Exchange Algebras and Economic Field

Hiroshi Deguchi
Global Communication Center
International University of Japan
5-2-32, minami azabu, minato-ku, Tokyo, 106, Japan
Internet: d33099@tansei.cc.u-tokyo.ac.jp

Key Words: Exchange Algebra, complex system, economic field, SNA

ABSTRACT
In this paper we analyze economic systems as complex economic field by using exchange algebras. Exchange algebras is the extension of accounting vector space which was introduced by H.Deguchi and B.Nakano[1]. By using this algebras we describe systemic properties of economic exchange and properties of economic field which gives a formal model for SNA(System of National Account).

1. EXCHANGE ALGEBRAS
1.1 CONCEPT OF EXCHANGE AND ECONOMICS
The notions of exchange in economic systems are usually discussed for analyzing the structure of a market. In this paper, however, we study the notions of exchange as a descriptive basis of economic systems and investigate the notion for analyzing common structure of different economic systems.

1.2 REDUNDANT ALGEBRAS
We previously introduced the notion of accounting vector space as an abstraction of the book-keeping system[1]. Now we give a further abstraction and give basic notions to develop economic analysis over the algebras. In this paper we omit some proofs of the proposition.

At first we introduce the notion of redundant algebras corresponding to vector spaces used in natural sciences. Redundant algebras do not use the notion of negative elements. Instead of using negative elements we add redundant elements to the algebras by using the notion of dual basis. In order to formulate the notion of exchange in economics we need to add several axioms to this algebras. Then we can formulate the mathematical structure of exchange which has been ambiguous in economics.

[Definition 1.1] Redundant algebras \(\Psi \)
Let \(\Psi \) be a non-empty set and \(T \) be a set of non negative integers \(\mathbb{Z}^+ \) or non-negative real numbers \(\mathbb{R}^+ \). We call \(T \) the set of scalars. We define a binary
operation + and unary operations ^, ~ on \(\Psi \) and a scalar multiplication \(ax \in \Psi \) for \(a \in T \) \(x \in \Psi \), which satisfy the following axioms.

1. \(x + y = y + x \)
2. \((x + y) + z = x + (y + z) \)
3. \(x + 0 = x \)
4. \(a(bx) = (ab)x \)
5. \(1x = x, 0x = 0 \)
6. \((a + b)x = ax + bx \)
7. \(a(x + y) = ax + ay \)
8. \(x = x \)
9. \(^\wedge x = x \)
10. \(^\wedge (x + y) = ^\wedge x + ^\wedge y \)
11. \(^\wedge(x + y) = ^\wedge x + ^\wedge y \)
12. \(^\wedge(x + ^\wedge y) = 0 \equiv ^\wedge x = ^\wedge y \)
13. \(^\wedge(x + ^\wedge y) = 0 \equiv ^\wedge x = ^\wedge y \)
14. \((ax)^\wedge = a(^\wedge x) \)
15. \(x + y = 0 \rightarrow x = 0 \wedge y = 0 \)
16. \(ax = 0 \rightarrow a = 0 \vee x = 0 \)

Then we call \(\Psi \) a redundant algebras or a redundant space. We speack of a real redundant algebras or a \(Z^\star \)-redundant algebras according as \(T = R^\star \) or \(T = Z^\star \) respectively.

[Proposition 1.1]

1. \(^\wedge(x + ^\wedge x) = 0 \)
2. \(x + z = x \rightarrow z = 0 \)

Proof: (1) From axiom (12) we get \(^\wedge(x + ^\wedge x) = 0 = ^\wedge x = ^\wedge x \) and \(^\wedge x = ^\wedge x \) is clear. (2) Let us show contraposition. Let \(z \neq 0 \). If we assume \(x + z = x \) then \(^\wedge x + x + z = ^\wedge x + x \). From (1) \(^\wedge(x + ^\wedge x) = 0 \). Thus \(^\wedge(x + x + z) = ^\wedge((^\wedge x + x) + z) = ^\wedge(0 + z) = ^\wedge z = z = 0 \).

[Definition 1.2] Subspace: A non-empty subset \(M \) of a redundant space \(\Psi \) is called a redundant subspace of \(\Psi \), if \(M \) satisfies the following conditions.

1. \(\text{if } x, y \in M \text{ then } x + y \in M \)
2. \(\forall x \in M, a \in T \ ax \in M \)
3. \(\forall x \in M ^\wedge x \in M \)
4. \(\forall x \in M ^\wedge x \in M \)

If \(M \) satisfies only the condition (1), (2), then \(M \) is called a weak redundant subspace of \(\Psi \). Next we introduce a similar notion of the norm of usual linear spaces.

[Definition 1.3] Redundant norm

A norm on a redundant space \(\Psi \) is a function which assigns to each element \(x \) in the \(\Psi \) a real number \(|x| \) in such a manner that

1. \(|x| > 0 \) and \(|x| = 0 \equiv x = 0 \)
2. \(|ax| = |a||x| \)
3. \(|x + y| \leq |x| + |y| \)
4. \(|^\wedge x| = |x| \)

[Proposition 1.2] \(|x + y| \leq |x| + |y| \)

We can introduce the notions of linear combination, linear dependence, linear independence, dimension, and basis according to linear spaces but we omit it in this paper[1, 2, 3].

[Definition 1.4] Linear combination and weak linear combination

Let \(\Psi \) be a redundant space, and if \(\{x_1, \ldots, x_n\} \) be a finite nonempty set of elements in \(\Psi \), then an element \(x = a_1x_1 + a_2x_2 + \ldots + a_nx_n \) is called a
linear combination of \(x_1, \ldots, x_n \), where \(a_1, \ldots, a_n, b_1, \ldots, b_n \in T \). And \(y = a_1x_1 + a_2x_2 + \ldots + a_nx_n \) is called a weak linear combination of \(x_1, \ldots, x_n \), where \(a_1, \ldots, a_n \in T \).

Definition 1.5 Linear independence, linear dependence, dimension, basis. Let \(\Psi \) be a redundant space, and let \(S = \{ x_1, \ldots, x_n \} \) be a finite non-empty set of elements in \(\Psi \). \(S \) is said to be linearly dependent if there exist scalars \(a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n \) for not all of \(i(1 < i < n) \) \(a_i = b_i \), such that

\[
\sum(a_1x_1 + a_2x_2 + \ldots + a_nx_n + b_1x_1 + \ldots + b_nx_n) = 0.
\]

(1)

If \(S \) is not linearly dependent, then it is called linearly independent; and this clearly means that if equation (1) holds for certain scalar coefficients \(a_1, \ldots, a_n, b_1, \ldots, b_n \), then for all these scalar \(a_i = b_i \) \(1 < i < n \) necessarily, i.e., if

\[
(a_1x_1 + a_2x_2 + \ldots + a_nx_n + b_1x_1 + \ldots + b_nx_n) = 0 \quad \text{then} \quad a_i = b_i, \quad \forall i \neq n.
\]

Let \(\Psi \) be a redundant space. If \(\Psi \) contains \(n \) independent elements and every \(n + 1 \) elements always become dependent, then \(\Psi \) is called \(n \)-dimensional. If there exist \(n \) independent elements for \(\forall n \in N \), then \(\Psi \) is called infinite-dimensional. Let \(\Psi \) be a \(n \)-dimensional redundant space, then a set of \(n \) independent elements is called a basis for \(\Psi \).

