On the irregularity of cyclic coverings of the projective plane

Fumio Sakai
（Preliminary Version）

1 Introduction

The aim of this note is to give a survey on the irregularity of cyclic coverings of the projective plane \mathbf{P}^{2} ．Let $f(x, y)$ be a polynomial of degree d over \mathbf{C} ．Let us consider the cyclic multiple plane：

$$
z^{n}=f(x, y) .
$$

Decompose f into irreducible components：$f=f_{1}^{m_{1}} \cdots f_{r}^{m_{r}}$ ．We assume that the con－ dition： $\operatorname{GCD}\left(n, m_{1}, \ldots, m_{r}\right)=1$ is satisfied．This is nothing but the condition that the above surface is irreducible．We pass to the projecteve model．Let $\tilde{f}\left(x_{0}, x_{1}, x_{2}\right)$ be the homogeneous poynomial associated to f so that $\tilde{f}(1, x, y)=f(x, y)$ ．Let C be the plane curve defined by the equation：$\tilde{f}=0$ ．Let C_{i} be the irreducible component $\tilde{f}_{i}=0$ ．Let L denote the infinite line：$x_{0}=0$ ．Define e to be the smallest integer with the condition： $e \geq n / d$ ．Set $m_{0}=n e-d$ ．Note that $m_{0}=0$ if and only if n divides d ．Let W_{n} be the normalization of the following weighted hypersurface in $\mathbf{P}(1,1,1, e)$ ：

$$
x_{3}^{n}=x_{0}^{m_{0}} \tilde{f}\left(x_{0}, x_{1}, x_{2}\right) .
$$

The covering map $W_{n} \rightarrow \mathbf{P}^{2}$ ramifies over C in case $m_{0}=0$ or over $C \cup L$ in case $m_{0} \neq 0$ ． Let $\pi: X_{n} \rightarrow W_{n}$ be a desingularization．Let $\varphi: X_{n} \rightarrow \mathbf{P}^{2}$ be the composed map．
Definition．The irregularity $q\left(X_{n}\right)$ of X_{n} has three equivalent expressions：

$$
q\left(X_{n}\right)=\operatorname{dim} H^{1}\left(X_{n}, \mathcal{O}\right)=\operatorname{dim} H^{0}\left(X_{n}, \Omega^{1}\right)=\frac{1}{2} \operatorname{dim} H^{1}\left(X_{n}, \mathbf{R}\right)
$$

There are four classical references on this topics：de Franchis［dF］，Comessatti［C］， Zariski［Z1］，［Z2］．My personal motivation to this question is its application to the analysis of singular plane curves．Cf．［S］．

Proposition 1 （Easy Bound）．

$$
2 q\left(X_{n}\right) \leq \sum_{i=0}^{r} d_{i}\left(n-n_{i}\right)-2(n-1)
$$

where $n_{i}=\operatorname{GCD}\left(n, m_{i}\right), d_{i}=\operatorname{deg} f_{i}$ and $d_{0}=1$ ．Note that $n_{0}=\operatorname{GCD}(n, d)$ ．
Proof．Let $\Gamma \in X_{n}$ be the inverse image of a general line on \mathbf{P}^{2} ．We can easily prove that $H^{1}\left(X_{n}, \mathcal{O}\right)$ injects to $H^{1}(\Gamma, \mathcal{O})$ ．The Hurwitz formula gives the genus of Γ ．

Corollary.

$$
2 q\left(X_{n}\right) \leq \begin{cases}(n-1)\left(\sum_{i=1}^{r} d_{i}-2\right) & \text { if } n \mid d \\ (n-1)\left(\sum_{i=1}^{r} d_{i}-1\right) & \text { otherwise }\end{cases}
$$

