Zeta functions of prehomogeneous vector spaces with coefficients related to periods of automorphic forms

Fumihiro Sato (佐藤文彦)
Department of Mathematics, Rikkyo University
Nishi-Ikebukuro, Toshimaku, Tokyo 171, Japan

§0 Introduction

The purpose of this paper is to generalize the theory of zeta functions associated with prehomogeneous vector spaces ([SS], [S1]) to zeta functions whose coefficients involve periods of automorphic forms. We prove the functional equations and the analytic continuations of such zeta functions in the case where the infinitesimal character of an automorphic form is generic and the prehomogeneous vector space in question have a symmetric structure of K_{ϵ}-type. In [S6], we have dealt with the case where automorphic forms are given by matrix coefficients of irreducible unitary representations of compact groups.

Our results can be applied, for example, to zeta functions considered in [M3] and [Hej] and some special cases of zeta functions in [M1,2,4]; however, to reduce the size of this paper, we do not include any concrete examples. An expanded version of this paper will appear elsewhere.

In §1, we introduce zeta functions and give their integral representation (Zeta integral). In §2, the functional equation of the zeta integral will be proved. In §3, we define the notion of symmetric structure of prehomogeneous vector spaces and establish some elementary properties. In the final §4, the functional equations of zeta functions will be proved under the condition that the infinitesimal character of an automorphic form is generic and a symmetric structure is of K_{ϵ}-type.

Main part of this paper was written during my stay in Strasbourg in the spring of 1990. The author would like to express his sincere gratitude to Département de Mathématiques de Université Louis Pasteur, in particular to Professors H.Rubenthaler and G.Schiffmann, for their hospitality. Thanks are also due to Egami and Arakawa. Discussions with them in 1983 on the work of Maass ([M3]) and Hejhal ([Hej]) were the starting point of the present work.
§1 Definition of zeta functions and their integral representations

1.1 Let \((G, \rho, V)\) be a prehomogeneous vector spaces (abbrev. p.v.) defined over the rational number field \(\mathbb{Q}\) and denote its singular set by \(S\). Then, by definition, \(V_{\mathbb{C}} - S_{\mathbb{C}}\) is a single \(G_{\mathbb{C}}\)-orbit.

Let \(S_1, \ldots, S_n\) be the \(\mathbb{Q}\)-irreducible hypersurfaces contained in \(S\) and take \(\mathbb{Q}\)-irreducible polynomials \(P_1, \ldots, P_n\) defining \(S_1, \ldots, S_n\), respectively. It is known that the polynomial \(P_i\) is unique up to a non-zero constant multiple in \(\mathbb{Q}\). For each \(i = 1, \ldots, n\), there exists a \(\mathbb{Q}\)-rational character \(\chi_i\); satisfying

\[P_i(\rho(g)x) = \chi_i(g)P_i(x) \quad (g \in G, x \in V). \]

We call \(P_1, \ldots, P_n\) the basic relative invariants over \(\mathbb{Q}\). Any relative invariant of \((G, \rho, V)\) with coefficients in \(\mathbb{Q}\) can be expressed as a product of \(P_1, \ldots, P_n\), negative power being allowed.

Denote by \(X_\rho(G)_{\mathbb{Q}}\) the subgroup of \(X(G)_{\mathbb{Q}}\) generated by \(\chi_1, \ldots, \chi_n\), which is a free abelian group of rank \(n\).

Let \(G_0\) be the identity component of \(\bigcap_{i=1}^{n} \ker \chi_i\) with respect to the Zariski topology. For an \(x \in V\), put

\[G_x = \{g \in G \mid \rho(g)x = x\}. \]

In the following, we assume that

(A-1) for any \(x \in V_{\mathbb{Q}} - S_{\mathbb{Q}}\), the isotropy subgroup \(G_x\) is reductive and \(X((G_x)^{\circ})_{\mathbb{Q}} = \{1\};\)

(A-2) \(G\) has a semidirect product decomposition \(G = LU\), where \(L\) is a connected reductive \(\mathbb{Q}\)-subgroup and \(U\) is a connected normal \(\mathbb{Q}\)-subgroup with \(X(U) = \{1\}\).