Proposition 1.3

Let \(\Psi \) be a \(n \)-dimensional redundant space. If \(e_1, e_2, \ldots, e_n \) are independent elements in \(\Psi \), then \(\forall x \in \Psi \) uniquely expressed such as \(x = a_1e_1 + \ldots + a_ne_n + b_1e_1 + \ldots + b_ne_n \).

Proof: Let \(x = \sum a_i e_i + \sum b_i e_i \), \(y = \sum a'_i e_i + \sum b'_i e_i \) and \(x = y \). Then we get \((x + ^e y) = 0 \) from axiom (12) and \(\sum x = \sum y \). Thus \((\sum (a_i + b_i) e_i + \sum (a'_i + b'_i) e_i) = 0 \) holds. We assume that \(e_1, e_2, \ldots, e_n \) are independent, then \(a_i + b_i = a'_i + b'_i, \quad i = 1, \ldots, n \) holds. Let \(c_i = a_i - a'_i = b_i - b'_i \), then we show that \(c_i \) become 0 for any \(i \). From proposition 1.1 (2) \(x + y = 0 \rightarrow x = 0 \wedge y = 0 \) holds. We can assume that \(c_i \geq 0, \quad a_i = a'_i + c_i, \quad b_i = b'_i + c_i \). Thus we can assume \(z = \sum c_i e_i + \sum c_i e_i \) and \(y + z = x \) and \(z = 0 \) hold. From axiom (15), \(c_1e_1 = 0, \quad c_i e_i = 0, \quad \forall i = 1, \ldots, n \) hold. Then we get \(c_i = 0 \) from \(e_i \neq 0, \quad \forall e_i \neq 0 \).

Q. E. D.

Definition 1.6

Let \(A \) be an arbitrary non-empty subset of a \(n \)-dimensional redundant space \(\Psi \). We denote the smallest subspace which contains \(A \) by \([A]_r \). We denote the set of all weak linear combinations of elements in \(A \) by \([A] \). Usually \([A] \) is not a redundant space.

Definition 1.7 Basic basis, dual basis, extended basis.

Let \(\Lambda \) be a basis of \(\Psi \). If \(|x|=1 \) for \(\forall x \in \Lambda \), then \(\Lambda \) is called a basic basis of \(\Psi \) and \(^\Lambda = \{e | e \in \Lambda \} \) is called the dual basis of \(\Lambda \) and \(\Gamma = \Lambda \cup ^\Lambda \) is called the extended basis of \(\Lambda \).

Proposition 1.4

(1) If \(\Lambda \) be a basis of a \(n \)-dimensional redundant space \(\Psi \), then \(^\Lambda \) is a basis of \(\Psi \).

(2) If \(\Lambda \) be a basis of a \(n \)-dimensional redundant space \(\Psi \), then \([\Lambda], =[^\Lambda], =[^\Lambda] \).
$\Delta \cup \Delta = \Psi$

1.3 EXCHANGE ALGEBRAS

We add the axioms to redundant algebras and define exchange algebras.

[Definition 1.8] Exchange Algebras

Let Δ be a basic basis of a redundant space Ψ and $\Gamma = \Delta \cup \Delta$ be the extended basis of Δ. If there exist a relation \Leftrightarrow on Γ satisfying next six axioms, then Ψ is called an exchange algebras. We call the relation \Leftrightarrow an exchange relation and the basic basis Δ on which the relation \Leftrightarrow is defined is called an exchange basis of an exchange algebras and Γ is called an extended exchange basis.

(1) $\forall x, y \in \Gamma \ x \Leftrightarrow y \Rightarrow \Leftrightarrow x \Leftrightarrow y$
(2) $\forall x, y, z \in \Gamma \ x \Leftrightarrow y$ and $y \Leftrightarrow z \Rightarrow \neg (x \Leftrightarrow z)$
(3) $\forall x, y \in \Gamma \ x \Leftrightarrow y \Rightarrow \Leftrightarrow y \Leftrightarrow x$
(4) $\forall x, y \in \Gamma \ x \Leftrightarrow y \Rightarrow \neg (x \Leftrightarrow y)$
(5) $\forall x, y, z \in \Gamma \ \neg (x \Leftrightarrow y)$ and $\neg (y \Leftrightarrow z) \Rightarrow \neg (x \Leftrightarrow z)$
(6) $\forall x \in \Gamma \ \exists y \in \Gamma \ x \Leftrightarrow y$

Remark: In exchange algebras the selection of an exchange basis on which an exchange relation is defined is important. We do not assume that an exchange relation is preserved in a transformation between basis.

[Definition 1.9] Trivial basis

Let Δ be an exchange basis of an exchange algebras Ψ. If $\forall x, y \in \Delta \ \neg (x \Leftrightarrow y)$, then Ψ is called trivial and Δ is called a trivial exchange basis.

[Proposition 1.5]

Let Δ be an non-empty exchange basis of an exchange algebras Ψ.

$\forall x \in \Gamma \ x \Leftrightarrow \Delta$, where $\Gamma = \Delta \cup \Delta$

[Proposition 1.6]

(1) $\forall x \in \Gamma \ \neg (x \Leftrightarrow x)$ (2) $\neg (x \Leftrightarrow \Delta) \Rightarrow x \Leftrightarrow y$

[Example] Accounting Algebras

Let $\Delta = \{\text{assets, liabilities, capital, profit, cost}\}$ and let $\Delta = \{\text{assets, liabilities, capital, profit, cost}\}$ and $\Gamma = \Delta \cup \Delta$. Let $[\Gamma]_1$ denote the commutative free semi-group generated by Γ with unit element 0. Then the operations $-$ and Δ can be defined on $[\Gamma]_1$ (cf.[2]) and it is easy to show that $[\Gamma]_1$ is a redundant algebras. If the exchange relation \Leftrightarrow on Γ is defined below, then $[\Gamma]_1$ becomes an exchange algebras: assets \Leftrightarrow liabilities, assets \Leftrightarrow profit, assets \Leftrightarrow capital, cost \Leftrightarrow liabilities, cost \Leftrightarrow profit, cost \Leftrightarrow capital and other relations on Γ are determined uniquely by the axioms.

[Proposition 1.7]

Let Δ be a basic basis of a redundant space Ψ and \Leftrightarrow be a relation on Δ which satisfy the axioms (2), (3), (5), (6). Then the relation \Leftrightarrow can be extended to the relation on the extended basis Γ uniquely.
2. ECONOMIC FIELD

2.1 DEFINITION OF ECONOMIC FIELD

In this section we extend the notion of exchange algebras for
describing multi units economic systems. Let Ω be a set of economic units,
then we define the state of economic field as a function from Ω to
accounting vector space. The notion of economic field corresponds to the
notion of vector field or tensor field in the physical systems description.
Nevertheless its similarity is small. Vector space is defined on the three
dimensional space. In the economic field a set of economic units(Ω)
corresponds to the space and the structure of Ω can change in its self-
organizing process and each unit $\omega \in \Omega$ might have different decision
making rules and different roles in the system. Next we introduce the
basic definitions for discussing these problems.

