma} I) \to (\psi_{\alpha \beta \gamma, \alpha \beta \gamma} I) \]

and we analyze the kernel of this morphism. The case of type 3c is dealt independently. We first discuss the other cases. As in § 3, we define \(S_{\alpha \beta \gamma, \alpha \beta \gamma} I(\psi)\) to be the subset(with multiplicity) of \(F_{p}\), which is characterized to be the smallest one among those satisfying
\[| \psi_{\alpha \delta, \alpha \delta} | \cup S_{\alpha \delta, \gamma, \delta} | (\Psi) = | \psi_{\alpha \delta, \alpha \delta} | \cup S_{\alpha \delta} (\Psi) \text{ for any } \\
\alpha, \beta \in I, \text{ with } (\gamma, \delta) = 1 - (\alpha, \beta). \]

(if the $\alpha \delta$-row = 0, then we understand that this holds automatically.

For type 4a and type 3a we understand that

\[S_{ijkl} (\Psi) = \ast \text{ and } S_{ijk} (\Psi) = \ast. \]

For type 5 and type 5 we consider similar equations for the

ij- ik- and il-rows, and it is seen that the solution for such rows

is also the solution for the original $(\delta \Psi)_1$. For type 4a and type

3a, the problem is reduced to the type treated in § 3. The case of

type 4b should be treated newly. The following is checked easily by

the procedure as above:

Proposition 4.4. (i) For type 6, type 5 and type 4b,

\[S_{\alpha \delta \gamma}, l (\Psi) = S_{\alpha \delta \gamma}^{---} \text{ for any permutation } (\alpha, \beta, \gamma, \delta) \text{ of } (i, j, k, l). \]

(ii) For type 4a,

\[S_{\alpha \delta \gamma}, l (\Psi) = S_{\alpha \delta \gamma}^{-+++} \text{ if } (\alpha \delta \gamma) \neq (jkl). \]

(iii) For type 3a,

\[S_{\alpha \delta \gamma}, l = S_{\alpha \delta \gamma}^{+++} \text{ if } (\alpha \delta \gamma) \neq (ijk). \]

Similarly to § 3 we define Ω_I-invertible sheaves as follows:

\[\mathcal{M}_{\alpha \delta \gamma}, l = \Omega_I (m_{\alpha \delta \gamma}, l) \text{ with } m_{\alpha \delta \gamma}, l = \# S_{\alpha \delta \gamma}, l (\Psi) \]

for any $(\alpha \delta \gamma) \in I$, except the cases: $(\alpha \delta \gamma) = (jkl)$ for type 4a

and $(\alpha \delta \gamma) = (ijk)$ for type 3a.

In these two exceptional cases

\[\mathcal{M}_{\alpha \delta \gamma}, l = 0. \text{ Also we set:} \]

\[\mathcal{G}_{\alpha \delta \gamma}, l = \mathcal{G}_{\alpha \delta \gamma}, l \text{ for any } (\alpha \delta \gamma) \in I \text{ such that } \mathcal{M}_{\alpha \delta \gamma}, l \neq 0. \]

Moreover, define an element $\psi_{\alpha \delta \gamma}, l \in \Gamma (\mathcal{M}_{\alpha \delta \gamma}, l)$ by

\[\psi_{\alpha \delta \gamma}, l = \mu \mu \text{ with } \mu \in S_{\alpha \delta \gamma}, l (\Psi). \]

(In the exceptional two cases we set $\psi_{\alpha \delta \gamma}, l = 0.$)
FPIII (Aug/92):

As in the case of § 3 we have:

Lemma 4.5. The vector \(g_{\alpha \delta \gamma} \) is decomposed as follows:

\[
\| g_{\alpha \delta \gamma} \| = g_{I} \Theta \| \alpha \delta \gamma I \|
\]

with a unique element \(g_{I} \in \Gamma(\mathcal{I}) \).

(In the exceptional two cases, \(\| g_{\alpha \delta \gamma} \| = 0 \).)

The element \(g_{I} \) is explicitly

\[
\begin{align*}
g_{I} &= (g_{I,0}) \quad \text{where } \| g_{I,0} \| = S_{ijkl}^{****} \quad \text{for type } 6, 5, 4b, \text{and } 4a. \\
g_{I} &= (0, g_{I}) \quad \text{where } \| g_{I} \| = S_{ijkl}^{****}
\end{align*}
\]

Here we set:

\[
S_{ijkl}^{****} = (m \in F_{p} - 1 : m \sim \alpha \text{ for any } \alpha \in I)
\]

The sets \(F_{ijkl}^{****} \) are defined similarly.

In the case of type 3c, the kernel of \((\delta \Psi)_{I} \) is of rank two.