The group \(G\) always has a semi-direct product decomposition satisfying (A-2). Namely \(G\) is a semi-direct product of \(U = R_u(G)\), the unipotent radical, and a Levi subgroup \(L\). In the following we fix a decomposition \(G = LU\) satisfying (A-2) once for all, which may not be the Levi decomposition (for concrete examples, see §3 and §5).

One of the consequences of the assumption (A-1) is the following:

Lemma 1.1 The singular set \(S\) is a hypersurface.

Put \(L_0 = L \cap G_0\). Then \(L_0\) is connected and we have \(G_0 = L_0U\) (semi-direct product).

Lemma 1.2 The group \(X(L_0)_{\mathbb{Q}}\) is trivial.
Proof. By (A-1) and [S1, Lemma 4.1], we have
\[\text{rank } X_\rho(G)_Q = \text{rank } X(G)_Q = \text{rank } X(L)_Q. \]
This implies that
\[\text{rank } X(G_0)_Q = \text{rank } X(L_0)_Q = 0. \]
Since L_0 is connected, the group $X(L_0)_Q$ is trivial.

Let T be the largest Q-split torus of the identity component of the center $Z(L)$ of L.
Then $\dim T = \text{rank } X(G)_Q = \text{rank } X_\rho(G)_Q$ and L is an almost direct product of T and L_0.

1.2 Let G^+, G^+_0, T^+, L^+_0 and U^+ be the identity components of the real Lie groups $G_R, G_0^+_R, T^+_R, L_0^+_R$ and U_R, respectively. Then we have
\[G^+ = T^+ L^+_0 U^+, \quad G^+_0 = L^+_0 U^+ \]
and the decomposition
\[g = thu \quad (g \in G^+, \ t \in T^+, \ g \in L^+_0, \ u \in U^+) \]
is unique. By (A-2), the groups L^+_0 and U^+ are unimodular.

Let dt, dh and du be (bi-invariant) Haar measures on T^+, L^+_0 and U^+, respectively. Let $d_r g$ be a right invariant measure on G^+ and let $\Delta : G^+ \to \mathbb{R}^+_1$ be the module of $d_r g$. Then we can normalize these measures so that
\[d_r g = d_r (thu) = \Delta(t) dt \, dh \, du. \]
As proved in [S1, §4], the assumption (A-1) assures the existence of $\delta = (\delta_1, \ldots, \delta_n) \in Q^n$, for which
\[\Omega(x) = |P(x)|^{-\delta} dx = \prod_{i=1}^n |P_i(x)|^{-\delta_i} dx, \quad dx = \text{the Lebesgue measure on } V_R \]
gives a relatively G^+-invariant measure on $V_R - S_R$ with multiplier Δ.

Let
\[V_R - S_R = V_1 \cup \cdots \cup V_\nu \]
be the decomposition into connected components. Each connected component V_j is a single G^+-orbit. For an $x \in V_j$, put $G^+_x = G_x \cap G^+$. By (A-1), the group G^+_x is a unimodular Lie group. We normalize a (bi-invariant) Haar measure $d\mu_x$ on G^+_x such that
\[\int_{G^+} F(g) d_r g = \int_{V_1} \Omega(\rho(x)) \int_{G^+_x} F(\dot{g}h) d\mu_x(h) \quad (F \in L^1(G^+, d_r g)). \]
1.3 Let \(\phi : L_{0}^{+} \rightarrow W \) be a function on \(L_{0}^{+} \) with values in a finite-dimensional complex vector space \(W \), which is invariant under the right multiplication of some arithmetic subgroup of \(L_{0,q} \cap L_{0}^{+} \). Later we shall assume that \(\phi \) is an automorphic form on \(L_{0}^{+} \); however at the moment we do not assume it.

Now let us associate to \(\phi \) a linear form \(Z_{\phi}(s) \) on \(S(V_{R}) \otimes S(V_{Q}) \) with complex parameter \(s \) in \(\mathbb{C}^{n} \), which we call the zeta integral attached to \(\phi \) (for the definition of \(S(V_{R}) \) and \(S(V_{Q}) \), see [S5, §4]).

