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On the irregularity of cyclic coverings of the
projective plane

Fumio Sakai
(Preliminary Version)

1 Introduction
The aim of this note is to give a survey on the irregularity of cyclic coverings of the
projective plane $P^{2}$ . Let $f(x, y)$ be a polynomial of degree $d$ over C. Let us consider the
cyclic multiple plane:

$z^{n}=f(x, y)$ .

Decompose $f$ into irreducible components: $f=f_{1}^{m_{1}}\cdots f_{r}^{m_{r}}$ . We assume that the con-
dition: $GCD(n, m_{1}, \ldots, m_{r})=1$ is satisfied. This is nothing but the condition that the
above surface is irreducible. We pass to the projecteve model. Let $\tilde{f}(x_{0}, x_{1}, x_{2})$ be the
homogeneous $po\}^{r}nolnia1$ associated to $f$ so that $\tilde{f}(1, x, y)=f(x, y)$ . Let $C$ be the plane
curve defined by the equation: $\tilde{f}=0$ . Let $C_{\dot{l}}$ be the irreducible component $\tilde{f}_{1}=0$ . Let
$L$ denote the infinite line: $x_{0}=0$ . Define $e$ to be the smallest integer with the condition:
$c;\geq\gamma\gamma/d$ . Set $n\iota_{0}=\uparrow\gamma e-d$ . Note that $m_{0}=0$ if and only if $n$ divides $d$ . Let $T,V_{\iota}$ be the
normalization of the following weighted hypersurface in $P(1,1,1, e)$ :

$x_{3}^{n}=x_{0}^{m_{0}}\tilde{f}(x_{0}, x_{1}, x_{2})$ .

The covering map $W_{n}arrow P^{2}$ ramifies over $C$ in case $m_{0}=0$ or over C U $L$ in case $m_{0}\neq 0$ .

Let $\pi$ : $X_{n}arrow W_{n}$ be a desingularization. Let $\varphi$ : $X_{n}arrow P^{2}$ be the composed map.

Definition. The irregularity $q(X_{n})$ of $X_{n}$ has three equivalent expressions:

$q(X_{2l})= \dim H^{1}(X_{n}, \mathcal{O})=\dim H^{0}(X_{n}, \Omega^{1})=\frac{1}{2}\dim H^{1}(X_{71}, R)$

There are four classical references on this $topics:de$ Franchis $[dF]$ , Comessatti [C],
Zariski [Z1], [Z2]. My personal motivation te this question is its application to the analysis
of singular plane curves. Cf. [S].

Proposition 1 (Easy Bound).

$2q(X_{n}) \leq\sum_{\dot{\iota}=0}^{r}d_{\dot{l}}(n-n_{\dot{l}})-2(n-1)$

$wl_{1}$ ere $n_{\dot{l}}=GCD(n, m_{i})_{2}d_{\dot{l}}=\deg f_{l}$ an$dd_{0}=1$ . Note that $n_{0}=GCD(\uparrow x, d)$ .

Proof Let $\Gamma\in X_{n}$ be the inverse image of a general line on $P^{2}$ . We can easily prove that
$H^{1}(X_{n}, \mathcal{O})$ injects to $H^{1}(\Gamma, \mathcal{O})$ . The Hurwitz formula gives the genus of $\Gamma$ .
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Corollary.

$2q(X_{n})\leq\{\begin{array}{l}(n-1)(\sum_{\dot{\iota}=1}^{r}d_{i}-2)(n-1)(\sum_{\dot{\iota}=1}^{r}d_{l}\cdot-1)\end{array}$ $ifn|dotherw\iota se$

Let us exibit examples with positive irregularity. Let $\Gamma_{k}arrow P^{1}$ be a k-fold cyclic
covering. Given a rational map $\phi$ : $P^{2}arrow P^{1}$ . Suppose that $\Gamma_{k}$ is given by the
$equation:y_{2}^{k}=\Pi(b_{i}y_{0}-a_{i}y_{1})^{p}$ . (we may assume $k| \sum\ell_{\dot{\iota}}$ ) and that the map $\phi$ is given
by $(G(x_{0}, x_{1}, x_{2}), H(x_{0}, x_{1}, x_{2}))$ where both $G$ and $H$ are homogeneous polynomials of
degree $\ell$ . If $n|\ell\cdot\Sigma\ell_{i}$ and $k|n$ , then the multiple plane $X_{n}$ defined by the equation:
$x_{3}^{n}=\Pi(b_{\dot{t}}G(x)-\zeta\iota_{i}H(x))$ factors through $\Gamma_{k}$ . In this case, we say that $X_{n}$ factors
through a pencil. We see that $X_{n}$ has positive irregularity if $\Gamma_{k}$ has positive genus.