It is written as \(\text{ker}_{I} \oplus \text{ker}_{2} \) where \(\text{ker}_{1} \) and \(\text{ker}_{2} \) are the submodules of \((\mathcal{G}_{ijkl}) \otimes \mathcal{G}_{ijkl} \) and \((\mathcal{G}_{ijkl}) \otimes \mathcal{G}_{ijkl} \). We define \(\mathcal{O}_{I} \)-invertible sheaves as follows:

\[
\mathcal{O}_{I}(m_{\alpha \delta \gamma}, I) := \mathcal{O}_{I}(m_{\alpha \delta \gamma}, I), \quad \text{where } m_{\alpha \delta \gamma}, I = \# S_{ijkl}^{****}
\]

Define two \(\mathcal{O}_{I} \)-invertible sheaves:

\[
\begin{align*}
\mathcal{G}_{I}(1) &= \mathcal{G}_{ijkl} \otimes \mathcal{G}_{ijkl}^{*} \\
\mathcal{G}_{I}(2) &= \mathcal{G}_{ijkl} \otimes \mathcal{G}_{ijkl}^{*}
\end{align*}
\]

Also define an element \(\Psi_{\alpha \delta \gamma}, I \in \Gamma(\mathcal{O}_{I}(\alpha \delta \gamma), I) \) in a similar manner to the previous cases.

Lemma 4.6. Setting \(g_{I}(1) = t(g_{I,0}) \) and \(g_{I}(2) = t(0, g_{I}) \), with

\[
\| g_{I}(1) \| = S_{I}^{*} \quad \text{and } \| g_{I}(2) \| = S_{I}^{*}
\]

the vectors \(g_{ijkl} \) are decomposed as follows:

\[
\begin{align*}
g_{ijkl} &= g_{I}(1) \Theta_{ijkl}, I \quad \text{and } \quad g_{ijkl} = g_{I}(1) \Theta_{ijkl}, I \\
g_{ijkl} &= g_{I}(2) \Theta_{ijkl}, I \quad \text{and } \quad g_{ijkl} = g_{I}(2) \Theta_{ijkl}, I
\end{align*}
\]
Inductive structure for Φ The arguments for Φ are more involved. This seems to stem because $|\psi_{\alpha\delta,\alpha\delta\gamma}|$ is of more complicated form than $|\psi_{\alpha\delta,\alpha\delta\gamma}|$ if $(\alpha\delta\gamma)$ is of type 2 or type 1.

Here we only state the results. (The present proof requires a refinement.) First, a very few terms of $(\delta\Phi)_{1} = 0$. They are:

- ij-row for type 5, and ik- and jl- rows for type 4b.
- il-row for type 4a.

Moreover, in the case of type 3c, all rows except il- and jk-rows.

(In these cases, the treatments of $(\delta\Phi)_{1}$ are done parallely to those of $(\delta\psi)_{1}$ except the complication mentioned just above. For type 6, the argument is completely dual.) In any case one can check:

The rank of $(\delta\Phi)_{1}$ \leq 3 and = 2 only for type 3c.

One can define $S_{\alpha\delta\gamma,1}(\Phi)$ to be the minimal solution of the identity:

$|\psi_{\alpha\delta,\alpha\delta\gamma}| \cup S_{\alpha\delta\gamma,1} = |\psi_{\alpha\delta,\alpha\delta\gamma}| \cup S_{\alpha\delta\delta,1}$ for any $(\alpha,\beta) \subset 1$,

where $\alpha\delta$-row $\neq 0$. (Here $(\gamma, \delta) = 1 - (\alpha, \delta)$.)

We set (except the case of type 3c):

$\alpha\delta\gamma,1 \simeq 0_{1}(n_{\alpha\delta\gamma,1})$ with $n_{\alpha\delta\gamma,1} = S_{\alpha\delta\gamma,1}(\Phi)$

$S_{1} \simeq S_{\alpha\delta\alpha,1} \cong \oplus S_{\alpha\delta\gamma,1}$ for any $(\alpha\delta\gamma) \subset 1$ (and independent of the choice of $(\alpha\delta\gamma)$).

Take elements $\sigma_{\alpha} \in \mathcal{S}_{\alpha,\chi}$, $\alpha \in 1$ and $x \in X_{1}$. Then, by § 2 and § 3, we have (unique) elements $\sigma_{\alpha\beta} \in \mathcal{S}_{\alpha\beta,\chi}$ and $\sigma_{\alpha\delta\gamma} \in \mathcal{S}_{\alpha\delta\gamma,\chi}$ such that

$\sigma_{\alpha|\beta} = \sigma_{\alpha\beta} \sigma_{\alpha,\beta} \quad$ and $\quad \sigma_{\alpha\delta} = \sigma_{\alpha\delta\gamma} \sigma_{\alpha\delta,\alpha\delta\gamma}$.

Thus $\Theta_{\alpha\delta\gamma,\alpha\delta\gamma,1}$ is in the kernel of $(\delta\Phi)_{1}$. Thus we have:

Lemma 4.6. The elements $\sigma_{\alpha\delta\gamma}$ is decomposed as follows:

$\sigma_{\alpha\delta\gamma,1} = \sigma_{1} \Theta_{\alpha\delta\gamma,1}$ with a unique element $\sigma_{1} \in S_{1,\chi}$.

The explicit form of $S_{\alpha\delta\gamma,1}(\Phi)$ is as follows:
Type 6: \(S_{\alpha \beta \gamma, l}(\Phi) = S_{\alpha \beta \gamma \delta}^{+++} \).