Consider the canonical surjection \(p : G_{0} \rightarrow L_{0} = G_{0}/U \). The map \(p \) induces a real analytic mapping

\[
p : G_{0}^{+} \rightarrow L_{0}^{+} = G_{0}^{+}/U^{+}.
\]

For an arithmetic subgroup \(\Gamma \) of \(G_{0,q} \cap G_{0}^{+} \), put \(\Gamma_{L} = p(\Gamma) \subset L_{0}^{+} \). Then \(\Gamma_{L} \) is an arithmetic subgroup of \(L_{0,q} \cap L_{0}^{+} \) (cf. [Bo, Theorem 6]).

For \(f_{\infty} \otimes f_{0} \in S(V_{R}) \otimes S(V_{Q}) \), take an arithmetic subgroup \(\Gamma \) of \(G_{0,q} \cap G_{0}^{+} \) such that \(f_{0} \) is \(\Gamma \)-invariant, \(\omega \) is \(\Gamma_{T_{0}} \)-invariant and \(\phi \) is \(\Gamma_{L} \)-invariant. Then we define the zeta integral attached to \(\phi \) and \(\omega \) by setting

\[
Z_{\phi}(s)(f_{\infty} \otimes f_{0}) = Z_{\phi}(s_{1}, \ldots, s_{n})(f_{\infty} \otimes f_{0})
= \frac{1}{v(\Gamma)} \int_{T_{0}} \prod_{i=1}^{n} \chi_{i}(t)^{s_{i}} \Delta(t) dt \int_{G_{0}^{+}/\Gamma} \phi(h) \sum_{x \in V_{Q} - S_{Q}} f_{0}(x)f_{\infty}(\rho(thu)x) dh \; du,
\]

where \(v(\Gamma) = \int_{G_{0}^{+}/\Gamma} dh \; du \), which is finite by Lemma 1.1. Note that the integral \(Z_{\phi}(s) \) is independent of the choice of \(\Gamma \).

In the following we assume that

\[
(A-3) \text{ for any } f_{\infty} \otimes f_{0} \in S(V_{R}) \otimes S(V_{Q}), \text{ the integral } Z_{\phi}(s)(f_{\infty} \otimes f_{0}) \text{ is absolutely convergent, when } \Re(s_{1}), \ldots, \Re(s_{n}) \text{ are sufficiently large.}
\]

In case \(\phi \) is a constant function, the integral \(Z_{\phi}(s)(f_{\infty} \otimes f_{0}) \) gives an integral representation of the usual zeta functions associated with \((G, \rho, V) \) (see [S1,§4], [S5, §4], [SS, §2]). In this case some sufficient conditions for (A-3) are known by [S2, Theorem 1] and [SS, Lemmas 2.2, 2.5]. For example, we have the following criterion of convergence of \(Z_{\phi}(s) \):

Proposition 1.3 Assume that \(X_{\rho}(G)_{Q} = X_{\rho}(G)_{C} \). If \(G_{0,x} = G_{0} \cap G_{x} \) \((x \in V - S) \) is a connected semisimple algebraic group and \(\phi : L_{0}^{+} \rightarrow W \) is bounded, then \(Z_{\phi}(f_{\infty} \otimes f_{0}) \) \((f_{\infty} \otimes f_{0} \in S(V_{R}) \otimes S(V_{Q})) \) is absolutely convergent for \(\Re(s_{1}) > \delta_{1}, \ldots, \Re(s_{n}) > \delta_{n} \).

Proof. Proposition is an immediate consequence of [S2, Theorem 1] and the recent result of Kottwitz [K] and Chernousov [C].
Assume that $X_{\rho}(G)_{Q} = X_{\rho}(G)_{C}$. If $G_{0,x} = G_{0} \cap G_{x}$ ($x \in V - S$) is a connected semisimple algebraic group and ϕ is a cusp form on L_{0}^{+}, then $Z_{\phi}(f_{\infty} \otimes f_{0})$ ($f_{\infty} \otimes f_{0} \in \mathcal{S}(V_{\mathbb{R}}) \otimes \mathcal{S}(V_{Q})$) is absolutely convergent for $\Re(s_{1}) > \delta_{1}, \ldots, \Re(s_{n}) > \delta_{n}$.

What we must do first is to find a good condition under which the integral $Z_{\phi}(f_{\infty} \Phi f_{0})$ can be decomposed into product of Dirichlet series (related only to f_{0}) and local zeta functions (related only to f_{∞}), as in the case where ϕ is a constant function.