Let us exibit examples with positive irregularity. Let $\Gamma_{k} \rightarrow \mathbf{P}^{1}$ be a k-fold cyclic covering. Given a rational map $\phi: \mathbf{P}^{2} \rightarrow \mathbf{P}^{1}$. Suppose that Γ_{k} is given by the equation: $y_{2}^{k}=\Pi\left(b_{i} y_{0}-a_{i} y_{1}\right)^{\ell_{i}}$ (we may assume $k \mid \sum \ell_{i}$) and that the map ϕ is given by $\left(G\left(x_{0}, x_{1}, x_{2}\right), H\left(x_{0}, x_{1}, x_{2}\right)\right)$ where both G and H are homogeneous polynomials of degree ℓ. If $n \mid \ell \cdot \sum \ell_{i}$ and $k \mid n$, then the multiple plane X_{n} defined by the equation: $x_{3}^{n}=\Pi\left(b_{i} G(x)-a_{i} H(x)\right)$ factors through Γ_{k}. In this case, we say that X_{n} factors through a pencil. We see that X_{n} has positive irregularity if Γ_{k} has positive genus.

In order to investigate the irregularity of cyclic coverings of \mathbf{P}^{2}, there are three approaches: (i) through the behavior of rational differential forms, cf. Esnault [E], Zuo [Z] (ii) through the action of the cyclic group \mathbf{Z}_{n} on the Albanese variety, cf. Khashin [K], Catanese-Ciliberto [CC] (iii) through the topology of complements of the branch curves. cf. Libgober [L], Randell [R], Kohno [Ko], Loeser-Vaquié [LV], Dimca [D].

2 Differential forms

Let $\psi: S \rightarrow \mathbf{P}^{2}$ be a composition of blow-ups so that the inverse image of $C \cup L$ has normal crossings. Write

$$
\psi^{*}\left(\sum_{i=0}^{r} m_{i} C_{i}\right)=\sum \nu_{j} D_{j} .
$$

Here we set $C_{0}=L$. We understand that if $j \leq r, D_{j}$ is the strict transform of C_{j} and $\nu_{j}=m_{j}$ and that for $j>r, D_{j}$ is exceptional for ψ. Since $\psi^{*}\left(\sum_{i=0}^{r} m_{i} C_{i}\right) \in\left|n \psi^{*} \mathcal{O}(e)\right|$, one can construct an n -fold covering of S, which ramifies over $\psi^{*}\left(\sum_{i=0}^{r} m_{i} C_{i}\right)$. Let W_{n}^{\prime} denote its normalization. Up to birational equivalence, we have the commutative diagram:

Set $\zeta=e^{2 \pi i / n}$. The eigenspace decomposition of the structure sheaf $\mathcal{O}_{X_{n}}$ has the following consequence:

Proposition 2 (Esnault [E]). In this situation, we have

$$
H^{0}\left(X_{n}, \mathcal{O}_{X_{n}}\right)^{\zeta^{i}} \cong H^{0}\left(S, \mathcal{L}^{(i)^{-1}}\right)
$$

where $\mathcal{L}^{(i)}=\psi^{*} \mathcal{O}(i e) \otimes \mathcal{O}\left(-\Sigma\left[i \nu_{j} / n\right] D_{j}\right)$.
As for the eigenspace decomposition of the sheaf Ω^{1}, we have

Proposition 3 ([E], [Zu]). One has

$$
H^{0}\left(X_{n}, \Omega^{1}\right)^{\zeta^{i}} \cong H^{0}\left(S, \Omega^{1}(\log D(i)) \otimes \mathcal{L}^{(i)^{-1}}\right)
$$

where $D(i)=\sum\left(i \nu_{j}-n\left[i \nu_{j} / n\right]\right) D_{j}$.
Remark. Note that $D_{j} \not \subset D(i)$ if and only if $n \mid i \nu_{j}$.
The Bogomolov type vanishing theorem gives the following criterion for the vanishing of the irregularity.

Theorem $1([\mathrm{E}],[\mathrm{Zu}])$. If $D(i)$ is big for all i, then $q\left(X_{n}\right)=0$.
Proof. If $H^{0}\left(X_{n}, \Omega^{1}\right)^{\varsigma^{i}} \neq 0$, then one finds that $\mathcal{L}^{(i)} \hookrightarrow \Omega^{1}(\log D(i))$, which is impossible if $D(i)$ is big, since $D(i) \in\left|\left(\mathcal{L}^{(i)}\right)^{\otimes n}\right|$.