In the other cases we write only the typical terms:

Type 5: \(S_{i j k, l}(\Phi) = 2S_{k l}^{++} - S_{i j k l}^{+++} \), \(S_{i k l, j}(\Phi) = S_{i j}^{++} - S_{i j k l}^{++} \)

Type 4b: \(S_{i j k, l}(\Phi) = S_{i j l}^{-} \cup S_{j k l}^{-} \cup S_{i j k l}^{+++} = S_{i j l}^{-} \cup S_{i j k l}^{-} \)

Type 4a: \(S_{i j k, l}(\Phi) = 2(S_{i j l}^{-} - S_{i j k l}^{+++}) \cup (S_{i j l}^{++} - S_{i j}^{-}) \)

\(S_{i j l, i}(\Phi) = 2(S_{i j k l}^{-} \cup S_{i j k l}^{+++}) \cup S_{i j k l}^{+++} \)

\(S_{i j k l, i}(\Phi) = S_{i j l}^{-} \cup S_{i j k l}^{-} \)

Type 3a: \(S_{i j k, l}(\Phi) = S_{i j}^{++} - S_{i j k}^{++} \)

\(S_{i j l, i}(\Phi) = 2S_{i j k l}^{++} \cup S_{i j k l}^{+++} \)

In the case of type 3c, the kernel of \((\delta \Phi)^1\) is of rank two. We form \(m_{\alpha \beta \gamma, l}(\Phi) \) by

\[m_{\alpha \beta \gamma, l}(\Phi) = 0, \quad m_{\alpha \beta \gamma, l}(\Phi) \text{ with } m_{\alpha \beta \gamma, l}(\Phi) = \# S_{\alpha \beta \gamma, l}(\Phi). \]

Here \(S_{\alpha \beta \gamma, l}(\Phi) \) are the minimal solution of

\[|\phi_{i j l, i j k l} | \cup S_{i j l, i}(\Phi) = |\phi_{i j l, i k l} | \cup S_{i k l}(\Phi) \]

\[|\phi_{j k, i j k l} | \cup S_{i j k, l}(\Phi) = |\phi_{j k, i k l} | \cup S_{i k l}(\Phi). \]

We set:

\[G_{1}(1) = G_{i j l, i} \quad G_{i j k, l} = G_{i j k l, i} \quad G_{i j k l, i} \]

\[G_{1}(2) = G_{i j k, l} \quad G_{i j k l, i} = G_{i j l, i} \quad G_{i j l, i} \]

Lemma 4.7. The elements \(\sigma_{\alpha \beta \gamma} \) are decomposed as follows:

\[\sigma_{i \alpha l, i} = \sigma_{1}(1)^{- \alpha}, \quad \sigma_{i j l, i} = \sigma_{1}(2)^{- \beta}, \quad \alpha = j, k. \]

\[\sigma_{i j k, l} = \sigma_{1}(2)^{- \beta}, \quad \beta = i, l. \]

with unique elements \(\sigma_{i}(\alpha) \in G_{i}(\alpha) \), \(\alpha = 1, 2. \)

The explicit form of \(S_{\alpha \beta \gamma, l}(\Phi) \) is:

\[S_{i j l, i}(\Phi) = 2S_{i j k l}^{++} \cup S_{i j k l}^{+++} \cup S_{i j k l}^{+++} \]

\[S_{i k l}(\Phi) = 2S_{i j k l}^{++} \cup S_{i j k l}^{+++} \cup S_{i j k l}^{+++} \]

and

\[S_{i j k, l}(\Phi) = 2S_{i j k l}^{++} \cup S_{i j k l}^{+++} \cup S_{i j k l}^{+++} \]

\[S_{i j l, i}(\Phi) = 2S_{i j k l}^{++} \cup S_{i j k l}^{+++} \cup S_{i j k l}^{+++} \]
§ 5. Local freeness condition. Here we discuss the local
freeness of \mathcal{E} up to codimension four. The decomposition laws in the
previous sections are fundamental for this purpose.

First we give a system of generators of \mathcal{E}_x, $x \in X^2$. First assume
that $x \in X^2_{ij}$ with $i \neq j \in I$. Take elements $\sigma_\alpha \in \mathcal{G}_{\alpha,p}$, $\alpha = i,j$
satisfying $\sigma_i \hat{\otimes} \mu_i \mid_{ij} = \sigma_j \hat{\otimes} \mu_j \mid_{ij}$, cf. (2), § 1. By Lemma 2.3, the
elements μ_i and μ_j are decomposed as follows:

\[(1.1) \quad \mu_i \mid_{ij} = \mu_i \hat{\otimes} \varphi_{i,j} \quad \text{and} \quad \mu_j \mid_{ij} = \mu_j \hat{\otimes} \varphi_{j,i} \quad \text{with a (unique) } \mu_{ij} \in \mathcal{G}_{ij,p}
\]

This step is reversed. Assume that $x \in X^2 := X^2 - X^3$. Then take an
arbitrary element $\mu_{ij} \in \mathcal{G}_{ij,x}$. We extend $\mu_{ij} \hat{\otimes} \varphi_{i,j}$ and $\mu_{ij} \hat{\otimes} \varphi_{j,i}$ to
$\mathcal{G}_{i,x}$ and $\mathcal{G}_{j,x}$, and we have elements $\mu_\alpha \in \mathcal{G}_{\alpha,x}$, $\alpha = i,j$, satisfying

\[(1.2) \quad \text{the value of } \mu_{ij} \text{ at } x \neq 0.
\]

We have elements μ_α, $\alpha = i,j$, by the above procedure. We then have
an element $g(ij) \in \mathcal{E}_x$ satisfying $g(ij) \mid_\alpha = g_\alpha \hat{\otimes} \mu_\alpha$, $\alpha = i,j$, cf. (1), § 1.