[Definition 2.1] R-L decomposition, P-M decomposition
Let $\Gamma = \Lambda \cup^\Lambda = \text{credit side} \cup \text{debit side}$, is a basis of exchange algebras.
Then the following operators are introduced depending on proposition 1.4 of
the previous part.

1. $x \in [\Gamma]$ is decomposed uniquely as follows,
 $x = x_r + x_i$, $x_r \in [\text{debit side}]$, $x_i \in [\text{credit side}]$.
 We define operators R and L as $R(x) = x_r$, $L(x) = x_i$. Then the R-L
decomposition of x is defined as $x = R(x) + L(x)$.

2. $x \in [\Gamma]$ is decomposed uniquely as follows,
 $x = x^* + x^\ast$, $x^r \in [\Lambda]$, $x^i \in [^\Lambda\Lambda]$.
 We call the decomposition, $x = P(x) + M(x)$, $P(x) = x^r$, $M(x) = x^i$, P-M
decomposition of x.

[Cor.] $RR = R$, $LL = L$, $PP = P$, $MM = M$

[Definition 2.2] norm balance
If $x \in [\Gamma]$ satisfies the condition $|R(x)| = |L(x)|$, then x is called norm
balanced, where the norm $||$ is accounting norm defined on exchange
algebras.

[Definition 2.3] norm balanced space
Let $[\Gamma]_b = \{x | x \in [\Gamma] \text{ and } |R(x)| = |L(x)|\}$, then $[\Gamma]_b$ is called a norm
balanced space.

[Proposition 2.1]

$[\Gamma]_b$ is a sub algebras of an exchange algebras$[\Gamma]$, that is,

1. if $x, y \in [\Gamma]_b$ then $x + y \in [\Gamma]_b$
2. if $x \in [\Gamma]_b$ and $a \in \mathbb{N}$ then $ax \in [\Gamma]_b$
3. if $x \in [\Gamma]_b$ then $^ax \in [\Gamma]_b$
4. if $x \in [\Gamma]_b$ then $\bar{x} \in [\Gamma]_b$

We can explain error checking ability of the book keeping system by
using the notion of norm balanced space. The calculations in the
bookkeeping system is closed in the sub algebras, norm balanced space, then we can find the error by checking the norm balanced property of the element \(x \) which is the result of any calculations on the norm balanced space.

It is possible to extend our algebras to the operator algebras on the space. It will become a functional analysis over the exchange algebras. These extension is necessary for studying the problem of production and decision making. In this manuscript we omit these problems. Instead of it we formulate the notion of economic field.

[Definition 2.4] ECONOMIC FIELD

Let \(\Omega \) be a set of economic units and \([1^n]_b\) be a norm balanced space. Then \(K(\Omega, [1^n]_b) = \{f \mid f: \Omega \to [1^n]_b\} \) is called an economic field and an element \(f \) is called a state of economic field.

We consider that the state description by using economic field is common in any economic systems.

3. STRUCTURE OF ECONOMIC FIELD AND SNA

In this chapter we introduce the definition of simplified national economic field.

[Definition 3.1] Basic Set of Economic Units \(\Omega_0 \).

Basic accounts \(\Lambda_0 \)

\(\Omega_0 = \{a_1, \ldots, a_m, b_1, \ldots, b_m, \text{Household, Government, Overseas}\} \)

Where, \(\{a_1, \ldots, a_m\} = \text{Set of manufacturing enterprises} \)

\(\{b_1, \ldots, b_m\} = \text{Set of banking enterprises} \)

\(\Lambda_0 = \text{Asset accounts}_0 \cup \text{Liability accounts}_0 \cup \text{Revenue accounts}_0 \cup \text{Cost accounts}_0 \)

\(\text{Asset accounts}_0 = \text{Current assets} \cup \text{Stock investments} \cup \text{Products} \cup \text{Service} \)

\(\text{Current assets} = \{\text{Cash, Deposits, Trade accounts receivable, Receivable, Equity securities}\} \)

\(\text{Products} = \{e_1, \ldots, e_n\} \)

\(\text{Service} = \{\text{Government service}\} \)

\(\text{Stock investments} = \{\text{Equipment investments, Inventory investments}\} \)

Stockholders' equity\(_0\) = \{\text{Capital stock, Reserve for depreciation, Reserve}\}

\(\text{Liability accounts}_0 = \{\text{Trade accounts payable, Payable}\} \)

\(\text{Revenue accounts}_0 = \{\text{Value added, Operating surplus, Wages earned, Taxes revenue, Dividends earned, Interest earned}\} \)

\(\text{Cost accounts}_0 = \{\text{Wages expense, Interest expense, Taxes expense, Dividends expense, Consumption expense}\} \)

Next we introduce the two types of sets of economic units and map between them.

[Definition 3.2] Sector-Set \(\Omega_1 \), Integrated-Set \(\Omega_2 \).

\(\Omega_1 = \{\text{Industry, Banking enterprise, Household, Government, Overseas}\} \)
\(\Omega_2 = \{ \text{Nation, Overseas} \} \)

Maps \(g_1: \Omega_0 \rightarrow \Omega_1 \), \(g_2: \Omega_1 \rightarrow \Omega_2 \) are defined as follows.

1. \(g_1: \Omega_0 \rightarrow \Omega_1 \)
 (a) If \(\omega \in \text{Set of manufacturing enterprises} \) then \(g_1(\omega) = \text{Industry} \)
 (b) If \(\omega \in \text{Set of banking enterprises} \) then \(g_1(\omega) = \text{Banking enterprise} \)
 (c) If \(\omega \in \{ \text{Household, Government, Overseas} \} \) then \(g_1(\omega) = \omega \)

2. \(g_2: \Omega_1 \rightarrow \Omega_2 \)
 (a) If \(\omega \in \{ \text{Industry, Banking enterprise, Household, Government} \} \) then \(g_1(\omega) = \text{Nation} \)
 (b) If \(\omega \in \{ \text{Overseas} \} \) then \(g_1(\omega) = \omega \)

[Definition 3.3] Internal transaction, External transaction

The transactions in a period are classified as follows.

1. **Internal transaction** \(\text{Tr}_{\text{int}}[\omega_i, \Omega, \Gamma, a_i] \subseteq F[\Omega, \Gamma] \)
 Let \(f \) be a transaction and \(f(\omega_0) = 0 \) if \(\omega \neq \omega_i \), then \(f \) is called an internal transaction for \(\omega_i \).
 Internal transactions are made as self-decision making. INT give a classification of the internal transactions as follows.
 INT = \{ Production, Equipment investments, Inventory investments, Consumption expense, Operating surplus transfer, Depreciation, Reserve transfer \}

 a. **Production**
 \(\text{Tr}_{\text{int}}[\omega_i, \Omega, \Gamma | \text{Production}] \)
 \(f(\omega_i) = x_i a_i + \ldots + x_n a_n + z a_i + 1 + y \)
 Value added, where \(a_i, \ldots, a_n \in \text{Products} \), \(a \in \text{Products} \cup \{ \text{Government service} \} \), \(z = x_i + \ldots + x_n + y \).

 b. **Equipment investments (Industry, Government)**
 \(\text{Tr}_{\text{int}}[\omega_i, \Omega, \Gamma | \text{Equipment investments}] \)
 \(f(\omega_i) = x_i e + x_i, \text{Equipment investments} \), \(e \in \text{Products} \).

