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ABSTRACT

Evolution of resource allocation strategies is studied by using a simple
mathematical model. Considered are the allocation of cells to stalks and
spores by cellular slime molds, that of reproductive investment to
daughters and sons by aphids, and that of reproductive investment to
cleistogamic and chasmogamic flowers by plants. Evolutionarily stable
strategies, which are equivalent in this case to the Nash equilibrium
strategies in non-cooperative games, are obtained. It is shown that, at the
evolutionary equilibrium, amount of resource allocated to a component
(spores, sons or non-dispersing offspring) is equalized among individuals,
even if they have different amount of total resource. We discuss the
properties common to all these resource allocation problems and propose
“the law of equalization in net income\dagger ’.

INTRODUCTION

One of the everlasting problems in human social interaction is the
problem of taxation. How much should an individual of certain income be
taxed ? Many governments in the world employ a mixed strategy of
taxing; an income tax and a sales tax. In the income tax, taxation rate to
an individual is deternined on the basis of his total income and is usually
an increasing function of it. In sales tax, any kind of consuming activity
is taxed by some fixed rate which is independent of individual’s total
income. In addition, some governments employ, or try to employ, a poll
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tax in which every citizen must pay some fixed amount of tax irrespective
of his total income.

We here study the evolution of tax payment by cellular slime
molds. The cellular slime mold is one of the simplest multi-cellular
organisms. The life history of it consists of two distinctive phases; $t\prime free-$

living’l and $naggregating^{1\prime}$ Spores germinate to free-living amoeboid
cells, which grow by phagocytosis and multiply by binary fission under a
suitable food supply (free-living phase; Bonner, 1967). If these cells
become starved, they aggregate to form a pseudoplasmodium, which
moves to a suitable location and develops into a fruiting body
(aggregating phase; Bonner, 1947, 1967). Cells differentiate into two
types of cells in the fruiting body. In most species such as Dictyostelium
discoideum, about two-thirds of cells become spores, which gerninate to
amoeboid cells of the next generation (Bonner, 1978). The remainder,
called $\dagger\dagger stalk^{\dagger\prime}$ cells, support and elevate spores but leaves no descendants
for the next generation. The stalk may promote the dispersal of spores,
which adhere to the legs or carapaces of passing soil invertebrates
(Bonner, 1982 $a,$ $b$).

In nature, a fruiting body of the cellular slime mold is not
necessarily composed of a single clone (Buss, 1982). Spores disperse and
amoeboid cells move around and intermingle. Thus several clones may
coexist in close proximity, and further, they may co-aggregate to form a
fruiting body. In the fruiting body composed of several genetically
different clones, taxation problem arises. Stalk can be regarded as
lcommon $property^{\uparrow\dagger}$ that works to increase the utility of “private
property“, spores. The problem that must be solved is “How many cells
of each clone should differentiate into stalk cells ¿‘. Because stalk cells
can be regarded as tax, this problem can be rephrased as “How much
should each clone contribute to common property by paying tax ¿‘ In
the biological world, all the problems must be solved evolutionarily.
Thus we try to find the solution to the problem by obtaining the
evolutionarily stable stalk ratio of each clone, which will be achieved by
adaptive evolution.
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EVOLUTIONARILY STABLE STALK RATIO

We consider a fruiting body consisting of $m$ clones. We denote by $Xj$ and
$y_{i}$ , respectively, the total number of cells and the number of spore cells
belonging to clone $i(i=1,2,\ldots, m)$ in the fruiting body. The number of
stalk cells of clone $i$ is xj-yj. We also denote by et the fitness or the
expected number of surviving offspring of clone $i$ . For convenience, we

denote by $y$ the total number of spore cells $( \sum_{\mathcal{F}^{1}}^{m}yj)$ , and by $x$ the total

number of cells $( \sum_{\mathcal{F}-1}^{m}x)$. Total number of stalk cells is $x-y$. Let $y=(y_{1}$ ,

$y2,$ $\ldots,$
$y_{m}$) The ftness of clone $i$ is

$\phi_{7}\cdot=y_{i}$ fly, x) , (1)

because the survival probability of a spore is determined by the size of
the fruiting body and the size of the stalk. The function $f$ increases with
increasing stalk size, $x-y$, because spore dispersal is improved by a large
stalk.