For an $x \in V_{Q} - S_{Q}$, put $\Gamma_{x} = \Gamma \cap G_{x}^{+}$. By (A-1), the volume $\mu(x) = \int_{G_{x}^{+}/\Gamma_{x}} d\mu_{x}$ is finite (for $d\mu_{x}$, see (1)). Also put $L_{(x)}^{+} = p(G_{x}^{+}) (\subset L_{0}^{+})$, $\Gamma_{(x)} = p(\Gamma_{x}) (\subset L_{(x)}^{+})$, $U_{x}^{+} = G_{x}^{+} \cap U^{+}$, $\Gamma_{U,x} = \Gamma_{x} \cap U^{+}$.

Here we note that $G_{x}^{+} \subset G_{0}^{+}$. We normalize Haar measures $d\nu_{x}$ and $d\tau_{x}$ on $L_{(x)}^{+}$ and U_{x}, respectively by
$$
\int_{L_{(x)}^{+}/\Gamma_{(x)}} d\nu_{x} = 1 \quad \text{and} \quad \int_{U_{x}^{+}/\Gamma_{U,x}} d\tau_{x} = \mu(x).
$$
Then we have $d\mu_{x} = d\nu_{x} d\tau_{x}$ on G_{x}^{+}.

For each connected component V_{i} of $V_{\mathbb{R}} - S_{\mathbb{R}}$, we fix a representative x_{i} and put $X_{i} = L_{0}^{+} / L_{(x_{i})}^{+}$. For each $x \in V_{i}$, choose $t_{x} \in T^{+}, h_{x} \in L_{0}^{+}$ and $u_{x} \in U^{+}$ such that $x = \rho(t_{x}h_{x}u_{x})x_{i}$. Define a mapping $\overline{\cdot} : V_{i} \to X_{i}$ by $x \mapsto \overline{x} = h_{x} \cdot L_{(x_{i})}^{+} \in X_{i}$. The point \overline{x} is independent of the choice of h_{x} and the mapping $\overline{\cdot}$ defines a real analytic mapping equivariant under the action of L_{0}^{+}.

For $x \in V_{Q} \cap V_{i}$ and $y \in V_{i}$, set
$$
(1.3) \quad \mathcal{M}_{x}^{(i)} \phi(y) = \int_{L_{(x_{i})}^{+}/\Gamma_{(x_{i})}} \phi(h_{y}h_{x}^{-1}\eta) d\nu_{x}(\eta),
$$
which we call the mean value of ϕ at x. We consider $\mathcal{M}_{x}^{(i)} \phi$ as a function on X_{i}. Now it is easy to see that the usual manipulation in the theory of p.v.'s leads to the following lemma:

Lemma 1.5 If $\Re(s_{1}), \ldots, \Re(s_{n})$ are sufficiently large to ensure the absolute convergence of $Z_{\phi}(s)(f_{\infty} \otimes f_{0})$, then
$$
Z_{\phi}(s)(f_{\infty} \otimes f_{0}) = \frac{1}{v(\Gamma)} \sum_{i=1}^{\nu} \sum_{x \in \Gamma \cap V_{Q} \cap V_{i}} \frac{\mu(x)f_{0}(x)}{\prod_{j=1}^{n} |P_{j}(y)|^{s_{j}}} \int_{V_{i}} \prod_{j=1}^{n} |P_{j}(y)|^{t_{j}} f_{\infty}(y) \mathcal{M}_{x}^{(i)} \phi(y) \Omega(y).
$$
1.5 From now on, we assume that ϕ is an automorphic form on L_0^+ with respect to some arithmetic subgroup. To be precise, let K be a maximal compact subgroup of L_0^+ and π an irreducible unitary representation of K on a finite dimensional Hilbert space W_π. Denote by $\mathcal{Z}(L_0^+)$ be the algebra of bi-invariant differential operators on L_0^+. Let $\chi; \mathcal{Z}(L_0^+) \rightarrow \mathbb{C}$ be an infinitesimal character. Then we call a function $\phi: L_0^+ \rightarrow W_\pi$ an automorphic form of type (χ, π) with respect to Γ_L, if it satisfies the conditions

$$D\phi = \chi(D)\phi \quad (D \in \mathcal{Z}(L_0^+)),$$

$$\phi(kh) = \pi(k)\phi(h) \quad (k \in K, h \in L_0^+),$$

$$\phi(h\gamma) = \phi(h) \quad (h \in L_0^+, \gamma \in \Gamma_L),$$

ϕ is slowly increasing.