In order to investigate the irregularity of cyclic coverings of $P^{2}$ , there are three ap-
proaches: (i) through the behavior of rational differential forms, cf. Esnault [E], Zu$()[Z]$

(ii) through the action of the cyclic group $Z_{n}$ on the Albanese variety, cf. Khashin [K],
Catanese-Ciliberto [CC] (iii) through the topology of complements of the branch curves.
cf. Libgober [L], $R|$andell [R], Kohno [Ko], Loeser-Vaqui\’e [LV], Dimca [D].

2 Differential forms
Let $\psi$ : $Sarrow P^{2}$ be a composition of blow-ups so that the inverse image of $C\cup L$ has
normal crossings. Write

$\psi^{*}(\sum_{\dot{\iota}=0}^{r}m_{\dot{l}}C_{i})=\sum\nu_{J}D_{J}$ .

Here we set $C_{0}=L$ . We understand that if $j\leq r,$ $D_{J}$ is the strict transform of $C$, and
$t/J=m_{J}$ and that for $j>r,$ $D_{j}$ is exceptional for $\psi$ . Since $\psi^{*}(\Sigma_{i=0}^{r}m_{i}C_{i})\in|\uparrow?\psi^{*}O(e)|$ ,
one can construct an n-fold covering of $S$ , which ramifies over $\psi^{*}(\Sigma_{\dot{\iota}=0}^{r}m_{i}C_{i})$ . Let $W_{n}’$

denote its normalization. Up to birational equivalence, we have the commutative diagram:

$W_{n}P^{\downarrow_{2}}$
$arrowarrow$

$W_{\downarrow}’S^{n}$

$’\phiarrow X_{n}$

Set $\zeta=e^{2\pi l/n}$ . The eigenspace decomposition of the structure sheaf $\mathcal{O}_{X},$ has the
following consequence:

Proposition 2 (Esnault [E]). In this situation, we have

$H^{0}(X_{n}, \mathcal{O}_{X_{n}})^{(}\cong H^{0}(S, \mathcal{L}^{(i)^{-\iota}})i$

where $\mathcal{L}^{(\iota)}=\psi^{*}\mathcal{O}(ie)\otimes \mathcal{O}(-\Sigma[i\iota/_{J}/n]D_{j})$ .

As for the eigenspace decomposition of the sheaf $\Omega^{1}$ , we have
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Proposition 3 ([E], [Zu]). On $e$ has

$H^{0}(X_{n}, \Omega^{1})^{\zeta^{i}}\cong H^{0}(S, \Omega^{1}(\log D(i))\otimes \mathcal{L}^{(i)^{-1}})$ ,

wher$eD(i)=\Sigma(i\nu_{\dot{J}}-n[i\nu_{J}\cdot/n])D_{J}\cdot$ .

Remark. Note that $D_{j}\not\subset D(i)$ if and only if $n|i\nu_{J}\cdot$ .

The Bogomolov type vanishing theorem gives the following criterion for the vanishing
of the irregularity.

Theorem 1 ([E], [Zu]). If $D(i)$ is big for all $i$ , then $q(X_{n})=0$ .

Proof. If $H^{0}(X_{n}, \Omega^{1})^{\zeta^{i}}\neq 0$ , then one finds that $\mathcal{L}^{(i)}rightarrow\Omega^{1}(\log D(i))$ , which is impossible
if $D(i)$ is big, since $D(i)\in|(\mathcal{L}^{(i)})^{\otimes n}|$ .

Since $q(X)=p_{g}(X)+1-\chi(\mathcal{O})$ , one gets the irregularity $q(X_{n})$ if one knows $p_{g}(X_{n})$

and $\chi(\mathcal{O}_{X_{n}})$ .