Since $q(X)=p_{g}(X)+1-\chi(\mathcal{O})$, one gets the irregularity $q\left(X_{n}\right)$ if one knows $p_{g}\left(X_{n}\right)$ and $\chi\left(\mathcal{O}_{X_{n}}\right)$.

Proposition 4.

$$
H^{0}\left(X_{n}, \Omega^{2}\right)^{\zeta^{i}} \cong H^{0}\left(S, \Omega^{2}(\log D(i)) \otimes \mathcal{L}^{(i)^{-1}}\right)
$$

On the other hand, one has the following formula for the term $\chi(\mathcal{O})$.

Proposition 5.

$$
\chi\left(\mathcal{O}_{X_{n}}\right)=\sum_{i=0}^{n-1} \chi\left(\mathcal{O}_{\mathbf{P}^{2}}\left(-\left(i e-\sum\left[i \nu_{j} / n\right] d_{j}\right)\right)\right)-\operatorname{dim} R^{1} \pi_{*} \mathcal{O}_{X_{n}}
$$

Proof. Taking the direct image sheaf, we see that

$$
\chi\left(\mathcal{O}_{X_{n}}\right)=\chi\left((\psi \circ \phi)_{*} \mathcal{O}_{X_{n}}\right)-\operatorname{dim} R^{1}(\psi \circ \phi)_{*} \mathcal{O}_{X_{n}}
$$

We have

$$
(\psi \circ \phi)_{*} \mathcal{O}_{X_{n}} \cong \psi_{*}\left(\mathcal{L}^{(i)^{-1}}\right) \cong \mathcal{O}\left(-\left(i e-\sum\left[i \nu_{j} / n\right] d_{j}\right)\right)
$$

and

$$
\operatorname{dim} R^{1}(\psi \circ \phi)_{*} \mathcal{O}_{X_{n}}=\operatorname{dim} R^{1} \pi_{*} \mathcal{O}_{X_{n}}
$$

Problem. Discuss those line arrangements C such that X_{n} has positive irregularity for some n.

3 Albanese map

Let X_{n} be a non-singular model of a cylic multiple plane as defined in Introduction. We denote by G the cyclic group \mathbf{Z}_{n} and let σ be its generator. Suppose $q\left(X_{n}\right)>0$. We have the Albanese map $\alpha: X_{n} \rightarrow \operatorname{Alb}\left(X_{n}\right)$. The group G acts on X_{n} and naturally on $\operatorname{Alb}\left(X_{n}\right)$.
Proposition 6. If the Albanese image $\alpha\left(X_{n}\right)$ is a curve, then X_{n} factors through a pencil.
Proof. Set $\Gamma=\alpha\left(X_{n}\right)$. The group also acts on Γ. We infer that Γ / G is isomorphic to P^{1}, because there exists a rational map from P^{2} onto it.
Proposition 7. Suppose that there exist two liniearly independent holomorphic one forms ω, ω^{\prime} such that $\sigma^{*} \omega=\lambda \omega, \sigma^{*} \omega^{\prime}=\lambda^{-1} \omega^{\prime}$ for some λ. Then the Albanese image $\alpha\left(X_{n}\right)$ is a curve.

Proof. By hypothesis, we find that $\sigma^{*}\left(\omega \wedge \omega^{\prime}\right)=\omega \wedge \omega^{\prime}$. So $\omega \wedge \omega^{\prime}$ must be a pullback of a holomorphic 2 -form on \mathbf{P}^{2}, hence $\omega \wedge \omega^{\prime}=0$. The assertion follows from the Castelnuovo-de Franchis theorem.

Proposition 8. Suppose that there exists an n-th root of unity $\lambda(\lambda \neq \pm 1)$ such that $\sigma^{*} \omega=\lambda \omega$ for all $\omega \in H^{0}\left(X_{n}, \Omega^{1}\right)$. Then λ can take one of the values $\pm i, \pm \rho, \pm \rho^{2}$ where $\rho=e^{2 \pi i / 3}$. Furthermore,

$$
\operatorname{Alb}\left(X_{n}\right) \cong E_{\lambda}^{q}
$$

where E_{λ} is the elliptic curve $\mathbf{C} / \mathbf{Z} \oplus \mathbf{Z} \lambda$.
Proof. Cf. Comessatti [C].