We denote by $\mathcal{A}(L_0^+ / \Gamma_L; \chi, \pi)$ the space of automorphic forms of type (χ, π) with respect to Γ_L. It is known that the dimension of $\mathcal{A}(L_0^+ / \Gamma_L; \chi, \pi)$ is finite ([BJ, Theorem 1.7], [H, Theorem 1]).

Any element $D \in \mathcal{Z}(L_0^+)$ induces an L_0^+-invariant differential operator on the homogeneous space $X_i = L_0^+ / L_{(x_i)}$, which we denote by \overline{D}. We call a function $\psi: X_i \rightarrow W_\pi$ a spherical function of type (χ, π), if it satisfies the conditions

$$\overline{D}\psi = \chi(D)\psi \quad (D \in \mathcal{Z}(L_0^+)),$$

$$\psi(k\overline{x}) = \pi(k)\psi(\overline{x}) \quad (k \in K, \overline{x} \in X_i).$$

We denote by $\mathcal{E}(X_i; \chi, \pi)$ the space of spherical functions of type (χ, π) on X_i.

Lemma 1.6 Let ϕ be an automorphic form in $\mathcal{A}(L_0^+ / \Gamma_L; \chi, \pi)$. If the integral (1.3) converges absolutely, then the mean value $\mathcal{M}_x^{(*)}\phi$ at x is in $\mathcal{E}(X_i; \chi, \pi)$.

Our final assumption in this section is the following:

(A-4) the dimension of $\mathcal{E}(X_i; \chi, \pi)$ $(1 \leq i \leq \nu)$ is finite.

Put $m_i = \dim \mathcal{E}(X_i; \chi, \pi) (1 \leq i \leq \nu)$ and take a basis $\{\psi_1^{(i)}, \ldots, \psi_{m_i}^{(i)}\}$ of $\mathcal{E}(X_i; \chi, \pi)$. By Lemma 1.4, we can express $\mathcal{M}_x^{(*)}\phi$ as a linear combination of $\psi_1^{(i)}, \ldots, \psi_{m_i}^{(i)}$:

$$\mathcal{M}_x^{(*)}\phi = \sum_{i=1}^{m_i} c_i^{(*)}(\phi; x) \psi_i^{(i)}. \quad (1.4)$$

The coefficients $c_i^{(*)}(\phi; x)$ can be viewed as functions of x on $\Gamma \backslash V_Q \cap V_i$.
We define (global) zeta functions \(\zeta_{l}^{(i)}(\phi, f_{0}; s) \) and local zeta functions \(\Phi_{l}^{(i)}(f_{\infty}; \pi, \chi, s) \) by

\[
\zeta_{l}^{(i)}(\phi, f_{0}; s) = \frac{1}{v(\Gamma)} \sum_{x \in \Gamma \backslash V_{Q} \cap V} m u(x) f_{0}(x) c_{l}^{(i)}(\phi; x) \prod_{j=1}^{n} |P_{j}(x)|^{s_{j}},
\]

\[
\Phi_{l}^{(i)}(f_{\infty}; \pi, \chi, s) = \int_{V_{i}} \prod_{j=1}^{n} |P_{j}(y)|^{s_{j}} \psi_{l}^{(i)}(\overline{y}) f_{\infty}(y) \Omega(y)
\]

\((1 \leq i \leq \nu, 1 \leq l \leq m_{i})\).