Moreover, take a frame $\mathcal{O}(1)_x$ and elements $x_\alpha \in \mathcal{O}_x$, $\alpha = 1,2$,
such that $Z(x_\alpha) = X^1_\alpha$. Moreover, we extend $g_\alpha \in \mathcal{G}^{\otimes 2}_{\alpha,x} (= \mathcal{O}(2q) \hat{\otimes} X^2)$ to
$\mathcal{O}(2q)_x$, and write the extension also as g_α, x. Setting $g(\alpha) =
\begin{cases}
g_\alpha \hat{\otimes} \mathcal{O}(q+1) & \text{we see that} \\
x_\beta g(\alpha) \in \mathcal{E}_x, \text{ with } (\alpha, \beta) \neq (i,j) \text{ or } (j,i).
\end{cases}$

Furthermore, let e^1 and e^2 denote $t(v_\nu,0)$ and $t(0,v_\nu)$ with $\nu \in F_p$. These elements are in $\Gamma(\mathcal{E})$.

Lemma 5.1. The \mathcal{O}_x-module \mathcal{E}_p is generated by

\[(1.3) \quad e^1, e^2, x_ig(i), x_jg(i), g(ij).
\]
Proof. Take an element $\xi \in \mathcal{E}_x$. Then we have elements $\mu_\alpha^i \in \mathcal{E}_x$, $\alpha = i,j$, $\mu^i_j \in \mathcal{E}_{ij,x}$ satisfying the decomposition law $\xi|_\alpha = g_\alpha x^\alpha \mu^i_\alpha$ and $\mu^i_j|_{ij} = \omega_{ij}^\alpha, \beta$. One can write $\mu^i_j \equiv c_{ij} \mu^i_j$ with an element $c_{ij} \in \mathcal{E}_{ij,p}$ and extend c_{ij} to \mathcal{O}_x. Using 'cij' to the extension, we set $\xi' = \xi - c_{ij} g(ij)$. Then $\xi'|_{ij} = 0$. Letting μ''_α be the 'decomposing element' for ξ', we see that $\mu''_\alpha \equiv 0(X_{ij,x}'^\alpha)$. Thus $\xi'|_{ij} \equiv c_{ij} g(ij)$ with an element $c_{ij} \in \mathcal{O}_x$, and $\xi' - (c_{ij} g(i) + c_{ij} g(j)) \equiv 0(X_{ij,x}'^1)$. q.e.d.

Next take a subset $J = (i,j,k) \subseteq F_p$ with $J = 3$ and assume that $x \in X_{ij}^3$. Take elements $\tau_\alpha \in \mathcal{E}_x$, $\tau_\alpha \in J$, satisfying (2.1): $(g_\alpha \tau_\alpha)|_{\alpha \beta} = (g_\beta \tau_\beta)|_{\alpha \beta}$ for any $(\alpha, \beta) \subseteq J$. By Lemma 2.3 we have (unique) elements $\tau_\alpha \in \mathcal{E}_{\alpha \beta,x}$. By Lemma 3.2 we have a (unique) element $\tau_\alpha \in \mathcal{E}_{\alpha \beta,x}$. The following series of decomposition holds:

(2.1) $\tau_\alpha|_{\alpha \beta} = \tau_\alpha \tau_\alpha \tau_\alpha \tau_\alpha \tau_\alpha$, and $\tau_\alpha|_{\alpha \beta} = \tau_\alpha \tau_\alpha \tau_\alpha \tau_\alpha \tau_\alpha$, for any $(\alpha, \beta) \subseteq J$.

Assume that $x \in X_{ij}^3 = X_{ij}^3 - X_{ij}^4$. The step (2.1) is reversed. Take an element $\tau_\alpha \in \mathcal{E}_{\alpha \beta, x}$ arbitrarily. By extending $\tau_\alpha \tau_\alpha \tau_\alpha \tau_\alpha \tau_\alpha$ to $\mathcal{E}_{\alpha \beta, J}$ we have elements $\tau_\alpha \tau_\alpha \tau_\alpha \tau_\alpha \tau_\alpha$ satisfying the second relation in (2.1). Next, for each $\alpha \in J$,

(2.2) $(\tau_\alpha \tau_\alpha \tau_\alpha \tau_\alpha \tau_\alpha)|_{\alpha \beta} = (\tau_\alpha \tau_\alpha \tau_\alpha \tau_\alpha \tau_\alpha)|_{\alpha \beta}$, and this is extended to an element $\tau_\alpha \in \mathcal{E}_{\alpha \beta, x}$. Now assume that

(2.3) the value of τ_α at $x \neq 0$.