A necessary condition for $y^{*}=(y_{1^{*}}, y_{2^{*}}, y_{m^{*}})$ to be
evolutionary stable is

$\frac{\partial\phi_{i}}{\partial_{\mathcal{Y}i}}=f+y_{t_{\mathcal{Y}i}^{*\frac{\partial}{\partial}1}}=0$

$\Leftrightarrow$ $y_{i^{*}}=- \frac{f}{\partial fl\partial_{\mathcal{Y}i}}$ (2-a)

and
$\frac{\partial^{2}\phi_{i}}{\partial_{\mathcal{Y}i^{2}}}=2\frac{\partial f}{\partial n_{i}}+y_{j^{*\frac{\partial^{2}f}{\partial_{\mathcal{Y}i^{2}}}\leq 0}}$ (2-b)

for $i$ that satisfies $y_{i^{*}}>0$ , and
$\frac{\partial\phi_{i}}{\partial\phi_{i}}=f+y_{t_{\mathcal{Y}i}^{*\frac{\partial}{\partial}L}}>0$

$\Leftrightarrow$ $y_{j^{*}}<- \frac{f}{\partial f/\partial_{\mathcal{Y}i}}$ (2-c)

for $i$ that satisfies $y_{j^{*}}=x_{j}$(these detivatives are all at $y=y^{*}$). This means

that clone $i$ cannot do better by changing its stalk ratio. Because $\frac{\partial f}{\partial_{\mathcal{Y}i}}=\frac{df}{dy}$

, the right hand sides of (2-a) and (2-c) are common to all $i$ . A clone
produces both stalks and spores if its size, $Xj$ , is larger than a critical size,
$y_{C}=-f/(\partial fl\partial y)$ , and produces spores alone if it is smaller. Moreover,
the number of spores produced by a clone larger than the critical size is
$y_{C}$ and is independent of clone size. Thus the fitness of clones larger than
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the critical size are equal; the larger clones do not necessarily enjoy
higher fitness than the smaller ones. Evolution of the clones trying to
maximize its self-interest will lead to the more progressive taxation rate
than income tax, and finally to the equalization of private property (net
incone). Thus we call this as “the law of equalization in net income’l.

The prediction of the present analysis seems to be easily testable by
marking cells of a clone, mixing them with other clones in various ratio
and letting the mixture form a fruiting body. However, there is no
experimental study on the differentiation ratio of individual clones in the
multi-clonal fruiting body. So far, we cannot find any experimental
support for our prediction.

In addition to the analysis shown above, we studied the
evolutionarily stable stalk ratio (ESSR) of cellular slime molds in more
detail (Matsuda and Harada, in press). We obtained the condition for
ESSR to be independent of fruiting body size and discussed other
properties of ESSR such as those equivalent to “the tragedy of commons”
(Hardin 1968), evolutionarily stable number of co-aggregating clones and
the conflict between large and small clones. Interested readers should
consult Matsuda and Harada (in press).

EQUALIZATION IN INVESTMENT

There are some species, other than cellular slime molds, in which
individuals are reported to allocate equal amount of reproductive
investment on a component of reproductive allocation even if there is
variation among individuals in total reproductive investment. For
example, Yamaguchi(1985) reported that sexuparae of an aphid,
Prociphilus oriens, produce equal number of sons; a larger sexupara with
large reproductive investment produces a larger number of daughters
than a smaller one, but produces the same number of sons as a smaller
one. Hiratsuka (1989) showed that individuals of a Polygonaceous plant,
Polygonum Thunbergii, produce equal number of cleistogamic (closed)
flowers; a large plant produces a larger number of chasmogamic (open)
flowers, but produces the same number of cleistogamic flowers as a
smaller one. In these situations, we cannot regard one component as
private property and the other as common property. Thus it seems that
we must treat these phenomena in the frame work different from that of
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cellular slime molds. Mathematically, however, these situations have
similar structures to the previous cellular slime mold case as shown
below, and, by clarifying the ecological significance of this structure, we
may be able to get a clue to treat broader range of ecological problems in
the same frame work.