The zeta functions \(\zeta_{l}^{(i)}(\phi, f_{0}; s) \) are independent of the choice of \(\Gamma \). By Lemmas 1.5 and 1.6 and the identity (1.4), we easily obtain the following:

Proposition 1.7 Assume that \((G, \rho, V)\) satisfies (A-1) – (A-4). Then the following identity holds for sufficiently large \(\Re(s_{1}), \ldots, \Re(s_{n}) \):

\[
Z_{\phi}(s)(f_{\infty} \otimes f_{0}) = \sum_{i=1}^{\nu} \sum_{l=1}^{m_{i}} \zeta_{l}^{(i)}(\phi, f_{0}; s) \Phi_{l}^{(i)}(f_{\infty}; \pi, \chi, s).
\]

Remark. The coefficients \(c_{l}^{(i)}(\phi; x) \) can be expressed as a linear combination of functions of \(x \) of the form \((\mathcal{M}_{x}^{(i)} \phi(\overline{y}_{t}), e_{s}) \), where \(\{\overline{y}_{t}\} \) are a finite number of points in \(X_{i} \), \(\{e_{s}\} \) is an orthonormal basis of \(W \) and \((, ,) \) is the inner product on \(W \). Thus the coefficients of our zeta functions are, roughly speaking, mean values (or periods) of automorphic forms.

The simplest case where the assumption (A-4) is satisfied is the following:

The case of Größencharacters – \(\phi \) is a unitary character of \(L_{0}^{+} \).

It is known that (A-4) holds also in the following two cases:

Compact Case – \(L_{0}^{+} \) is a compact Lie group (by the theorem of Peter-Weyl);

Symmetric Case – \(X_{i} \) \((1 \leq i \leq \nu)\) are reductive symmetric space (by a theorem of van den Ban, see [B1,Cor. 3.10], [B2, Lemma 2.1]).

In Compact case, the zeta functions \(\zeta_{l}^{(i)}(\phi, f_{0}; s) \) have been studied in detail in [S6] and we obtained the functional equations satisfied by \(\zeta_{l}^{(i)}(\phi, f_{0}; s) \) (for concrete examples, see also [S4] and [S7]). Therefore, in the subsequent sections, we consider exclusively Symmetric case.
§2 Functional equation of the zeta integral

Recall that, in the theory of p.v.'s developed in [SS] and [S1], the proof of the existence of analytic continuations and functional equations of zeta functions is based on the following three properties:

1. Analytic continuation and the functional equation of the zeta integral;
2. Functional equations satisfied by local zeta functions;
3. The existence of b-functions (the Bernstein-Sato polynomials), which controls the singularities of zeta functions and the gamma-factor of functional equations. Moreover, by using the b-functions, one can eliminate the troublesome contribution of rational points in the singular set to the zeta integral (cf. Lemma 2.2).

We must extend these three properties to our general situation. The easiest part is the functional equation of the zeta integral, which we describe here.

We keep the notation in §1 and assume the conditions (A-1), (A-2) and (A-3). It is not necessary in the present section to assume (A-4). Instead we assume that

(A-5) \((G, \rho, V)\) is decomposed over \(\mathbb{Q}\) into direct product as

\[
(G, \rho, V) = (G, \rho_1 \oplus \rho_2, E \oplus F)
\]

and the invariant subspace \(F\) is a regular subspace.

For the definition and elementary properties of regular subspaces, we refer to [S1, §2]. Note that, in [S1], we have introduced the notion of \(k\)-regularity, where \(k\) is the field of definition. However the \(k\)-regularity implies the \(k\)-regularity (cf. [S6, §2.1]). Hence in the assumption (A-5), \(F\) is necessarily a \(\mathbb{Q}\)-regular subspace.

Let \(F^*\) be the vector space dual to \(F\) and \(\rho_2^*\) the rational representation of \(G\) on \(F^*\) contragredient to \(\rho_2\). Set \((G, \rho^*, V^*) = (G, \rho_1 \oplus \rho_2^*, E \oplus F^*)\). The assumption (A-5) implies that \((G, \rho^*, V^*)\) is also a p.v. defined over \(\mathbb{Q}\) and \(F^*\) is its regular subspace. By Lemma 2.4 in [S1], the assumption (A-1) holds also for \((G, \rho^*, V^*)\). Let \(S^*\) be the singular set of \((G, \rho^*, V^*)\). Let \(P_1^*, \ldots, P_n^*\) be the basic relative invariants of \((G, \rho^*, V^*)\) over \(\mathbb{Q}\). Note that the number of basic relative invariants of \((G, \rho^*, V^*)\) is equal to \(n\), the number of basic relative invariants of \((G, \rho, V)\). Let \(\chi_i^*\) be the \(\mathbb{Q}\)-rational character of \(G\) corresponding to \(P_i^*\):

\[
P_i^*(\rho^*(g)x^*) = \chi_i^*(g)P_i^*(x^*) \quad (g \in G, \ x^* \in V^*).
\]