We form an element $g(J) \in \mathcal{E}_x$ satisfying $g(J)|_{\alpha} = g_\alpha x^\alpha \tau_\alpha$. Moreover, for each $(\alpha, \beta) \subseteq J$ we apply the previous procedure and we have an element $g(\alpha \beta)$. Also we have an element $g(\alpha)$, $\alpha \in J$. Note that

(2.4) $x_\gamma g(\alpha \beta)$, $\gamma \in I - (\alpha, \beta)$, and $x_\beta x_\gamma g(\alpha)$, $\beta, \gamma \in J - (\alpha)$, $\in \mathcal{E}_x$.

Lemma 5.2. The \mathcal{O}_x-module \mathcal{E}_x is generated by

(2.5) $g^1, g^2, x_\gamma g(\alpha \beta), x_\beta x_\gamma g(\alpha) \text{ and } g(1)$.
Here (α, β, γ) runs through a permutation of (i, j, k).

The proof of this lemma is similar to Lemma 5.1.

Thirdly, take a subset $I = (i, j, k, l) \subseteq F_p$ and assume that $x \in X$.

Take elements $\sigma_{\alpha} \in G_{\alpha, p}$, $\alpha \in I$, satisfying (2), § 1: $(g_{\alpha} \otimes \sigma_{\alpha})|_{\alpha \delta} = (g_{\delta} \otimes \sigma_{\delta})|_{\alpha \delta}$ for any pair $(\alpha, \delta) \subseteq I$. By Lemma 2.3, Lemma 3.5 and Lemma 4.6, we have (unique) elements $\sigma_{\alpha \delta} \in G_{\alpha \delta, X}$, $\sigma_{\alpha \delta, y} \in G_{\alpha \delta, y, X}$ and $\sigma_{\delta, x} \in G_{\delta, x, X}$ satisfying the following series of decomposition laws:

\[
(3.1) \quad \sigma_{\alpha|\alpha \delta} = \sigma_{\alpha \delta} \otimes \sigma_{\alpha, y}, \quad \sigma_{\alpha \delta|\alpha \delta} = \sigma_{\alpha \delta, y} \otimes \sigma_{\alpha \delta, y}, I \quad \text{and} \quad \sigma_{\alpha \delta, y|\alpha \delta} = \sigma_{\delta, y} \otimes \sigma_{\delta, y}, I
\]

(for any permutation $(\alpha, \beta, \gamma, \delta)$ of (i, j, k, l)).

Remark 5.3. When I is of type 3c, the last step should be replaced as:

\[
(3.2) \quad \sigma_{i j l} = \sigma_{i} \otimes \sigma_{j} \otimes \sigma_{l}, \alpha = i, j, k, \text{and} \quad \sigma_{j k l} = \sigma_{j} \otimes \sigma_{k} \otimes \sigma_{l}, I, j, k, l.
\]

Assume that $x \in \bar{X}_1 := X^4 - X^5$. The step is conversed. Namely, taking an element $\sigma_{i} \in G_{i, x}$ arbitrarily, we get $\sigma_{\alpha \beta \gamma}$, $\sigma_{\alpha \beta}$ and σ_{α} satisfying (3.2). Assume that

\[
(3.3) \quad \text{the value of } \sigma_{\alpha} \text{ at } x \neq 0.
\]

Then we form an element $g(I) \in G_x$ satisfying $g(I)|_x = \sigma_{\alpha} \otimes \sigma_{\alpha}$ for any $\alpha \in I$. As before we form elements $g(\alpha \beta \gamma)$, $g(\alpha \beta)$ and $g(\alpha)$.

Lemma 5.4. If I is of not type 3c, then G_x is generated by

\[
(3.4) \quad e_1, e_2, x_{\beta \gamma \delta} \delta(\alpha), x_{\gamma \delta} \delta(\alpha \beta), x_{\delta} \delta(\alpha \beta \gamma) \text{ and } g(I)
\]

where $(\alpha, \beta, \gamma, \delta)$ is a permutation of (i, j, k, l) and we write $x_{\alpha \beta \gamma} = x_{\alpha} x_{\beta} x_{\gamma}$ and $x_{\gamma \delta} = x_{\gamma} x_{\delta}$.

The proof is similar to the previous ones.

Remark 5.5. For type 3c, we have two vectors $g(1:1)$ and $g(1:2)$ at codimension four level.

Local freeness condition. Take a point $x \in X^1$.
Proposition 5.5. (i) Take two elements \(\xi_1 \) and \(\xi_2 \in \mathcal{E}_X(\mathbb{C}^2) \).