 c. **Inventory investments**
 \(\text{Tr}_{\text{int}}[\omega_i, \Omega, \Gamma | \text{Inventory investments}] \)
 \(f(\omega_i) = x_i e + x_i, \text{Inventory investments} \), \(e \in \text{Products} \).

 d. **Consumption expense (Household, Government)**
 \(\text{Tr}_{\text{int}}[\omega_i, \Omega, \Gamma | \text{Consumption expense}] \)
 \(f(\omega_i) = x_i e + x_i, \text{Consumption expense} \), \(e \in \text{Products} \cup \{ \text{Government service} \} \).

 e. **Operating surplus transfer**
 \(\text{Tr}_{\text{int}}[\omega_i, \Omega, \Gamma | \text{Operating surplus transfer}] \)
 \(f(\omega_i) = x_i + \text{Value added} + x_i, \text{Operating surplus} \).

 f. **Depreciation**
 \(\text{Tr}_{\text{int}}[\omega_i, \Omega, \Gamma | \text{Depreciation}] \)
 \(f(\omega_i) = x_i + \text{Value added} + x_i, \text{Reserve for depreciation} \).

 g. **Reserve transfer**
$\text{Tr}_{\text{in}}[\omega, \Omega, \Gamma \mid \text{Reserve transfer}]
\text{f}(\omega) = x_i,^\text{\$Operating surplus}+x_i,^\text{\$Reserve}.$
e.t.c.

(2) \textbf{External transaction $\text{Tr}_{\text{ext}}[\alpha, \beta, \Omega, \Gamma \mid b_k] \subseteq F(\Omega, \Gamma)$}
\text{f:External transaction between α and β, α, $\beta \in \Omega$ is a transaction as follows.}
\text{f}(\alpha) \neq 0, \text{f}(\beta) \neq 0, \text{f}(\omega) = 0 \text{ if $\omega \neq \alpha$ or $\beta, b_k \in \text{EXT}$ is classified by External transaction as follows.}
\text{EXT} = \{\text{Domestic products transaction, Deposits transaction, Product export transaction, Product import transaction, Interest transaction, Wages transaction, Taxes transaction, Dividends transaction, Loan transaction, Equity securities transaction, e.t.c.}\}
\textbf{a. Domestic products transaction}
\text{Tr}_{\text{ext}}[\alpha, \beta, \Omega, \Gamma \mid \text{Domestic products transaction}]
\text{For example,}
\text{f}(\alpha) = x_i,^\text{\$Cash}+x_i,^\text{\$Cash}, \text{or}
\text{f}(\beta) = x_i,^\text{\$Cash}+x_i,^\text{\$Cash}, \text{Trade accounts receivable}, \text{f}(\beta) = x_i,^\text{\$Cash}+x_i,^\text{\$Trade accounts payable}
\text{e_i \in Products}
\textbf{b. Deposits transaction}
\text{Tr}_{\text{ext}}[\alpha, \beta, \Omega, \Gamma \mid \text{Deposits transaction}]
\text{f}(\alpha) = x_i,^\text{\$Cash}+x_i,^\text{\$Deposits}
\text{f}(\beta) = x_i,^\text{\$Cash}+x_i,^\text{\$Deposits payable}
or
\text{f}(\alpha) = x_i,^\text{\$Cash}+x_i,^\text{\$Deposits}
\text{f}(\beta) = x_i,^\text{\$Cash}+x_i,^\text{\$Deposits payable}
\alpha \in \{\text{Household, Government} \cup \text{Set of manufacturing enterprises, } \beta \in \text{Set of banking enterprises}
\textbf{c. Product export transaction}
\text{Tr}_{\text{ext}}[\alpha, \text{Overseas}, \Omega, \Gamma \mid \text{Product export transaction}]
\text{f}(\alpha) = x_i,^\text{\$Cash}
\text{f(Overseas)} = x_i,^\text{\$Cash}
e_i \in \text{Products}
\textbf{d. Product import transaction}
\text{Tr}_{\text{ext}}[\alpha, \text{Overseas}, \Omega, \Gamma \mid \text{Product import transaction}]
\text{f}(\alpha) = x_i,^\text{\$Cash}
\text{f(Overseas)} = x_i,^\text{\$Cash}
e_i \in \text{Products}
\textbf{e. Interest transaction}
\text{Tr}_{\text{ext}}[\alpha, \beta, \Omega, \Gamma \mid \text{Interest transaction}]
\text{f}(\alpha) = x_i,^\text{\$Cash}+x_i,^\text{\$Interest earned}
f(β)=x₁,Cash+x₁,Interest expense

f. Wages transaction
T_{ext}[a, Household, Ω, Γ | Wages transaction]
f(α)=x₁,Wages expense+x₁,Cash
f(Handhold)=x₁,Wages earned+x₁,Cash

g. Taxes transaction
T_{ext}[a, Government, Ω, Γ | Taxes transaction]
f(α)=x₁,Taxes expense+x₁,Cash
f(Government)=x₁,Taxes revenue+x₁,Cash

h. Dividends transaction
T_{ext}[a, β, Ω, Γ | Dividends transaction]
f(α)=x₁,Dividends expense+x₁,Cash
f(β)=x₁,Dividends earned+x₁,Cash

i. Loan transaction
T_{ext}[a, β, Ω, Γ | Loan transaction]
f(α)=x₁,Receivable+x₁,Cash
f(β)=x₁,Payable+x₁,Cash
or f(α)=x₁,Receivable+x₁,Cash
or f(β)=x₁,Payable+x₁,Cash

j. Equity securities transaction
T_{ext}[a, β, Ω, Γ | Equity securities transaction]
f(α)=x₁,Equity securities+x₁,Cash
f(β)=x₁,Capital stock+x₁,Cash
or f(α)=x₁,Equity securities+x₁,Cash
or f(β)=x₁,Equity securities+x₁,Cash

In this case we omit the problem of capital gain.
e.t.c.

We denote \(\bigcup \{T_{int}[ω_i, Ω, Γ | X] | ω_i ∈ Ω \} \) by \(T_{int}[ω, Γ | X] \), or simply \(X \). We also define the set of internal transactions as follows.
\[\text{INTrS} = \bigcup \{T_{int}[ω, Γ | X] | X ∈ \text{INT} \} \]

We denote \(\bigcup \{T_{ext}[a, β, Ω, Γ | X] | a, β ∈ Ω \} \) by \(T_{ext}[Ω, Γ | X] \), or simply \(X \). We also define the set of external transactions as follows.
\[\text{EXTrS} = \bigcup \{T_{ext}[Ω, Γ | X] | X ∈ \text{EXT} \} \]

Then the set of transactions of \(ω_i \), \(\text{TrS}[Ω_i] \), is defined as follows.
\[\text{TrS}[ω_i] = \text{EXTrS}[ω_i] \cup \text{INTrS}[ω_i] = \bigcup \{Pr[ω_i](f) | f ∈ \text{EXTrS} \} ∪ \bigcup \{Pr[ω_i](f) | f ∈ \text{INTrS} \} \]
where, \(\text{Pr}[ω_i] \) is a projection of a transaction to the transaction of the economic unit \(ω_i \).