Theorem 2 (de Franchis [dF]). If $q\left(X_{2}\right)>0$, then X_{2} factors through a pencil.
Proof. In case $n=2$, one must have $\sigma^{*} \omega=-\omega$ for all $\omega \in H^{0}\left(X_{n}, \Omega^{1}\right)$. So the assertion follows from Propositions 6 and 7 .

Theorem 3 (Comessatti [C]). If $q\left(X_{3}\right)>0$ and if the Albanese image of X_{3} is a surface, then $\operatorname{Alb}\left(X_{3}\right) \cong E_{\rho}^{q}$.
Proof. This follows from Propositions 7 and 8.
We can prove this type of results for the cases $n=4,6$, which were also proved by Catanese and Ciliberto [CC].

Theorem 4. If $q\left(X_{4}\right)>0$, then either X_{4} factors through a pencil, or $\operatorname{Alb}\left(X_{4}\right) \cong E_{i}^{q}$.
Proof. If $H^{0}\left(X_{4}, \Omega^{1}\right)^{(-1)} \neq 0$, then the surface: $x_{3}^{2}=x_{0}^{m_{0}} \tilde{f}$ factors through a pencil, so does X_{4}. In case $H^{0}\left(X_{4}, \Omega^{1}\right)^{(-1)}=0$, by Propositions 7 and 8 , we see that either X_{4} factors through a pencil or $\operatorname{Alb}\left(X_{4}\right) \cong E_{i}^{q}$.

Example. $z^{4}=\left(y^{2}-2 x^{3}\right) x^{2}\left(x^{2}+1\right)^{2}(y+2 x)$. In this case, $X_{4} \cong E_{i}^{2}$.

4 Alexander polynomials

Set

$$
U=\mathbf{C}^{2} \backslash\{f=0\}=\mathbf{P}^{2} \backslash C \cup L
$$

Write $U_{n}=\varphi^{-1}(U) \subset X_{n}$. We see that $\varphi: U_{n} \rightarrow U$ is an unramified covering of degree n. We have a commutative diagram:

The idea of the topological approach is to calculate the first Betti number of X_{n} through that of U_{n}. Namely, we write:

$$
b_{1}\left(X_{n}\right)=b_{1}\left(U_{n}\right)-B . C .
$$

The term B.C. (the boundary contribution) is given by the following:
Proposition 9. We have

$$
\text { B.C. }=\#\left\{\text { the irreducible components of } \varphi^{-1}(C \cup L)\right\}-1 .
$$

This follows from the following:

Proposition 10. Let S be a smooth projective surface and let $D=D_{1} \cup \ldots \cup D_{n}$ be a divisor having simple normal crossings. Then

$$
b_{1}(S)=b_{1}(S \backslash D)-(n-\rho(D))
$$

where $\rho(D)=\operatorname{dim}\left\{\Sigma \mathbf{R}\left[D_{i}\right]\right\}$ in $N S(S) \otimes \mathbf{R}$.
Proof (Esnault [E]), cf. [He]). One can deduce this from the Residue sequence:

$$
0 \rightarrow H^{0}\left(S, \Omega^{1}\right) \rightarrow H^{0}\left(S, \Omega^{1}(\log D)\right) \rightarrow H^{0}(\hat{D}, \mathcal{O}) \rightarrow H^{1}\left(S, \Omega^{1}\right)
$$

Corollary. B.C. $\geq r$.

Example. If f is reduced and if L meets C transverselly, then $B . C .=r$. Cf. [L].
One can construct an infinite cyclic covering \tilde{U} of U as follows.