Then
\[
\det(\xi_1 \wedge \xi_2) = y \cdot u, \text{ where } y \text{ and } u \text{ are elements of } \mathcal{O}_X \text{ and } y \text{ satisfies: } \mathcal{Z}(y) = X^1.
\]

(ii) \(\mathcal{E}_X \) is \(\mathcal{O}_X \)-free if and only if there are elements \(\xi_1 \) and \(\xi_2 \) of \(\mathcal{E}_X \) such that
\[
(1/y)\det(\xi_1 \wedge \xi_1) \text{ is a unit } \in \mathcal{O}_X.
\]

Proof. First note that at each point of \(X^1 \setminus X^2 \), two elements \((e^1, g(i)) \) or \((e^2, g(i)) \) forms a frame of \(\mathcal{E} \). Obviously,
\[
\det(e^1 g(i)) \text{ and } \det(e^2 g(i)) \text{ satisfy the condition in (ii)}.
\]

Since \(\xi_1 \) and \(\xi_2 \) are linear combination of \((e^1, g(i)) \), \(\det(\xi_1 \wedge \xi_2) = 0(X^1_{i,j} - X^2_{i,j}) \). Thus we have (i). Concerning (ii), we remark
\[
\mathcal{E} = i^*(\mathcal{E}_{X^2}) \text{ with the inclusion } i:(X-X^2)_X \to X.
\]

Thus \(\mathcal{E} \) is locally free if and only if there are elements \(\xi_1, \xi_2 \), which spans \(\mathcal{E} \) on \((X-X^2)_X \). This is equivalent to the condition in (ii).

q.e.d.

Now take a point \(x \in X^2_{i,j} \). Then according to whether \(i \sim j \) or not, we have:
\[
\det(g(ij) \wedge e^2) = y(\text{the first component of } g(ij)) \text{ or }
\det(g(ij) \wedge e^1) = y(\text{the second component of } g(ij))
\]

On the other hand
\[
g(ij)|_{ij} = g_{ij} \otimes (\psi_{i,j} \otimes \psi_{j,i}) \otimes \sigma_{ij} \text{ and } g_{ij} = t(g_{ij}, 0) \text{ or } t(0, g_{ij}),
\]

and \(|g_{ij}| = S_{ij}^- \text{ or } S_{ij}^+ \).

Lemma 5.6. \(\mathcal{E} \) is locally free at \(x \), and \(g(ij), e^2 \) or \(g(ij), e^1 \) form a frame at \(x \).

Next take a subset \(J = (i, j, k) \subset \mathbb{F}_p \) and take a point \(x \in \cdot X_{ijk} \).
Here we consider the case where J is of type 3 or type 2. In the
case of type 0 and type 1 is treated dually (by changing $+$ and $-$ and
also changing the first row and the second row of the vectors in
question.) First note that

Lemma 5.7. \mathcal{E} is locally free at x. According to whether I is of
type 3 or type 2, $(g(J), e^2)$ (resp. $(g(J), g(i))$) form a frame of \mathcal{E} at x.

Proof. First, in the case of type 3, we restrict $(g(J), (z_{ij})^{-1} e^2)$ on
X^4_x:

(*) \begin{align*}
(g(J), (z_{ij})^{-1} e^2) |_J &= (g_J, \kappa(J) \sigma_J, t(0, \nu \in F_{\mathbb{P}}^- - (i, j))), \\
g_J &= t(g_J, 0) \text{ with } |g_J| = S^{-} \text{ (where } S^{-}) \text{ and} \\
\kappa(J) &= \psi_{\alpha, J} \varphi_{\alpha, J} \text{ for any } \alpha, \text{ where } \psi_{\alpha, J} = \psi_{\alpha, J}, \theta_{\alpha, J} \text{ and} \\
\varphi_{\alpha, J} &= \theta_{\alpha, J}^{\beta} \varphi_{\alpha, J}, J, \beta \neq \alpha \in J.
\end{align*}

(The elements $\psi_{\alpha, J}, \varphi_{\alpha, J}$ and $\kappa(J)$ are well defined.) Note that

$|\psi_{\alpha, J}| = S^{-} - S^{-}_J$ and $|\varphi_{\alpha, J}| = S^{-}_J - S^{-}_J - (j, k)$, and

$|\kappa(J)| = F_{\mathbb{P}}^- - (i, j, k) - (S^{-}_J \cup S^{-}_J)$.

Thus the determinant of $(\ast) \neq 0$. Next we restrict $(g(J), g(i))$ on X^4_{jk}:

\begin{align*}
g(J) |_{jk} &= g_{jk} \psi_j, k_j, k, t_{jk}, g(i) |_{jk} = g_{jk} \psi_j, i, i.
\end{align*}

Thus

\begin{align*}
\det(g(J) |_{jk} g(i)) &= -(g_{jk}, 2g_{jk})(\psi_j, i, \psi_j, \psi_j, i, i).
\end{align*}

where $g_{jk, 2}$ is the second component of g_{jk} and $|g_{jk, 2}| = S^{-}_{jk}$.

Thus the above determinant is of the form $x_i x(\text{unit})$. q.e.d.

By the above lemma we have:

\mathcal{E} is locally free over $(X - X^4)$.

Now we consider the case of codimension four. Take a subset $I =
\{i, j, k, l\}$ of $F_{\mathbb{P}}$ with $\# I = 4$ and a point $x \in X^4 \subseteq X^4_x = X^4 - X^5$.

Theorem 5.8. Except the case of type 4b, \mathcal{E} is locally free at x.
the following two vectors form a frame at \(x \in X \).