The set of the transactions of the economic units belonging to \(Ω \), \(\text{TrS}[Ω] \), is defined as follows.
\[\text{TrS}[Ω] = \bigcup \{\text{Tr}[ω_i] | ω_i ∈ Ω \} \].
Notice that our descriptions are different from usual business accounting. It is rather similar to SNA. Instead that SNA consists of statistical notions our notions are algebraic.

In this paper we do not discuss how these transactions are determined. This is a problem of economic decision making and self control. In this paper we introduce field quantities of economic field which are basis of studying interactors on the field.

Definition 3.4 Basic-National economic field, Sector-National economic field, Integrated-National economic field

We denote Basic-National economic field by $F[\Omega_0, \Gamma_0]$, Sector-National economic field by $F(\Omega_1, \Gamma_1)$ or $F[\Omega_1, \Gamma_1]$ and Integrated-National economic field by $F[\Omega_2, \Gamma_0]$.

Definition 3.5 Simple-Sector-Aggregation map

Simple-Sector-Aggregation map $G_0: F(\Omega_0, \Gamma_0) \rightarrow F(\Omega_1, \Gamma_0)$

Let $f \in F(\Omega_0, \Gamma_0)$ then Simple-Aggregation map G_0 is defined as follows.

For $\omega \in \Omega_2$, $G_0(f)(\omega) = \Sigma \{f(\sigma) | \sigma \in g_{1}\omega(\Omega)\}$

In some cases of aggregation it is important to offset the accounts of transactions. Then we introduce the offset function as follows.

Definition 3.6 Offset function

Let f be transactions between economic units $a1$ and $a2$ and $AGS=$\{Trade accounts receivable, Trade accounts payable\}, \{Deposits, Deposits payable\}, \{Interest earned, Interest expense\}, \{Dividends earned, Dividends expense\}, \{Receivable, Payable\}, \{Equity securities, Capital stock\}

Then offset function $S[A, B], \{A, B\} \in AGS$ is defined as follows.

For $f(\sigma 1) = xA + \ldots$, $f(\sigma 2) = xB + \ldots$, $a1$, $a2 \in g^{-1}(\omega)$,

\[S[A, B](f)(\sigma 1) = -f(\sigma 1) + xA\]
\[S[A, B](f)(\sigma 2) = -f(\sigma 2) + xB\]

§ Sector-National economic field

Definition 3.7 Production Vector $f_{pro}[e]$, Needs Vector $f_{needs}[e]$.

Let $\text{Products} = \{e_1, \ldots, e_n\}$ and denote $\Sigma \{Pr[e](f) | f \in \text{Set}\}$, $\text{SET} \subseteq F[\Omega, \Gamma]$ by $f_{sum}[e, \text{Set}]$. Then the production Vector and the needs Vector are defined as follows.

$f_{pro}[e] = f_{sum}[e, \text{Production}] + f_{sum}[e, \text{Product import transaction}]$

$f_{needs}[e] = f_{sum}[e, \text{Production}] + f_{sum}[\bar{e}, \text{Industry Equipment investments}] + f_{sum}[\bar{e}, \text{Government Equipment investments}] + f_{sum}[\bar{e}, \text{Inventory investments}] + f_{sum}[\bar{e}, \text{Product export transaction}] + f_{sum}[\bar{e}, \text{Household Consumption expense}] + f_{sum}[\bar{e}, \text{Government Consumption expense}].$
Where, Industry Equipment investments= $\cup\{T_{in}(\omega_i, \Omega, \Gamma): Equipment\ investments\ | \ \omega_i \in Industry\}$,
Government Equipment investments=$T_{in}(Government, \Omega, \Gamma): Equipment\ investments$,
Household Consumption expense=$T_{in}(Household, \Omega, \Gamma): Consumption\ expense$,
Government Consumption expense=$T_{in}(Government, \Omega, \Gamma): Consumption\ expense$.

\[f_{interim needs}[e_i] = f_{sum}[^e_i, Production] \]

It is possible to express the above formulas by balanced table according as SNA as follow.

\[
\begin{align*}
 f_{sum}[e_i, Production] & \mid f_{interim needs}[e_i] \\
 f_{sum}[e_i, Product] & \mid f_{sum}[^e_i, Industry\ Equipment\ investments] \\
 & \mid f_{sum}[^e_i, GovernmentEquipment\ investments] \\
 & \mid f_{sum}[^e_i, Inventory\ investments] \\
 & \mid f_{sum}[^e_i, Product\ export\ transaction] \\
 & \mid f_{sum}[^e_i, Household\ Consumption\ expense] \\
 & \mid f_{sum}[^e_i, Government\ Consumption\ expense] \\
\end{align*}
\]

\[f_{pro}[e_i] \mid f_{needs}[e_i] \]

[Definition 3.8] Products Integrated-production Vector $f_{pro}[Products]$,

Needs Vector $f_{needs}[Products]$

\[
\begin{align*}
 f_{pro}[Products] &= \Sigma\{f_{pro}[e_i] \mid e_i \in Products\} \\
 f_{pro}[Domestic\ products] &= f_{pro}[Domestic\ products] + f_{pro}[Overseas\ products] \\
 f_{pro}[Overseas\ products] &= \Sigma\{f_{sum}[e_i, Production] \mid e_i \in Products\} \\
 f_{needs}[Products] &= f_{needs}[Production] + f_{needs}[Industry\ Equipment\ investments] + \\
 & + f_{needs}[GovernmentEquipment\ investments] + f_{needs}[Inventory\ investments] + f_{needs}[Product\ export\ transaction] + \\
 & + f_{needs}[Household\ Consumption\ expense] + f_{needs}[Government\ Consumption\ expense] \\
 f_{needs}[Production] &= \Sigma\{f_{sum}[^e_i, Production] \mid e_i \in Products\} \\
 f_{needs}[Industry\ Equipment\ investments] &= \Sigma\{f_{sum}[^e_i, Industry\ Equipment\ investments] \mid e_i \in Products\} \\
 f_{needs}[GovernmentEquipment\ investments] &= \Sigma\{f_{sum}[^e_i, GovernmentEquipment\ investments] \mid e_i \in Products\} \\
 f_{needs}[Inventory\ investments] &= \Sigma\{f_{sum}[^e_i, Inventory\ investments] \mid e_i \in Products\} \\
\end{align*}
\]
\(f_{\text{needs}}[\text{Product export transaction}] = \sum \{ f_{\text{sum}}[^e_i, \text{Product export transaction}] \mid e_i \in \text{Products} \} \)
\(f_{\text{needs}}[\text{Household Consumption expense}] = \sum \{ f_{\text{sum}}[^e_i, \text{Household Consumption expense}] \mid e_i \in \text{Products} \} \)
\(f_{\text{needs}}[\text{Government Consumption expense}] = \sum \{ f_{\text{sum}}[^e_i, \text{Government Consumption expense}] \mid e_i \in \text{Products} \} \)

This is also shown by following balanced table.

\[
\begin{array}{c}
 f_{\text{pro}}[\text{Domestic products}] & | & f_{\text{needs}}[\text{Production}] \\
 f_{\text{pro}}[\text{Overseas products}] & | & f_{\text{needs}}[\text{Industry Equipment investments}] \\
 & & | f_{\text{needs}}[\text{Government Equipment investments}] \\
 & & | f_{\text{needs}}[\text{Inventory investments}] \\
 & & | f_{\text{needs}}[\text{Product export transaction}] \\
 & & | f_{\text{needs}}[\text{Household Consumption expense}] \\
 & & | f_{\text{needs}}[\text{Government Consumption expense}] \\
\end{array}
\]

\(f_{\text{pro}}[\text{Products}] \quad | \quad f_{\text{needs}}[\text{Products}] \)

Next we introduce the vector fields which correspond to the V-table and U-table of SNA.