It is well known that $H_{1}(U, \mathbf{Z})=\mathbf{Z}^{r}$, which is generated by the meridian loops γ_{i} around C_{i}. The map $f_{*}: \pi_{1}(U) \rightarrow \pi_{1}\left(\mathbf{C}^{*}\right)=\mathbf{Z}$ factors through $H_{1}(U, \mathbf{Z})$ and it sends
$\left[\gamma_{1}\right]^{s_{1}} \cdots\left[\gamma_{r}\right]^{s_{r}}$ to $\sum m_{i} s_{i}$. It turns out that \tilde{U} is nothing but the quotient of the universal covering of U by the kernel of the above homomorphism.

Let T be the deck transformation on \tilde{U} corresponding to the above infinite cyclic covering. The transformation T induces a linear transformation $T_{*}: H_{1}(\tilde{U}) \rightarrow H_{1}(\tilde{U})$. We have the exact sequences ([M2]):

$$
\longrightarrow H_{1}(\tilde{U}) \xrightarrow{T_{*}-I} H_{1}(\tilde{U}) \longrightarrow H_{1}(U) \longrightarrow
$$

Since $H_{1}(U, \mathbf{Z})=\mathbf{Z}^{r}$, we infer that the sequence:

$$
\begin{equation*}
H_{1}(\tilde{U}, \mathbf{Z})_{0} \xrightarrow{T_{*}-I} H_{1}(\tilde{U}, \mathbf{Z})_{0} \rightarrow \mathbf{Z}^{r-1} \rightarrow 0 \tag{1}
\end{equation*}
$$

is exact, where $H_{1}(\tilde{U}, \mathbf{Z})_{0}=H_{1}(\tilde{U}, \mathbf{Z}) /$ Tor.
Definition. Under the assumption that $H_{1}(\tilde{U}, \mathbf{C})$ is finite dimensional, the Alexander polynomial of f is defined as follows (cf. [L]):

$$
\Delta_{f}(t)=\operatorname{det}\left(t I-T_{*}\right)
$$

Since T_{*} is defined on $H_{1}(\tilde{U}, \mathbf{Z})_{0}$, we infer that $\Delta_{f}(t) \in \mathbf{Z}[t]$. It follows from (1) that $\Delta_{f}(t)=(t-1)^{(r-1)} \cdot G(t)$ but $G(1) \neq 0$.

Example. Suppose that $f(x, y)$ is weighted homogeneous. Let (a, b) be the weights of (x, y) and let N be the degree of f as a weighted homogeneous polynomial. Then $U \rightarrow \mathbf{C}^{*}$ is a fibre bundle, of which fibre is $F=\{(x, y) \mid f(x, y)=1\}$. Set $\xi=e^{2 \pi i / N}$. Let $h: F \ni(x, y) \rightarrow\left(\xi^{a} x, \xi^{b} y\right) \in F$ be the monodromy map and we denote by h_{*} the induced linear map on $H_{1}(F, \mathbf{C})$. In this case, $H_{1}(\tilde{U}) \cong H_{1}(F)$ and $\Delta_{f}(t)=\operatorname{det}\left(t I-h_{*}\right)$. Clearly, the origin p is the only singularity of the affine curve $f=0$ and $\operatorname{det}\left(t I-h_{*}\right)$ is known to be the local Alexander polynomial $\Delta_{p}(t)$ of p [M1].

Definition. In case $N=\operatorname{dim} H_{1}(\tilde{U}, \mathbf{C})<\infty$, let $e_{j}(t), j=1, \ldots, N$, be the elementary divisors of $t I-T_{*}$. Set

$$
N\left(n, T_{*}\right)=\sum \#\left\{\text { distinct } \mathrm{n} \text {-th roots of unity which are roots of } e_{j}(t)\right\} .
$$

Theorem 5. If $\operatorname{dim} H_{1}(\tilde{U}, \mathbf{C})<\infty$, then

$$
2 q\left(X_{n}\right)=1+N\left(n, T_{*}\right)-B . C . .
$$

Proof. We have the following exact sequence (cf. [SS]):

$$
\longrightarrow H_{1}(\tilde{U}) \xrightarrow{T_{n}^{n}-I} H_{1}(\tilde{U}) \longrightarrow H_{1}\left(U_{n}\right) \longrightarrow .
$$

We infer from this that $b_{1}\left(U_{n}\right)=1+\operatorname{dim} \operatorname{Ker}\left(T_{*}^{n}-I\right)$. We see easily that $N\left(n, T_{*}\right)=$ $\operatorname{dim} \operatorname{Ker}\left(T_{*}^{n}-I\right)$.