Yamaguchi (1985) explained the sex allocation of the aphid by
analyzing a simple mathematical model as follows. Consider that mating
takes place between offspring of $m$ sexuparae; sons of $m$ sexuparae
compete locally for the access to the daughters of those sexuparae. In this
situation, the fitness of a sexupara $i$ is

$\phi_{7}\cdot=\gamma\frac{\mathcal{Y}i}{y}(x-y)+r(x_{j}-\mathcal{Y}t)$ (3)

where $Xj$ and $y_{i}$ are the total reproductive investment and the investment

to sons, respectively, of a sexupara $i$ . $y= \sum_{\Gamma-1}^{m}yj$ and $x= \sum_{\Gamma-1}^{m}xj,$ $r$ is a

positive constant. $x-y$ is the total investment to daughters and $\frac{\mathcal{Y}i}{y}$ is the

proportion of daughters that are inseminated by sons of sexuparae $i$ .
Thus the first term expresses the fitness increment through sons and the
second expresses that through daughters. A Nash non-cooperative
equilibrium in this case is

$y_{j^{*}}=y_{C}$ for $\{i:x_{j}>y_{C}\}$

$y \oint^{*}=Xj$ for $\{i:x_{j}\leq y_{C}\}$ ,
where

$y_{C}=y^{*}(1-2 \frac{y^{*}}{X})$ .
What produced the similarity between the cellular slime molds and

the aphid ? It can easily be seen that, in both cases, the ftness is written
as

$\phi_{\eta}\cdot=y_{j}fl_{j},$ $x$) $+c(xt-\mathcal{Y}t)$ , (4)

whereXy, x) is a decreasing function of $y$ and $c$ is a constant. In the
cellular slime molds, $f$ is the survival probability of a spore and $c=0$. In

the aphid, $f= \gamma\frac{x-y}{y}$ and $c=r$. $1tv,$ $x$) and $c$ are per capita fitness

increment through each component of investment. Thus (4) implies that
per capita ftness increment through the investment on one component
depends on the total amount of resource invested to that component, but
that through the investment on the other component is independent. We
can easily show that there exists a Nash equilibrium that satisfies
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$yj^{*}=y_{C}$ for $\{i;x_{j}>y_{C}\}$ (5-a)
$yt^{*}=Xj$ for $\{i:x_{j}\leq y_{C}\}$ (5-b)

or
$yj^{*}=0$ for all $i$ (5-c)

for some $y_{C}>0$ , if$f$ is a continuously differentiable decreasing function
of $y$ (Appendix). This can be regarded as an extension of the law of
equalization in net income.

Flower production of Polygonum Thunbergii is another example of
the extended law. Cleistogamic flowers produce non-dispersing seeds
which germinate at the place they are produced and compete with non-
dispersing seeds produced by neighboring plants. Thus their fitness
decreases as the number of cleistogamic flowers produced in the
neighborhood increases. Per capita fitness increment through investment
on the cleistogamic flowers depends on the total investment by the
neighboring plants on that type of flowers. On the other hand,
Chasmogamic flowers produce dispersing seeds whose ftness is not
affected by the local production of dispersing seeds. Therefore, the
fitness of a plant is expressed as (4), where $y_{j}$ is investment on
cleistogamic flowers, which implies equalization of the production of
cleistogamic flowers at the Nash equilibrium.
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APPENDIX

In this appendix, we show that there exists a Nash equilibrium that
satisfies

$y_{j^{*}}=y_{C}$ for $\{i;x_{j}>y_{C}\}$ , (5-a)
$y_{i^{*}}=Xj$ for $\{i:xt\leq y_{C}\}$ (5-b)

or
$y_{j^{*}}=0$ for all $i$ , (5-c)

if the fitness of individual $i$ is
$\phi_{i}=y_{j}fiy,$ $x$) $+c(x_{j}-\mathcal{Y}t)$ , (4)

where $f$ is a smoothly differentiable decreasing function of $y(= \sum_{\Gamma-1}^{m}yj),$ $c$

is a positive constant and $y_{i}$ represents strategy of individual $i$ that is

constrained by $0 \leq y_{i}\leq x\oint$ . Define $x= \sum_{\Gamma-1^{X}}^{m}j,$ $y=(y1, y2, y_{m})$ and $x=$