Definition 3.9 V Vector, U Vector

1) V Vector field \(f_v \) : This is a vector on which manufacturing enterprise, \(\{a_1, ..., a_n\} \), the products, \(\{e_1, ..., e_k\} \), are made. \(f_v(a_i) \) denote a production by economic unit \(a_i \).

\(f_v(a_i) = \sum \{ f_{\text{sum}}[^e, \text{Pr}[a_i](\text{Production})] \mid e \in \text{Products} \} \)

Where \(\text{Pr}[a_i](\text{Production}) = \{ \text{Pr}[a_i](f) \mid f \in \text{Production} \} \).

2) U Vector field \(f_u \) : This is a vector on which manufacturing enterprise, \(\{a_1, ..., a_n\} \), the products, \(\{e_1, ..., e_k\} \), are used for input. \(f_u(a_i) \) denote an input for production by economic unit \(a_i \).

\(f_u(a_i) = \sum \{ f_{\text{sum}}[^e, \text{Pr}[a_i](\text{Production})] \mid e \in \text{Products} \} \)

It is easy to get U-table and V-table from these vectors and is also easy to get input-output table by using appropriate assumptions.

Definition 3.10 Industry-sector, Government-sector Value added production and appropriation Vector

\(f_{\text{Value added production}} \{ \omega \}, f_{\text{Value added appropriation}} \{ \omega \} \)

These are vectors of production and appropriation of value added.

\(f_{\text{Value added production}}[\text{Industry}] = f_{\text{sum}}[\text{Value added, Industry Production}] \)

\(f_{\text{Value added appropriation}}[\text{Industry}] = f_{\text{sum}}[\text{Wages expense, Industry Wages transaction}] + f_{\text{sum}}[\text{Operating surplus, Industry Operating surplus transfer}] + f_{\text{sum}}[\text{Reserve for depreciation, Industry depreciation}] \)

\(f_{\text{Value added production}}[\text{Government}] = f_{\text{sum}}[\text{Value added, Government production}] \)
f_value added appropriation\{Government\}=f_{sum}\{ Wages expense, Government\}
Wages transaction\} + f_{sum}\{ Reserve for depreciation, Government\}
Depreciation\}
Where,
Industry production= U\{Tr_{inl}[\omega, \Omega, \Gamma | Production] | \omega, \in Industry\}
Industry depreciation= U\{Tr_{inl}[\omega, \Omega, \Gamma | Depreciation] | \omega, \in Industry\}
Industry Operating surplus transfer= U\{Tr_{inl}[\omega, \Omega, \Gamma | Operating surplus
transfer] | \omega, \in Industry\}
Industry wages transaction= U\{Tr_{ext}[Household, \omega, \Omega, \Gamma | Wages
transaction] | \omega, \in Industry\}
Government production=Tr_{inl}[Government, \Omega, \Gamma | Production]
Government depreciation=Tr_{inl}[Government, \Omega, \Gamma | Depreciation]
Government wages transaction=Tr_{ext}[Household, Government, \Omega, \Gamma | Wages
transaction

[Definition 3.11]
Industry, Government sector production Vector f_{pro}[\omega]
Industry, Government sector cost Vector f_{cost}[\omega]
Industry, Government sector needs Vector f_{needs}[\omega]
These are vectors of production and its cost.
f_{pro}[Industry]=f_{pro}[Domestic products]
f_{cost}[Industry]=\Sigma f_{u(a)} | a, \in \{a_1, ..., a_n\}\} + f_{sum}[Wages expense, Industry
wages transaction] + f_{sum}[Operating surplus, Industry Operating surplus
transfer] + f_{sum}[Reserve for depreciation, Industry depreciation]
Where \Sigma f_{u(a)} | a, \in \{a_1, ..., a_n\}\}is called finterim input. Then
f_{cost}[Industry]=finterim input + f_{sum}[Wages expense, Industry wages
transaction] + f_{sum}[Operating surplus, Industry Operating surplus transfer] + f_{sum}[Reserve for depreciation, Industry depreciation]
In general finterim input is smaller than finterim needs[e].
f_{needs}[Industry]=f_{needs}[Products]
f_{pro}[Government]=f_{sum}[Government service, Government production]
f_{cost}[Government]= \Sigma f_{sum}[^{e_i, Government production} | e, \in Products] + f_{sum}[Wages expense, Government wages transaction] + f_{sum}[Reserve for
depreciation, Government depreciation]
Notice: \Sigma f_{sum}[^{e_i, Government production} | e, \in Products] denote the inputs
for the production of government service.
f_{needs}[Government]=f_{sum}[^{Government service, Government Consumption
expense} + f_{sum}[^{Government service, Household Consumption expense}]
Where
Government Consumption expense=Tr_{inl}[Government, \Omega, \Gamma | Consumption
expense],
Household Consumption expense=Tr_{inl}[Household, \Omega, \Gamma | Consumption
[Definition 3.12] Sector-income Vector \(f_{\text{incom}}[\omega] \).
Output Vector \(f_{\text{output}}[\omega] \)

These are the vector of income and expense (output).

\[f_{\text{incom}}[\text{Industry}] = f_{\text{sum}}[\text{Operating surplus, Industry Operating surplus transfer}] + f_{\text{sum}}[\text{Interest earned, Industry interest transaction}] + f_{\text{sum}}[\text{Dividends earned, Industry Dividends transaction}] \]

Where,

Industry interest transaction = \(\cup \{ T_{\text{ext}}[a, \omega_i, \Omega, \Gamma | \text{Interest transaction}] | \omega_i \in \text{Industry}, a \in \Omega \} \),

Industry Dividends transaction = \(\cup \{ T_{\text{ext}}[a, \omega_i, \Omega, \Gamma | \text{Dividends transaction}] | \omega_i \in \text{Industry}, a \in \Omega \} \)

\[f_{\text{output}}[\text{Industry}] = f_{\text{sum}}[\text{Interest expense, Industry interest transaction}] + f_{\text{sum}}[\text{Dividends expense, Industry Dividends transaction}] + f_{\text{sum}}[\text{Taxes expense, Industry Taxes transaction}] + f_{\text{sum}}[\text{Deposits, Industry Deposits transaction}] + f_{\text{sum}}[\text{Reserve, Industry Reserve transfer}] \]

Notice: the usual notion of deposit of SNA is defined as Reserve + Deposits in our system.