Proposition 4.
$H^{0}(X_{n}, \Omega^{2})^{\zeta^{i}}\cong H^{0}(S, \Omega^{2}(\log D(i))\otimes \mathcal{L}^{(i)^{-1}})$ .

On the other hand, one has the following formula for the term $\chi(\mathcal{O})$ .

Proposition 5.

$\chi(\mathcal{O}_{X_{n}})=\sum_{i=0}^{n-1}\chi(\mathcal{O}p_{2}(-(ie-\sum[i\nu_{J}\cdot/n]d_{j})))-\dim R^{1}\pi_{*}\mathcal{O}_{X_{n}}$ .

Proof Taking the direct image sheaf, we see that

$\chi(O_{X_{n}})=\chi((\psi 0\phi)_{*}\mathcal{O}_{X_{n}})-\dim R^{1}(\psi 0\phi)_{*}\mathcal{O}_{X_{n}}$ .

We have
$( \psi 0\phi)_{*}\mathcal{O}_{X_{n}}\cong\psi_{*}(\mathcal{L}^{(i)^{-1}})\cong \mathcal{O}(-(ie-\sum[i\nu_{j}/n]d_{j}))$ ,

and
$\dim R^{1}(\psi 0\phi)_{*}\mathcal{O}_{X_{n}}=\dim R^{1}\pi_{*}\mathcal{O}_{X_{n}}$ .

Problem. Discuss those line $arr$angements $Csuch$ that $X_{n}$ has positive irregularity for
some $n$ .
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3 Albanese map
Let $X_{71}$ be a non-singular model of a cylic multiple plane as defined in Introduction. We
denote by $G$ the cyclic group $Z_{n}$ and let $\sigma$ be its generator. Suppose $q(X_{n})>0$ . We
have the Albanese map $\alpha$ : $X_{n}arrow Alb(X_{n})$ . The group $G$ acts on $X_{n}$ and naturally on
$Alb(X_{n})$ .

Proposition 6. If the Alban$ese$ image $\alpha(X_{n})$ is a cur$ve$ , then $X_{n}$ factors th $ro$ugh a pencil.

Proof. Set $\Gamma=\alpha(X_{n})$ . The group also acts on F. We infer that $\Gamma/G$ is isomorphic to $P^{1}$ ,

because there exists a rational map from $P^{2}$ onto it.

Proposition 7. Suppose th at there exist two $li$niearly independen $t$ holomorph$ic$ on $e$

forms $\omega,$
$\omega’$ such that $\sigma^{*}\omega=\lambda\omega_{\rangle}\sigma^{*}\omega’=\lambda^{-1}\omega’$ for some $\lambda$ . Then the $Alb$anese image

$\alpha(X_{n})$ is a $c$ urve.

Proof. By hypothesis, we find that $\sigma^{*}(\omega\wedge\omega’)=\omega\wedge\omega’$ . So $\omega\wedge\omega’$ must be a pull-
back of a holomorphic 2-form on $P^{2}$ , hence $\omega$ A $\omega’=0$ . The assertion follows from the
Castelnuovo-de Franchis theorem.

Proposition 8. Suppose that ther$e$ exists a11 n-th root of $tJ$nity A (X $\neq\pm 1$ ) sucl] $t1l$ at
$\sigma^{*}\omega=\backslash \omega$ for all $\omega\in H^{0}(X_{n}, \Omega^{1})$ . Then $\lambda$ can take on$e$ of the $values\pm i,$ $\pm\rho,$ $\pm\rho^{2}$ where
$p=e^{o_{7ri/3}}\sim$ . $Fn$ rthermor$e$ ,

$Alb(X_{n})\cong E_{\lambda}^{q}$ ,
$wl_{1}$ ere $E_{\lambda}$ is the elliptic $c$ urve $C/Z\oplus Z\lambda$ .

Proof Cf. Comessatti [C].

Theorem 2 (de Franchis $[dF]$ ). If $q(X_{2})>0$ , then $X_{2}$ factors thro $ugh$ a pen $cil$ .

Proof In case $\uparrow\gamma=2$ , one must have $\sigma^{*}\omega=-\omega$ for all $\omega\in H^{0}(X_{n}, \Omega^{1})$ . So the $aI^{\neg}\backslash \backslash eltiol1$

follows from Propositions 6 and 7.