$(x1, x2, x_{m})$ . Assume without losing generality that $x1\geq x2\geq$ $\geq x_{m}$ .
From (4),

Al: $\frac{\partial\phi_{i}}{\partial_{\mathcal{Y}i}}=Xy,$
$x$) $+y_{t_{y^{-C}’}^{\frac{\partial}{\partial}f}}$

$whichimplie_{\frac{\partial\phi_{i}s}{\partial_{\mathcal{Y}i}}\geq_{y}^{\phi_{j}}}A2:\frac{\partial}{\partial}\lrcorner\Leftrightarrow \mathcal{Y}t\leq \mathcal{Y}j$

and

A3: $\frac{\partial\phi}{\partial_{\mathcal{Y}i}}$ takes the global maximum at $y=(O, 0,\ldots,0),f(O, x)-c$.
If $X0,$ $x$) $<c$ , then

$\frac{\partial\phi_{i}}{\partial_{\mathcal{Y}i}}<0$

is globally satisfied and $y=(O,$ $0,\ldots,0\rangle$ is a Nash equilibrium that satisfies
(5-c).

If$f(O, x)>c$ , there are two possibilities. $If^{\frac{\partial\phi_{1}}{\partial_{\mathcal{Y}1}}>0}$ at $y=x$, then,

from A2, $\frac{\partial\phi_{i}}{\partial_{\mathcal{Y}i}}>0$ is satisfied for all $i$ at $y=x$. Thus $y=x$ is a Nash

equilibrium that satisfies (5-b) in which $y_{C}$ is set to be larger than $x1$ . If
$\frac{\partial\phi_{1}}{\partial_{\mathcal{Y}1}}\leq 0$ at $y=x$, we can show that there exists a Nash equilibrium that

satisfies (5-a) and (5-b) as follows. Define a vector valued function $z(t)=$

$(Z1(J), Z2(t),\ldots,$ $z_{m}(t))$ , where
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$Zt(t)=t$ for $\{i:x_{j}\geq t\}$

$zt(t)=Xj$ for $\{i;x_{j}<t\}$

Then, by Al,

$\frac{\partial\phi_{i}}{\partial_{\mathcal{Y}i}}|_{y=z(t)}=\frac{\partial}{\partial}\frac{\phi}{y}ij|_{y=z(t)}$ for $\{i, j:x_{j}\geq t, x_{j}\geq t\}$

$\frac{\partial\phi_{i}}{\partial_{\mathcal{Y}i}}|_{y=z(t)}\leq\frac\partial_{\mathcal{Y}j}^{\lrcorner}\partial\phi\cdot|_{y=z(t)}$ for $\{i, j:x_{j}\geq t, xj<t\}$

Thus, by the continuity $of\frac{\partial\phi}{\partial y_{i}}$ and A2, there exists $t^{*}$ such that, for $\{i:Xi$

$\geq t^{*}\},$ $\frac{d\phi_{i}}{dy_{i}}|_{y=z(t)}$ changes sign from minus to plus at $t=t^{*}ast$ is

continuously decreased, and, for $\{i;x_{j}\geq t^{*}\}$ ,

$\frac{d\phi_{i}}{dy_{i}}|_{y=z(t^{*})}>0$

This implies that
$y_{j}=y_{C}$ for $\{i:x\oint\geq r\}$

$y_{j}=x_{i}$ for $\{i:x_{j}<t\}$

is a Nash equilibrium, if we define $y_{C}=t^{*}$ .
In the case of cellular slime molds,

$c=0\leq f(0, x)$ .
Thus there exists a Nash equilibrium that satisfies (5-a) and (5-b), which
implies “the law of equalization in net $income^{1}’$ .