Industry Taxes transaction = \(\cup \{ T_{\text{ext}}[a, \omega_i, \Omega, a | \text{Taxes transaction}] | \omega_i \in \text{Industry}, a \in \Omega \} \),

Industry Deposits transaction = \(\cup \{ T_{\text{ext}}[a, \omega_i, \Omega, \Gamma | \text{Deposits transaction}] | \omega_i \in \text{Industry}, a \in \Omega \} \)

\[f_{\text{incom}}[\text{Banking enterprise}] = f_{\text{sum}}[\text{Interest earned, Financial interest transaction}] + f_{\text{sum}}[\text{Dividends earned, Financial dividends transaction}] \]

Where,

Financial interest transaction = \(\cup \{ T_{\text{ext}}[a, \omega_i, \Omega, \Gamma | \text{Interest transaction}] | \omega_i \in \text{Banking enterprise}, a \in \Omega \} \),

Financial dividends transaction = \(\cup \{ T_{\text{ext}}[a, \omega_i, \Omega, \Gamma | \text{Dividends transaction}] | \omega_i \in \text{Banking enterprise}, a \in \Omega \} \)

\[f_{\text{output}}[\text{Banking enterprise}] = f_{\text{sum}}[\text{Interest expense, Financial interest transaction}] + f_{\text{sum}}[\text{Dividends expense, Financial dividends transaction}] + f_{\text{sum}}[\text{Taxes expense, Financial Taxes transaction}] + f_{\text{sum}}[\text{Reserve, Financial Reserve transfer}] \]

Where,

Financial Taxes transaction = \(\cup \{ T_{\text{ext}}[a, \omega_i, \Omega, \Gamma | \text{Taxes transaction}] | \omega_i \in \text{Banking enterprise}, a \in \Omega \} \)

Notice: In this model we omit the notion of central bank.

\[f_{\text{incom}}[\text{Household}] = f_{\text{sum}}[\text{Wages earned, Wages transaction}] + f_{\text{sum}}[\text{Interest earned, Household interest transaction}] + f_{\text{sum}}[\text{Dividends earned, Household dividends transaction}] \]
Household interest transaction $= \bigcup \{ Tr_{ext}[\alpha, \text{Household}, \Omega, \Gamma | \text{Interest transaction}] | \alpha \in \Omega \}$

$f_{output}(\text{Household}) = f_{sum}[\text{Consumption expense, Household Consumption expense}] + f_{sum}[\text{Interest expense, Household interest transaction}] + f_{sum}[\text{Taxes expense, Household wages transaction}] + f_{sum}[\text{Deposits, HouseholdDeposits transaction}] + f_{sum}[\text{Reserve, Household Reserve transfer}]$

$f_{income}(\text{Government}) = f_{sum}[\text{Taxes revenue, Government wages transaction}] + f_{sum}[\text{Interest earned, Government interest transaction}] + f_{sum}[\text{Dividends earned, Government dividends transaction}]$

$f_{output}(\text{Government}) = f_{sum}[\text{Consumption expense, Government Consumption expense}] + f_{sum}[\text{Interest expense, Government interest transaction}] + f_{sum}[\text{Deposits, Government Deposits transaction}] + f_{sum}[\text{Reserve, Government Reserve transfer}]$

[Definition 3.13] Sector-accumulation Vector

(1) Stock investments Vector $f_{stock\text{ investments}[}\omega]$
(2) Investments resource Vector $f_{investments\text{ resource[}\omega]}$
(3) Deposits-investments difference (scalar quantity) $\text{Difference[}\omega] = |f_{investments\text{ resource[}\omega]}| - |f_{stock\text{ investments[}\omega}|$
(4) Current assets increase Vector $f_{current\text{ assets[}\omega]}$
(5) Financial liability increase Vector $f_{financial\text{ liability[}\omega]}$
(6) Short and over (scalar quantity) $\omega \in \{Industry, Banking\text{ enterprise, Household, Government, Overseas}\}$

These are vector and scalar which mean investments resource, stock investments and so on of the economic units Industry, Banking enterprise, Household, Government.

(1) $f_{stock\text{ investments[Industry]} = \sum \{ f_{sum}[^e_i, \text{Inventory investments}] | e_i \in \text{Products} \} + \sum \{ f_{sum}[^e_i, \text{Equipment investments}] | e_i \in \text{Products} \}$

(2) $f_{investments\text{ resource[Industry]} = f_{sum}[\text{Deposits, Industry Deposits transaction}] + f_{sum}[\text{Reserve for depreciation, Industry depreciation}] + f_{sum}[\text{Reserve, Industry Reserve transfer}]$

(3) $f_{current\text{ assets[Industry]} = f_{current\text{ assets[Industry]} - f_{stock\text{ investments[Industry]}}}$

(4) $f_{current\text{ assets[Industry]} = f_{current\text{ assets[Industry}, EXTrS]}$

\[f_{current\text{ assets[Industry}, EXTrS]} = \neg(f_{sum}[\text{Cash, \bigcup \{ EXTrS[\omega_i] | \omega_i \in \text{Set of manufacturing enterprises} \}] + f_{sum}[^\text{Cash, \bigcup \{ EXTrS[\omega_i] | \omega_i \in \text{Set of manufacturing enterprises} \}] + f_{sum}[^\text{Equity securities, \bigcup \{ EXTrS[\omega_i] | \omega_i \in \text{Set of manufacturing enterprises} \}] + f_{sum}[^\text{Equity securities, \bigcup \{ EXTrS[\omega_i] | \omega_i \in \text{Set of manufacturing enterprises} \}]\]
manufacturing enterprises)
+ \sum \text{(Deposits, } \cup \text{EXTRS} \omega | \omega \in \text{Set of manufacturing enterprises})
+ \sum \text{(Receivable, } \cup \text{EXTRS} \omega | \omega \in \text{Set of manufacturing enterprises})
+ \sum \text{(Trade accounts receivable, } \cup \text{EXTRS} \omega | \omega \in \text{Set of manufacturing enterprises})
+ \sum \text{(Trade accounts receivable, } \cup \text{EXTRS} \omega | \omega \in \text{Set of manufacturing enterprises})
+ \sum \text{(Trade accounts receivable, } \cup \text{EXTRS} \omega | \omega \in \text{Set of manufacturing enterprises})

f_{\text{Financial liability}}[\text{Industry}] = f_{\text{Financial liability}}[\text{Industry}, \text{EXTRS}]

f_{\text{Financial liability}}[\text{Industry}, \text{EXTRS}] =
+ \sum \text{(Payable, } \cup \text{EXTRS} \omega | \omega \in \text{Set of manufacturing enterprises})
+ \sum \text{(Trade accounts payable, } \cup \text{EXTRS} \omega | \omega \in \text{Set of manufacturing enterprises})
+ \sum \text{(Trade accounts payable, } \cup \text{EXTRS} \omega | \omega \in \text{Set of manufacturing enterprises})
+ \sum \text{(Trade accounts payable, } \cup \text{EXTRS} \omega | \omega \in \text{Set of manufacturing enterprises})
+ \sum \text{(Trade accounts payable, } \cup \text{EXTRS} \omega | \omega \in \text{Set of manufacturing enterprises})

f_{\text{Current assets}}[\text{Industry}] = f_{\text{Financial liability}}[\text{Industry}, \text{EXTRS}]

f_{\text{Offset Current assets}}[\text{Industry}] = f_{\text{Current assets}}[\text{Industry}, \text{OffsetEXTRS}]

f_{\text{OffsetEXTRS}} = S\text{(Receivable, Payable)} - S\text{(Deposits, Deposits payable)} - S\text{(Trade accounts receivable, Trade accounts payable)} - S\text{(Equity securities, Capital stock)}

f_{\text{Offset Financial liability}}[\text{Industry}] = f_{\text{Financial liability}}[\text{Industry}, \text{OffsetEXTRS}]