\((g(1), e_2)\) for type 6, \((g(1), x_{kl} g(1l))\) for type 5,
\((g(1), x_{jk} g(1l))\) for type 4a, \((g(1), x_{ijk} g(i))\) for type 3a,
\((g(1), g(1)):\) for type 3c.

\textit{Proof.} The case of type 6 and type 3a are treated similarly to Lemma 5.7. We restrict \(g(1) \) on \(X^4 \) and \(g(1), g(l) \) on \(X^2 \):

\[g(1)|_I = g_l \kappa(I) \sigma_I, \quad \text{where} \quad \kappa(I) = \psi_{\alpha, I} \xi_{\alpha, I} \quad \text{for any} \quad \alpha \in I, \quad \text{with} \]

\[\psi_{\alpha, I} = \psi_{\alpha, \beta} \alpha \beta, \alpha \delta \gamma \alpha \gamma, I \quad \text{and} \quad \xi_{\alpha, I} = \xi_{\alpha, \beta} \alpha \beta, \alpha \delta \gamma \alpha \delta \gamma, I. \]

(These elements are well defined.) As before

\[|\psi_{\alpha, I}| = S_\alpha^- - S_{\alpha}^I (=S_{\alpha}^{---}), \quad |\xi_{\alpha, I}| = S_\alpha^+ - S_{\alpha}^I (=S_{\alpha}^{+++}) - (\beta, \gamma, \delta), \]

\[\alpha \nu \varphi \kappa(I) = F_p - (i, j, k, l) - (S_{\alpha}^- \cup S_{\alpha}^I) . \]

\((g(1), g(l))|_{ijk} = (g_{ijk}^\kappa(ijk) \sigma_{ijk}, g_{ijk}^\psi_{ijk} I) \)

Note that \(g_{ijk} = t(g_{ijk}, 0) \) with \(|g_{ijk}| = l \) and \(g_l = (0, g_I) \) with \(|g_I| = S_i^+ \). Moreover, \(|\kappa(ijk)| = F_p - (i, j, k) \cup S_{i,j,k}^{---} \cup S_{i,j,k}^{+++} \) \(l \), and

\[|\psi_{i, I}| = S_i^- - S_{i,j,k}^{---} \quad l, \quad \text{and we have the assertion for the above two cases. Thirdly consider the case of type 5, and we restrict} \]

\((g(1), g(ij)) \) to \(X^2_{kl} \):

\((g(1), g(ij))|_{kl} = (g_{kl} \psi_{kl}, l^{\psi_{kl}}, k^{\sigma_{kl}} \xi_{ij} \psi_{ij}, i^{\mu_{ij}} \), where

\[g_{kl} = t(0, g_{kl}) \] with \(|g_{kl}| = S_{kl}^{++} \) \(i, j \), and \(g_{ij} = t(g_{ij}, 0) \) with

\[|g_{ij}| = S_{ij}^{---} \quad k, l. \quad \text{Moreover,} \quad \sigma_{kl} = \xi_{kl} \psi_{kl}^{\psi_{kl}}, I \] and

\[|\sigma_{kl}| = (S_{kl}^- \cup S_{kl}^I) - (S_{kl}^{---} \cup S_{kl}^{+++}) \quad i, j. \]

Also \(\psi_{ij}, \psi_{ij}, i \) does not vanish on \(X_{kl} \).

Thus the determinant of the above two vector = \(x_{kl} x(\text{unit}) \).
FPV(Aug/92) For type 4a, we restrict \((g(l),g(ll))\) to \(X^2_{jk}\):

\[
(g(l),g(ll))_{jk} = (g_{jk},\Psi_j,\kappa_j,k_j,\sigma_j,k_j) + (g_{l},\mu_i)_{ijk} + (\delta_{l},\mu_i)_{jkl}
\]

where \(g_{jk} = (g_{jk},i,g_{jk},2)\) with \(|g_{jk},1| = S_{jk}^{-}\) and

\(|g_{jk},2| = S_{jk}^{+}\).

Moreover, \(g_{i} = (g_{i},0)\) with \(|g_{i}| = S_{i}^{-}\)

and \(g_{l} = (0,g_{l})\) with \(|g_{l}| = S_{l}^{+}\).

Also \((\Psi_j,\kappa_j,k_j,\sigma_j,k_j)\) and \(\mu_i\) do not vanish.

Using these we check that the determinant of the above

\[
\text{two vector } \neq 0.
\]

Finally we consider the case of type 3c. In this case, the situation

is subtle and seems to be a new factor which arises at codimension

four: First note

the first and second components of \(g_{i}\) (resp. \(g_{l}\)) contain

\(z_{kl}\) and \(z_{j}\) (resp. \(z_{ij}\) and \(z_{k}\)), and those of \(g_{j}\) (resp. \(g_{k}\)) contains

\(z_{l}\) and \(z_{jk}\) (resp. \(z_{i}\) and \(z_{j}\)).

Moreover, \(\sigma_\alpha \equiv 0 (X_1)\). Thus the degree of \(g(1:1)\) and \(g(1:2) \gtrless 2\).