Corollary. If T_{*} is of finite order, then

$$
2 q\left(X_{n}\right)=1+\#\left\{n-t h \text { roots of unity which are roots of } \Delta_{f}(t)\right\}-B . C .
$$

Definition. We say that f is primitive if the general fibre $f^{-1}(a)$ is irreducible. It is well known that if f is not primitive, then there are polynomials u and g such that $f(x, y)=u(g(x, y))$. Cf. [Su].

Remark. Suppose that $r \geq 2$. If f is not primitive, then (i) X_{n} factors through a pencil, (ii) the infinite line L does not meet C transversely.

Proposition 11. The vector space $H_{1}(\tilde{U}, \mathbf{C})$ is finite dimesional if and only if either (i) $r=1$, or (ii) $r \geq 2, f$ is primitive.

Proof. Suppose that f is primitive. The general fibre of the fibration $f_{\infty}: \tilde{U} \rightarrow \mathbf{C}$ is irreducible. By Lemma 7 in [Su], we see that $\operatorname{dim} H_{1}(\tilde{U}, \mathbf{C}) \leq \operatorname{dim} H_{1}$ (a general fibre, $\left.\mathbf{C}\right)<$ ∞. Note that $f_{\infty}^{-1}(\tau)=f^{-1}\left(e^{2 \pi i \tau}\right)$. Assume now that f is not primitive. Writing $f=u(g)$ as above, we set $u^{-1}(0)=\left\{a_{1}, \ldots, a_{s}\right\}$. Define $V=\mathbf{C} \backslash\left\{a_{1}, \ldots, a_{s}\right\}$. We have the diagram:

If $s \geq 2$, it is easy to prove that $\operatorname{dim} H_{1}(\tilde{V}, \mathbf{C})=\infty$. It follows that $\operatorname{dim} H_{1}(\tilde{U}, \mathbf{C})=\infty$. If $s=1$, then $\tilde{V}=\mathbf{C}$ and so $\operatorname{dim} H_{1}(\tilde{U}, \mathbf{C})<\infty$.

Remark. In case $r=1$, this fact was pointed out in [L].
Now we come to Zariski's result.

Theorem 6 (Zariski [Z1]). Suppose $r=1$. If $n=p^{a}$ (p is a prime number), then $q\left(X_{n}\right)=0$.
Proof. Since $r=1$, we infer from (1) that $\Delta_{f}(1)=\operatorname{det}\left(I-\tilde{h}_{*}\right)= \pm 1$. If a primitive p^{i}-th root of unity $(1 \leq i \leq a)$ is a root of the integral polynomial $\Delta_{f}(t)$, then $\Delta_{f}(t)$ must be divided by the cyclotomic polynomial $\Phi_{p^{i}}(t)$. Since $\Phi_{p^{i}}(1)=p$, this is impossible.

We can generalize this result to the case in which C is reducible.
Theorem 7. Suppose $r \geq 2$. Assume that f is primitive or that $n \mid d$. If $n=p^{a}$ (p is a prime number), then