Theorem 3 (Comessatti [C]). If $q(X_{3})>0$ and if the Albanese image of $X_{3}$ is a
$su$rface, then $Alb(X_{3})\cong E_{\rho}^{q}$ .

Proof. This follows from Propositions 7 and 8.

We can prove this type of results for the cases $n=4,6$ , which were also proved by
Catanese and Ciliberto [CC].

Theoreni 4. If $q(X_{4})>0$ , then either $X_{4}$ factors thro $ugh$ a pencii, or $Alb(X_{4})\cong E_{l}^{q}$ .

Proof. If $H^{0}(X_{4)}\Omega^{1})^{(-1)}\neq 0$ , then the surface: $x_{3}^{2}=x_{0}^{m_{0}}f$ factors through a pencil, so
does $X_{4}$ . In case $H^{0}(X_{4}, \Omega^{1})^{(-1)}=0$ , by Propositions 7 and 8, we see that either $X_{4}$

factors through a pencil or $Alb(X_{4})\cong E_{i}^{q}$ .

Example. $z^{4}=(y^{2}-2x^{3})x^{2}(x^{2}+1)^{2}(y+2x)$ . In this $case,$ $X_{4}\cong E_{i}^{2}$ .
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4 Alexander polynomials
Set

$U=C^{2}\backslash \{f=0\}=P^{2}\backslash C\cup L$.

Write $U_{n}=\varphi^{-1}(U)\subset X_{n}$ . We see that $\varphi$ : $U_{n}arrow U$ is an unramified covering of degree
$n$ . We have a commutative diagram:

$U_{n}$
$arrow^{\varphi}$ $U$

$\downarrow$ $\downarrow f$

C’ $\ni zarrow z^{n}\in$ $c*$

The idea of the topological approach is to calculate the first Betti number of $X_{n}$ through
that of $U_{n}$ . Namely, we write:

$b_{1}(X_{n})=b_{1}(U_{n})-B.C$.

The term B.C. (the boundary contribution) is given by the following:

Proposition 9. We $ll$ a$ve$

$B.C$. $=\#$ { $the$ irreducible components of $\varphi^{-1}(C\cup L)$ } $-1$ .

This follows from the following:

Proposition 10. Let $S$ be a smooth projective surface and let $D=D_{1}$ U. . . $\cup D_{n}$ be a
$di$ visor $l_{l}$ aving simple normal crossings. Then

$b_{1}(S)=b_{1}(S\backslash D)-(n-\rho(D))$ ,

wher$ep(D)=\dim\{\Sigma R[D_{i}]\}$ in $NS(S)\otimes R$ .

Proof (Esnault $[E]$), cf. [He]). One can deduce this from the Residue seq $u$ ence:

$0arrow H^{0}(S, \Omega^{1})arrow H^{0}(S, \Omega^{1}(\log D))arrow H^{0}(\hat{D}, \mathcal{O})arrow H^{1}(S, \Omega^{1})$

Corollary. $B.C$. $\geq r$ .

Example. If $f$ is reduced and if $L$ meets $C$ transverselly, then $B.C$. $=r$ . Cf. [L].

One can construct an infinite cyclic covering $\tilde{U}$ of $U$ as follows.

$\tilde{U}$ $arrow^{\Phi}$
$U$

$f_{\infty}\downarrow$ $\downarrow f$

$C$ $\ni\tauarrow e^{2\pi i\tau}\in$ $c*$

It is well known that $H_{1}(U, Z)=Z^{r}$ , which is generated by the meridian loops $\gamma_{l}$

around $C_{i}$ . The map $f_{*}$ : $\pi_{1}(U)arrow\pi_{1}(C^{*})=Z$ factors through $H_{1}(U, Z)$ and it sends
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$[\gamma_{1}]^{s_{1}}\cdots[\gamma_{r}]^{s_{r}}$ to $\Sigma m_{i}s_{\dot{l}}$ . It turns out that $\tilde{U}$ is nothing but the quotient of the universal
covering of $U$ by the kernel of the above homomorphism.