Thus, letting \((g(1:1)Ag(1:2))_{(1)}\) denote the term

\[
(x_i)^{-1}(g(1:1)Ag(1:2)),
\]

we have:

the term \(= \sum_{(\alpha \beta)} g(\alpha \beta)_{(1:1)} + Ag(\gamma \delta)_{(1:2)}\), with \((\gamma \delta) = 1 -(\alpha \beta)\),

where \(g(\alpha \beta)_{(1:1)}\) denotes \((\partial^2/\partial x_{\alpha}x_{\beta})g(1:1)\) at 1.

First we have:

\((\ast)\) The summand = 0, unless \((\alpha \beta) = (il)\) or \((jk)\).

Actually assume that \((\alpha \beta) = (ij)\) or \((ik)\) (and so \((\gamma \delta) = (kl)\) or \((jl)\)).

Then \(g(\alpha \beta)_{(1:1)} = (\partial^2/\partial x_{\alpha}x_{\beta})g(1:1)_{|\gamma \delta} = (\partial g_{\delta}/\partial x_{\alpha}x_{\beta}g(1:1)_{|\gamma \delta})_{(\alpha \beta)}\)

and similarly for \(g(\gamma \delta)\). If \((\alpha \beta) = (ij)\) then
\[g_{\ell k} = t(\ast,0) \text{ and } g_{ij} = t(\ast,0), \text{ i.e., the second term = 0.} \]

Thus \(g(\alpha \beta)(1:1)A g(\gamma \delta)(1:2) \) obviously vanishes. If \((\alpha \beta) = (ik) \), then the vectors \(g_{ik} \) and \(g_{jl} \) appear, and the first term of them = 0.

Thus the terms should be considered as follows:

\[
g(\ell k)(1:1)A g(jk)(1:2) + g(jk)(1:1)A g(\ell l)(1:2)
= (g_{jk} \psi_{j, k}) (1:1) A (g_{il} \psi_{i, l}) (1:2)
+ (g_{il} \psi_{i, l}) (1:1) A (g_{jk} \psi_{j, k}) (1:2)
\]

Also note that \(\psi_{j, k} \equiv 0(x_{l}) \) and \(\psi_{k, j} \equiv 0(x_{l}) \) and similar fact.

Thus the above quantity is written as:

\[
(g_{jk} A g_{il})(\psi_{j, k}^{2})(\psi_{i, l}^{2})(\sigma_{jk}^{1})(\sigma_{il}^{2}) - (\sigma_{jl}^{2})(\sigma_{ik}^{1})
\]

Note that \(g_{jk} = t(g_{jk}, 0) \) with \(|g_{jk}| = S_{jk}^{-} \) and \(g_{il} = (0, g_{il}) \) with \(|g_{il}| = S_{il}^{+} \). Thus \(g_{jk} A g_{il} \) does not vanish. On the other hand,

\[
\sigma_{jk}^{1} = \phi_{jk}, \sigma_{il}^{1} = \phi_{il}, \sigma_{jl}^{2} = \phi_{jl}, \sigma_{ik}^{2} = \phi_{ik}, \text{ while}
\]

\[
\sigma_{jk}^{2} = 0 \text{ and } \sigma_{il}^{2} = 0. \text{ Thus we have:}
\]

where \(\phi_{jk}, l = \phi_{jk}, k \phi_{ki}, l = \phi_{jk}, kl \phi_{kl}, l \) and similarly for \(\phi_{il}, l \).

\[
(g(1:1)A g(1:2)) = (g_{jk} A g_{il})(\psi_{j, k}^{1})(\psi_{i, l}^{1})(\phi_{jk}, \sigma_{ik}^{1})(\sigma_{jl}^{1})(\sigma_{il}^{2}).
\]

and we finish the proof.

(In order to check that, for Type 4b, \(\mathcal{E} \) is not locally free, we should check all 2-vectors. We omit here. The chief objection for the locally freeness is that, for pairs \((\psi_{i, l}, \psi_{i, l}'), (\psi_{k, l'}, \psi_{k, l'}) \),

\[
Z(\psi_{i, l}) \cap Z(\psi_{i, l}') \equiv 0(X_{l}), \ldots
\]

Remark: If \(p = 5 \), then \(I \subset F_{5} \) with \# \(I = 4 \) is of the form

\[
I = (1, 1+1, 1+2, 1+3) \text{ and is always of type 3c.} \text{ Thus } \mathcal{E} \text{ is locally free and is actually the Horrocks-Mumford bundle. Our hope was to construct reflexive sheaves } \mathcal{E} \text{ which are locally free over } (X-X^{5}).
\]

But if \(p > 5 \), then type 4b or its dual always appears. However, the content of this paper is limited to the quadratic residue.
Is it possible to construct reflexive sheaves from some arithmetic
ed (e.g. higher residue) of F_p ?

References

[Sa-1] Configurations of divisors and reflexive sheaves, Report note

from R.I.M.S., Kyoto Univ. **634**. (1986) 407-513

[Sa-2] inid, Proc. of Japan Acad. 1989,

[Sa-3] Some low rank vector bundles which are constructed from

hyperplane configuration, pp 159 - 191, (Proc. of Algebraic

Geometry symposium, Kyoto Univ. October, 1991)