$$
2 q\left(X_{n}\right) \leq(n-1)(r-1) .
$$

Proof. Assume first that f is primitive. By Proposition 11, $N=\operatorname{dim} H_{1}(\tilde{U}, \mathbf{C})<\infty$. Let $d_{j}(t)$ (resp. d_{j}) be the GCD of all j-minors of the matrix $t I-T_{*}$ (resp. $I-T_{*}$). By the
exact sequence (1), we see that the elementary divisors of $I-T_{*}$ are $1, \ldots, 1, \overbrace{0, \ldots 0}^{r-1}$. We infer that $d_{j}=1$ for $j \leq N-(r-1)$ and $d_{j}=0$ for $j>N-(r-1)$. Since $d_{j}(1) \mid d_{j}$, we find that $d_{j}(1)= \pm 1$ for $j \leq N-(r-1)$ and $d_{j}(1)=0$ for $j>N-(r-1)$. As in the proof of Theorem 6, any primitive p^{2}-th root of unity other than 1 cannot be a root of $d_{j}(t)$ for $j \leq N-(r-1)$. Let $e_{1}(t), \ldots, e_{N}(t)$ be the elementary divisors of $t I-T_{*}$. We know that $d_{j}(t)=b_{j} e_{1}(t) \cdots e_{j}(t), b_{j} \in \mathbf{Q}$. Thus any primitive p^{i}-th root of unity other than 1 cannot be a root of $e_{j}(t)$ for $j \leq N-(r-1)$. It follows that $N\left(n, T_{*}\right) \leq n(r-1)$. Since B.C. $\geq r$, we conclude that $b_{1}\left(X_{n}\right) \leq(n-1)(r-1)$.

In case $n \mid d$, since the infinite line L does not appear in the branch locus of $X_{n} \rightarrow \mathbf{P}^{2}$, by taking a suitable line as the infinite line, we may assume that f is primitive.

Corollary. If $n=2, r=2$ and d is even, then $q\left(X_{2}\right)=0$.
Definition. Set $\tilde{F}=\left\{\left(x_{0}, x_{1}, x_{2}\right) \in \mathbf{C}^{3} \mid \tilde{f}\left(x_{0}, x_{1}, x_{2}\right)=1\right\}$. Since \tilde{f} is homogeneous, $\tilde{f}: \mathbf{C}^{3} \backslash\{\tilde{f}=0\} \rightarrow \mathbf{C}^{*}$ is a fibre bundle. The typical fibre is \tilde{F}. Letting $\eta=e^{2 \pi i / d}$, we have the monodromy transformation $\tilde{h}: \tilde{F} \ni\left(x_{0}, x_{1}, x_{2}\right) \longrightarrow\left(\eta x_{0}, \eta x_{1}, \eta x_{2}\right) \in \tilde{F}$. It induces a linear transformation $\tilde{h}_{*}: H_{1}(\tilde{F}, \mathbf{Z}) \rightarrow H_{1}(\tilde{F}, \mathbf{Z})$. Define

$$
\Delta_{C}(t)=\operatorname{det}\left(t I-\tilde{h}_{*}\right) \in \mathbf{Z}[t]
$$

which is called the Alexander polynomial of the plance curve C. Cf. [R], [D].
Proposition 12. Under the assumption that the infinite line L is in a general position, we have the equality: $\Delta_{f}(t)=\Delta_{C}(t)$.

Proof. Cf. [R], [D]. We see that $U \cong\left(\mathbf{C}^{3} \backslash\{\tilde{f}=0\}\right) \cap\left\{x_{0}=1\right\}$. The affine version of the Lefschetz theorem ($[\mathrm{H}])$ asserts that $\pi_{1}\left(\mathbf{C}^{3} \backslash\{\tilde{f}=0\}\right) \rightarrow \pi_{1}(U)$ is an isomorphism. It follows that $H_{1}(\tilde{U}, \mathbf{Z}) \cong H_{1}(\tilde{F}, \mathbf{Z})$. Furthermore, the transformation T_{*} corresponds to \tilde{h}_{*}. Q.E.D.

Theorem 8. Assume that L is in a general position. We have

$$
2 q\left(X_{n}\right)=1+\#\left\{n \text {-th roots of unity which are roots of } \Delta_{C}(t)\right\}-B . C .
$$

Corollary. Under the same hypothesis, if $G C D(n, d)=1$, then $q\left(X_{n}\right)=0$.
Proof. By hypothesis, we find that $b_{1}\left(U_{n}\right)=r-1$ and B.C. $=r$.
We quote two divisibility theorems of the Alexander polynomials. See also [Ko], [LV].
Theroem 9 (Libgober [L]). Suppose f is irreducible. Then

$$
\Delta_{f}(t) \mid \prod_{\tilde{p}} \Delta_{\tilde{p}}(t)
$$

where \tilde{p} moves all local branches of $\operatorname{Sing}(C \cup L)$.