Let $T$ be the deck transformation on $\tilde{U}$ corresponding to the above infinite cyclic
covering. The transformation $T$ induces a linear transformation $T_{*}$ : $H_{1}(\tilde{U})arrow H_{1}(\tilde{U})$ .

We have the exact sequences ([M2]):

$arrow H_{1}(\tilde{U})^{\underline{T_{\sim}-}I}\rangle H_{1}(\tilde{U})arrow H_{1}(U)arrow$

Since $H_{1}(U, Z)=Z^{r}$ , we infer that the sequence:

$H_{1}(\tilde{U}, Z)_{0-arrow H_{1}(\tilde{U},Z)_{0}}^{T_{*}-I}arrow Z^{r-1}arrow 0$ (1)

is exact, where $H_{1}(\tilde{U}, Z)_{0}=H_{1}(\tilde{U}, Z)/Tor$ .

Definition. Under the assumption that $H_{1}(\tilde{U}, C)$ is finite dimensional, the Alexander
polyn$omiaI$ of $f$ is defined as follows (cf. [L]):

$\triangle_{f}(t)=\det(tI-T_{*})$ .

Since $T_{*}$ is defined on $H_{1}(\tilde{U}, Z)_{0}$ , we infer that $\triangle_{f}(t)\in Z[t]$ . It follows from (1) that
$\triangle_{f}(t)=(t-1)^{(r-1)}\cdot G(t)$ but $G(1)\neq 0$ .

Example. Suppose that $f(x, y)$ is weighted homogeneous. Let $(a, b)$ be the weights
of $(x, y)$ and let $N$ be the degree of $f$ as a weighted homogeneous polynomial. Then
$Uarrow C^{*}$ is a fibre bundle, of which fibre is $F=\{(x, y)|f(x, y)=1\}$ . Set $\xi=e^{2_{7\Gamma l}/N}$ . Let
$h:F\ni(x, y)arrow(\xi^{a}x, \xi^{b}y)\in F$ be the monodromy map and we denote by $h_{*}$ the induced
linear map on $H_{1}(F, C)$ . In this case, $H_{1}(\tilde{U})\cong H_{1}(F)$ and $\triangle_{f}(t)=\det(tI-h_{*})$ . $C^{t}1ea1\downarrow$).

the origin $p$ is the only singularity of the affine curve $f=0$ and $\det(tI-h_{*})$ is known to
be the local Alexander polynomial $\triangle_{p}(t)$ of $p$ [M1].

Definition. In case $N=\dim H_{1}(\tilde{U}, C)<\infty$ , let $e_{j}(t),$ $j=1,$ $\ldots,$

$N$ , be the elementary
divisors of $tI-T_{*}$ . Set

$N(n, T_{*})= \sum$ #{distinct n-th roots of unity which are roots of $e_{J}(t)$ }.

Theorem 5. If $dimH_{1}(\tilde{U}, C)<\infty$ , then

$2q(X_{n})=1+N(n, T_{*})-B.C.$ .

Proof. We have the following exact sequence (cf. [SS]):

$arrow H_{1}(\tilde{U})^{T_{*}^{n}-I}-\rangle H_{1}(\tilde{U})arrow H_{1}(U_{n})arrow$ .

We infer from this that $b_{1}(U_{n})=1+\dim Ker(T_{*}^{n}-I)$ . We see easily that $N(\uparrow l, T_{x})=$

$\dim Ker(T_{*}^{n}-I)$ .
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Corollary. If $T_{*}is$ of finite order, then

$2q(X.)=$ $1+\#$ { $n$-th roots of unity which are roots of $\triangle_{f}(t)$ } $-B.C$.

Definition. We say that $f$ is primitive if the general fibre $f^{-1}(a)$ is irreducible. $lt$

is well known that if $f$ is not primitive, then there are polynomials $u$ and $g$ such that
$f(x, y)=u(g(x, y))$ . Cf. [Su].

Remark. Suppose that $r\geq 2$ . If $f$ is not primitive, then (i) $X_{n}$ factors through a pencil,
(ii) the infinite line $L$ does not meet $C$ transversely.

Proposition 11. The vector space $H_{1}(\tilde{U}, C)$ is finite dimesional if and only if either (i)
$r=1,$ $OI(ii)r\geq 2,$ $f$ is primitive.