Let \(X_{\rho^*}(G)_{\mathbb{Q}}\) be the subgroup of \(X(G)_{\mathbb{Q}}\) generated by \(\chi_1^*, \ldots, \chi_n^*\). Since \(X_{\rho}(G)_{\mathbb{Q}} = X_{\rho^*}(G)_{\mathbb{Q}}\), there exists an \(n\) by \(n\) unimodular matrix \(U = (u_{ij})_{i,j=1}^n\) such that

\[
(2.1) \quad \chi_i = \prod_{j=1}^n \chi_j^{u_{ij}} \quad (1 \leq i \leq n).
\]
Let $\lambda = (\lambda_1, \ldots, \lambda_n)$ be an n-tuple of half-integers such that

$$\det \rho_2(g)^2 = \prod_{i=1}^{n} \chi_i(g)^{2\lambda_i}.$$

(for the existence of λ, see [S1, Lemma 2.5]).

Let the function $\phi : L_0^+ / \Gamma_L \rightarrow W$ be the same as in §1.3. Then, as in (1.2), we can define the zeta integral attached to ϕ also for (G, ρ^*, V^*):

$$Z_{\phi}(s)(f_{\infty}^* \otimes f_0^*) = Z_{\phi}(s_1, \ldots, s_n)(f_{\infty}^* \otimes f_0^*) = \frac{1}{v(\Gamma)} \int_{T^+} \prod_{i=1}^{n} \chi_i^*(t)^{s_i} \triangle(t) dt \int_{G_0^+ / \Gamma} \phi(h) \sum_{x \in V_{\Phi} - S_{\Phi}} f_0^*(x) f_{\infty}^*(\rho(thu)x) dh du$$

($f_{\infty}^* \otimes f_0^* \in S(V_B^*) \otimes S(V_Q^*)$).

Now let us recall the Poisson summation formula for functions in $f_0 \in S(V_Q)$ and $x_2^* \in F_Q^*$, take a lattice \mathcal{L} in F_Q^* for which the value of $f_0(x_1, x_2)$ ($x_1 \in \mathbb{E}_Q, x_2 \in F_Q$) is determined by the coset of x_2 modulo \mathcal{L} and x_2^* is in the dual lattice

$$\mathcal{L}^* = \{x_2^* \in F_Q^* \mid <x_2^*, \mathcal{L} > \subset \mathbb{Z}\}.$$

Put

$$\overline{f_0}(x_1, x_2^*) = v(\mathcal{L})^{-1} \sum_{x_2 \in F_{\Phi / \mathcal{L}}} f_0^*(x_1, x_2) e^{2\pi i <x_2, x_2^>},$$

where $v(\mathcal{L}) = \int_{F_{\bullet / \mathcal{L}}} dx_2$. Then $\overline{f_0}(x_1, x_2^*)$ is independent of the choice of \mathcal{L} and defines a function in $S(V_Q^*)$. The function $\overline{f_0}$ is called the partial Fourier transform of f_0 with respect to F.

We define the partial Fourier transform $\overline{f_\infty} \in S(V_Q^*)$ of $f_\infty \in S(V_Q)$ with respect to F by setting

$$\overline{f_\infty}(x_1, x_2^*) = \int_{F_{\bullet}} f_\infty(x_1, x_2) e^{-2\pi i <x_2, x_2^>} dx_2.$$

Then the partial Fourier transforms

$$\sim : S(V_Q) \rightarrow S(V_Q^*) \quad \text{and} \quad \sim : S(V_R) \rightarrow S(V_R^*)$$

are linear isomorphisms and the following Poisson summation formula holds:

$$\sum_{(x_1, x_2) \in V_Q} f_0(x_1, x_2) f_\infty(\rho(g)(x_1, x_2))$$

$$= \det \rho_2(g)^{-1} \sum_{(x_1, x_2^*) \in V_{\mathcal{L}}} \overline{f_0}(x_1, x_2^*) \overline{f_\infty}(\rho^*(g)(x_1, x_2^*))$$