Theorem 10 (Dimca [D]). Suppose f is reduced. Then

$$
\Delta_{C}(t) \mid \prod_{p \in \operatorname{Sing}(C)} \tilde{\Delta}_{p}(t)
$$

where $\tilde{\Delta}_{p}(t)$ is the reduced local Alexander polynomial of p.

Corollary (Zariski [Z2]). Suppose L is in a general position. If C has only nodes and ordinary cusps as its singularities, then $q\left(X_{n}\right)=0$ unless $6 \mid n$ and $6 \mid d$.

Proof. We know that $\Delta_{p}(t)=t-1$ if p is a node $=t^{2}-t+1$ if p is an ordinary cusp. Thus $\Delta_{C}(t)=(t-1)^{(r-1)}\left(t^{2}-t+1\right)^{\ell}$ for some ℓ. In view of Theorem 8 , the assertion follows from this.

Remark. The assumption that L is in a general position is necessary in the above result. Let us consider the case: $f=(x+y)(x+y+1)$. In this case, we find that $q\left(X_{3}\right)=1$.

References

[CC] Catanese,F. and Ciliberto,C.:On the irregularity of cyclic coverings of algebraic surfaces. Preprint (1992)
[C] Comessatti,A.:Sui piani tripli ciclici irregolari. Rend. Circ. Mat. Palermo 31, 293310 (1911)
[dF] de Franchis,M.:I piani doppi dotati di due o più differenziali totali di prima specie. Rend. Accad. Lincei 13, 688-695 (1904)
[D] Dimca,A.:Alexander polynomials for projective hypersurfaces. Preprint (1989)
[E] Esnault,H.:Fibre de Milnor d'un cône sur une courbe plane singuliere. Invent. Math. 68, 477-496 (1982)
[H] Hamm,H.:Lefschetz theorems for singular varieties. Proc. Symp.Pure Math. 40, 547-557 (1983)
[He] Hironaka,E.:Polynomial periodicity for Betti numbers of covering surfaces. Invent. Math. (1992)
[K] Khashin,S.I.:The irregularity of double surfaces. Math. Notes 33 (1983)
[Ko] Kohno,T.:An algebraic computation of the Alexander polynomial of a plane algebraic curve. Proc. Japan Acad. Ser. A 59, 94-97 (1983)
[L] Libgober,A.:Alexander polynomial of plane algebraic curves and cyclic multiple planes. Duke Math. J. 49, 833-851 (1982)
[LV] Loeser,F. and Vaquié,M.:Le polynôme d'Alexander d'une courbe plane projective. Toplology 29, 163-173 (1989)
[M1] Milnor,J.:Singular points of complex hypersurfaces. Ann. Math. Studies 61 Princeton Univ. Press (1968)
[M2] Milnor,J.:Infinite cyclic coverings. Topology of manifilds pp. 115-133 (1968)
[R] Randell,R.:Milnor fibers and Alexander polynomials of plane curves. Proc. Symp. Pure Math. 40, 415-419 (1983)
[S] Sakai,F.:Singularities of plane curves. To appear (1992)
[SS] Shinohara,Y and Sumners,D.W.:Homology invariants of cyclic coverings with applications to links. Trans. A. M. S. 163, 101-121 (1972)
[Su] Suzuki,M.:Sur les opérations holomorphes du groupe additif complexe sur l'espace de deux variables complexes. Ann. Sci. Éc. Norm. Sup. 10, 517-546 (1977)
[Z1] Zariski,O.:On the linear connection index of the algebraic surfaces $z^{n}=f(x, y)$. Proc. Nat. Acad. Sci. 15, 494-501 (1929)
[Z2] Zariski,O.:On the irregularity of cyclic multiple planes. Ann. of Math. 32, 485-511 (1931)
[Zu] Zuo,K.:Kummer-Überlagerungen algebraischer Flächen. Bonner Math. Schrift. 193 (1989)

Department of Mathematics, Faculty of Science, Saitama University, Urawa, Japan