Proof Suppose that $f$ is primitive. The general fibre of the fibration $f_{\infty}$ : $\tilde{U}arrow Ci_{S}$ irre-
ducible. By Lemma 7 in [Su], we see that $\dim H_{1}(\tilde{U}, C)\leq\dim H_{1}$ (a general fibre, $C$ ) $<$

$\infty$ . Note that $f_{\infty}^{-1}(\tau)=f^{-\iota}(e^{2\pi i\tau})$ . Assume now that $f$ is not primitive. Writing $f=u(g)$
as above, we set $u^{-1}(0)=\{a_{1}, \ldots, a_{s}\}$ . Define $V=C\backslash \{a_{1}, \ldots, a_{s}\}$ . We have the diagram:

$\tilde{U}$

$arrow$ $U$

$\downarrow$ $\downarrow g$

$\tilde{V}$

$arrow$ $V$

$\downarrow$ $\downarrow u$

$C$ $arrow$ $c*$

If $s\geq 2$ , it is easy to prove that $\dim H_{1}(\tilde{V}, C)=\infty$ . It follows that $\dim H_{1}(\tilde{U}, C)=\infty$ .
If $s=1$ , then $\tilde{V}=C$ and so $\dim H_{1}(\tilde{U}, C)<\infty$ .

Remark. In case $r=1$ , this fact was pointed out in [L].

Now we come to Zariski’s result.

Theorem 6 (Zariski [Z1]). Suppose $r=1$ . If $n=p^{a}$ ($p$ is a prime number), tlien
$q(X_{n})=0$ .

Proof. Since $r=1$ , we infer from (1) that $\triangle_{f}(1)=\det(I-\tilde{h}_{*})=\pm 1$ . If a primitive $p^{?}$ -th
root of unity $(1 \leq i\leq a)$ is a root of the integral polynomial $\triangle_{f}(t)$ , then $\triangle_{f}(t)nlU\backslash t$ be
divided by the cyclotomic polynomial $\Phi_{p^{\mathfrak{i}}}(t)$ . Since $\Phi_{p}:(1)=p$ , this is impossible.

We can generalize this result to the case in which $C$ is reducible.

Theorem 7. Suppose $r\geq 2$ . Assume that $f$ is primi tive or that $n|d$ . If $n=p^{o}(p$ is a
prime number), then

$2q(X_{n})\leq(n-1)(r-1)$ .

Proof Assume first that $f$ is $prinlitive$ . By Proposition 11, $N=\dim H_{1}(\tilde{U}, C)<\infty$ . Let
$d_{j}(t)$ (resp. $d_{J}$ ) be the GCD of all j-minors of the matrix $tI-T_{*}$ (resp. $I-T_{*}$ ). By the
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exact sequence (1), we see that the elementary divisors of $I-T_{*}$ are 1, $\ldots,$

$1,0^{r-.1}.0\wedge$

. $\dagger l\prime^{\vee}e$

infel that $d_{j}=1$ for $J\leq N-(r-1)$ and $d_{J}=0$ for $j>N-(r-1)$ . Since $d_{J}(1)|d_{j}$ , we
find that $d_{J}(1)=\pm 1$ for $J\leq N-(r-1)$ and $d_{J}(1)=0$ for $j>N-(r-1)$ . $A\llcorner^{\neg}\backslash$ in 1 he
proof of Theorem 6, any primitive p’-th root of unity other than 1 cannot be a $1O1$ ) $\downarrow$ ol
$d_{j}(t)$ for $j\leq N-(r-1)$ . Let $e_{1}(t),$

$\ldots,$
$e_{N}(t)$ be the elementary divisors of $tI-T_{*}$ . $1l’ e$

kn$ow$ that $d_{J}(t)=b_{J}e_{1}(t)\cdots e_{J}(t),$ $b_{J}\in$ Q. Thus any primitive $p^{\iota}$ -th root of unity $otllel$

than 1 cannot be a root of $e_{J}(t)$ for $j\leq N-(r-1)$ . It follows that $N(n, T_{*})\leq n(\uparrow-1)$ .