[Definition 3.14] Sector-Overseas Vector
f_{\text{Import}}[\text{Industry}] = f_{\text{Pro\textregistered Overseas products}}

f_{\text{Export}}[\text{Industry}] = f_{\text{needs}}[\text{Product export transaction}]

[Stock]

[Definition 3.15] Sector-Initial balance sheet Vector, Sector-Final balance sheet Vector

These vector mean the stock quantities of Sector-economic field.

f_{\text{TB}}[\text{Final}, \omega] = f_{\text{TB}}[\text{Initial}, \omega] + f_{\text{flowL}}[\text{Interim}, \omega], \omega \in \Omega, \Omega = \{\text{Overseas}\}

f_{\text{TB}}[\text{Final}, \omega] = f_{\text{TB}}[\text{Initial}, \omega] + f_{\text{flowR}}[\text{Interim}, \omega]

f_{\text{TB}}[\text{Final}, \text{Industry}] = f_{\text{TB}}[\text{Initial}, \text{Industry}] + f_{\text{flowL}}[\text{Interim}, \text{Industry}]

f_{\text{TB}}[\text{Initial}, \text{Industry}] = x_1\text{Equipment investments} + x_2\text{Inventory investments} + x_3\text{Cash} + x_4\text{Deposits} + x_5\text{Trade accounts receivable} + x_6\text{Receivable} + x_7\text{Equity securities}

f_{\text{TB}}[\text{Initial}, \text{Industry}] = y_1\text{Capital stock} + y_2\text{Trade accounts payable} + y_3\text{Payable} + y_4\text{Reserve} + y_5\text{Reserve for depreciation}
$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 = y_1 + y_2 + y_3 + y_4 + y_5$

$\text{flowL[Interim, Industry]} = \text{fStock investments[Industry]} + \text{fCurrent assets[Industry]}$

$\text{flowR[Interim, Industry]} = \text{fsup}[\text{Reserve for depreciation, Industry}}$

$\text{depreciation}] + \text{fsup}[\text{Reserve, Industry Reserve transfer}] + \text{fFinancial liability[Industry]}$

§ Integrated-National economic field and its field quantities
[Flow-quantities]

[Definition 3.16] Domestic Integrated cost Vector $f_{\text{Domestic cost}}$

Domestic Integrated needs Vector $f_{\text{Domestic needs}}$

$f_{\text{Domestic cost}} = f_{\text{cost[Industry]}} + f_{\text{cost[Government]}}$

$f_{\text{Domestic needs}} = f_{\text{needs[Industry]}} + f_{\text{needs[Government]}}$

[Definition 3.17] Domestic Integrated production Vector $f_{\text{Domestic pro}}$

Integrated output Vector $f_{\text{Domestic con}}$

$f_{\text{Domestic pro}} = \text{fsup}[\text{Wages expense, Industry}}$

$\text{wages transaction}] + \text{fsup}[\text{Operating surplus, Industry}$

$\text{Operating surplus transfer}] + \text{fsup}[\text{Reserve for depreciation, Industry}}$

$\text{depreciation}] + \text{fsup}[\text{Wages expense, Government}}$

$\text{wages transaction}] + \text{fsup}[\text{Reserve for depreciation, Government}}$

$\text{depreciation}]$

$= (f_{\text{Domestic cost}} + \sum \{f_{\text{u}}(a_i) \mid a_i \in \{a_1, \ldots, a_n\}\} + \sum \{^\text{fsup}[\text{^a}_i, \text{Government}}$

$\text{production}] \mid e_i \in \text{Products})\}$

$f_{\text{Domestic con}} = (f_{\text{Domestic needs}} + \text{^fneeds[Production]})$

[Definition 3.18] National incom Vector $f_{\text{National incom}}$

National output Vector $f_{\text{National output}}$

$f_{\text{National incom}} = \text{fsup}[\text{Operating surplus, Industry}$

$\text{Operating surplus transfer}] + \text{fsup}[\text{Wages earned, Wages}}$

$\text{transaction}]$

Notice: In this vector the transfers revenue are not included such as interest earned, dividends earned and taxes revenue.

$f_{\text{National output}} = \text{fsup}[\text{Deposits, Industry}}$

$\text{Deposits transaction}] + \text{fsup}[\text{Reserve, Industry}}$

$\text{Reserve transfer}] + \text{fsup}[\text{Reserve, Financial Reserve}}$

$\text{transfer}] + \text{fsup}[\text{Consumption expense, Household}}$

$\text{Consumption expense}] + \text{fsup}[\text{Deposits, Household}}$

$\text{Deposits transaction}]$

$+ \text{fsup}[\text{Reserve, Household Reserve}}$

$\text{transfer}] + \text{fsup}[\text{Consumption expense, Government}}$

$\text{Consumption expense}] + \text{fsup}[\text{Deposits, GovernmentDeposits}}$

$\text{transaction}] + \text{fsup}[\text{Reserve, Government Reserve}}$

$\text{transfer}]$

[Definition 3.19] National accumulation Vector

(1) National Stock investments Vector $f_{\text{National Stock investments}}$
(2) National Investments resource Vector \(f_{\text{National Investments resource}} \)

\[
\begin{align*}
\text{National Stock investments} &= \bigcup \{ f_{\text{stock investments}} [\omega] \mid \omega \in \Omega_1 - \{\text{Overseas}\} \} \\
\text{National Investments resource} &= \bigcup \{ f_{\text{investments resource}} [\omega] \mid \omega \in \Omega_1 - \{\text{Overseas}\} \}
\end{align*}
\]

[Definition 3.20] Overseas operating transaction Vector

\(f_{\text{import}} = f_{\text{prod}}[\text{Overseas products}] \)

\(f_{\text{export}} = f_{\text{needs}}[\text{Product export transaction}] \)

National operating surplus = \(|f_{\text{export}}| - |f_{\text{import}}| \)

Notice: In this model we only treat transactions of products with overseas.

[Stock]

\[
\begin{align*}
f_{\text{BL}}[\text{Final, Nation}] &= f_{\text{BL}}[\text{Initial, Nation}] + f_{\text{flow}}[\text{Interim, Nation}] \\
f_{\text{BR}}[\text{Final, Nation}] &= f_{\text{BR}}[\text{Initial, Nation}] + f_{\text{flow}}[\text{Interim, Nation}] \\
f_{\text{BL}}[\text{Initial, Nation}] &= \{ f_{\text{BL}}[\text{Initial, } \omega] \mid \omega \in \Omega_1 - \{\text{Overseas}\} \} \\
f_{\text{BR}}[\text{Initial, Nation}] &= \{ f_{\text{BR}}[\text{Initial, } \omega] \mid \omega \in \Omega_1 - \{\text{Overseas}\} \} \\
f_{\text{flow}}[\text{Interim, Nation}] &= \{ f_{\text{flow}}[\text{Interim, } \omega] \mid \omega \in \Omega_1 - \{\text{Overseas}\} \}
\end{align*}
\]

- Reference -

(3) H. Deguchi, Self-organization of economic systems and its epistemic foundation, ISGSR Proceedings, 1987