Since $B.C$ . $\geq r$ , we conclude that $b_{1}(X_{n})\leq(n-1)(r-1)$ .
In case $n|d$ , since the infinite line $L$ does not appear in the branch locus of $X_{n}arrow P^{2}$ ,

by taking a suitable line as the infinite line, we may assume that $f$ is primitive.

Corollary. If $n=2_{2}r=2$ and $d$ is even, then $q(X_{2})=0$ .

Definition. Set $\tilde{F}=\{(x_{0}, x_{1}, x_{2})\in C^{3}|\tilde{f}(x_{0}, x_{1}, x_{2})=1\}$ . Since $f$ is $hon1ogene()n\backslash _{I}$

$\hat{f}$ : $c^{3}\backslash \{f=0\}arrow C^{*}$ is a fibre bundle. The typical fibre is $\tilde{F}$ . Letting $\eta=\ulcorner$
$-)\pi’/d$

we have the mon$odron1yt_{I}$ansformation1
$\tilde{h}$ : $\tilde{F}\ni(x_{0}, x_{1}, x_{2})arrow(\eta x_{0)}\eta x_{1}, \eta x_{2})\in\overline{F}$ . It

induces a linear transformation $\tilde{h}_{*}$ : $H_{1}(\tilde{F}, Z)arrow H_{1}(\tilde{F}, Z)$ . Define

$\triangle c(t)=\det(tI-\tilde{h}_{*})\in Z[t]$ ,

which is called the Alexander polynon$liaI$ of the plance curve $C$ . Cf. [R], [D].

Proposition 12. Under $t1_{1}eass$umption that the in$fi$nite line $L$ is in a general $po$ si $ri()n$ .
we $1_{1}$ a$vetlleeq$uali ty: $\triangle_{f}(t)=\triangle c(t)$ .

Proof Cf. [R], [D]. We see that $U\cong(C^{3}\backslash \{\tilde{f}=0\})\cap\{x_{0}=1\}$ . The afhne ver.$\backslash io11()i$

the Lefschetz theorem ([H]) asserts that $7\Gamma_{1}(C^{3}\backslash \{\tilde{f}=0\})arrow\pi_{1}(U)$ is an isomorphism. It
follows that $H_{1}(\tilde{U}, Z)\cong H_{1}(\tilde{F}, Z)$ . Furthermore, the transformation $T_{*}corres_{1)onds}$ to
$\tilde{h}_{*}$ . Q. E.D.

Theorem 8. Assume that $L$ is in a general position. We $have$

$2q(X_{n})=$ $1+\#${ $n$ -th roots of unity which are roots of $\triangle c(t)$ } $-B.C$.

Corollary. Under tlie same hypothesis, if $GCD(n, d)=1$ , then $q(X_{n})=0$ .

Proof By hypothesis, we find that $b_{1}(U_{n})=r-1$ and $B.C$ . $=r$ .

We quote two divisibility theorems of the Alexander polynomials. See also [Ko], [LV].

Theroem 9 (Libgober [L]). Suppose $f$ is irreducible. Then

$\triangle_{f}(t)|\prod_{\tilde{p}}\triangle_{\overline{p}}(t)$
,

where $\tilde{p}$ moves all local $br$anches of Sing $(CUL)$ .
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Theorem 10 (Dimca [D]). Suppose $f$ is reduced. $Tllen$

$\triangle c(t)|\prod_{p\in Sing(C)}\triangle_{P}(t)\sim$
,

where $\triangle_{p}(t)\sim$ is the reduced local Alexander polynomial of $p$ .

Corollary (Zariski [Z2]). $Su$ppose $L$ is in a general position. If $C$ has on$ly$ nodes $a11d$

ordinary $c$ usps as its sing$ul$arities, then $q(X_{n})=0$ unless $6|n$ an$d6|d$ .

Proof. We know that $\triangle_{p}(t)=t-1$ if $p$ is a node, $=t^{2}-t+1$ if $p$ is an ordinary cusp.
Thus $\triangle_{C}(t)=(t-1)^{(r-1)}(t^{2}-t+1)^{t}$ for some $\ell$ . In view of Theorem 8, the assertion
follows from this.

Remark. The assumption that $L$ is in a general position is necessary in the above result.
Let us consider the case: $f=(x+y)(x+y+1)$ . In this case, we find that $q(X_{3})=1$ .
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