($f_\infty \otimes f_0 \in S(V_R) \otimes S(V_Q), g \in G^+$).
Let B (resp. B^*) be the domain in \mathbb{C}^n on which $Z_\phi(s)(f_\infty \otimes f_0)$ (resp. $Z_\phi^*(s)(\overline{f_\infty} \otimes \overline{f_0})$) converges absolutely. Denote by D (resp. D^*) be the convex hull of $(B^*U^{-1} + \lambda) \cup B$ (resp. $(B - \lambda)U \cup B^*$) in \mathbb{C}^n. Then it is clear that $(D - \lambda)U = D^*$.

Proposition 2.1 Let $f_\infty \in S(V_{\mathbb{R}})$ be a function satisfying that f_∞ and $\overline{f_\infty}$ vanish identically on S_{B} and S_{B}^*, respectively. Then $Z_\phi(s)(f_\infty \otimes f_0)$ and $Z_\phi^*(s)(\overline{f_\infty} \otimes \overline{f_0})$ have analytic continuations to holomorphic functions on D and D^*, respectively, and satisfy the functional equation

$$Z_\phi^*((s-\lambda)U)(\overline{f_\infty} \otimes \overline{f_0}) = Z_\phi(s)(f_\infty \otimes f_0) \quad (s \in D).$$

The proof of Proposition 2.1, which is based on (2.3), is quite similar to that of [S1, Lemma 6.1] and we do not reproduce it here.

For the later use, we recall the construction of functions f_∞ satisfying the assumption in Proposition 2.1. Let $r = n - \text{rank } X_{\rho_1}(G)_Q$. Then, among the basic relative invariants P_1, \ldots, P_n of (G, ρ, V) (resp. P_1^*, \ldots, P_n^* of (G, ρ^*, V^*)) over Q, there exist precisely $n - r$ relative invariants which are constant as functions of x_2 on F (resp. x_2^* on F^*). Hence we may assume that

$$P_i(x_1, x_2) = P_i^*(x_1, x_2^*) = P_i(x_1) \quad (i = r + 1, \ldots, n).$$

These $P_i(x_1)$ ($r + 1 \leq i \leq n$) are the basic relative invariants of (G, ρ_1, E) over Q. We put

$$P_F(x_1, x_2) = \prod_{i=1}^{r} P_i(x_1, x_2) \quad \text{and} \quad P_F^*(x_1, x_2^*) = \prod_{i=1}^{r} P_i^*(x_1, x_2^*).$$

Lemma 2.2 ([S1, Lemma 6.2]) (i) For an $f_\infty' \in C_0^\infty(V_{\mathbb{R}} - S_{\mathbb{R}}^*)$, put

$$f_\infty = P_F(x_1, x_2) \cdot \overline{f_\infty}(x_1, x_2).$$

Then f_∞ and $\overline{f_\infty}$ vanish on $S_{\mathbb{R}}$ and $S_{\mathbb{R}}^*$, respectively.

(ii) For an $f_\infty' \in C_0^\infty(V_{\mathbb{R}} - S_{\mathbb{R}})$, put

$$f_\infty = P_F^*(x_1, \frac{\partial}{\partial x_2}) \cdot f_\infty'(x_1, x_2).$$

Then f_∞ and $\overline{f_\infty}$ vanish on $S_{\mathbb{R}}$ and $S_{\mathbb{R}}^*$, respectively.
§3 Prehomogeneous vector spaces with symmetric structure

3.1 In this section, we keep the notation in §1 and assume the conditions (A-1) and (A-2). As in §1.3, let \(p : G_0 \rightarrow L_0 \) be the canonical surjection and put \(L(x) = p(G_x \cap G_0) \) for \(x \in V - S \).

We call the semi-direct product decomposition \(G = LU \) determines a symmetric structure on \((G, \rho, V) \) over \(\mathbb{Q} \), if for any \(x \in V_{\mathbb{Q}} - S_{\mathbb{Q}} \), there exists an involution (= an automorphism of order 2) \(\sigma : L_0 \rightarrow L_0 \) defined over \(\mathbb{Q} \) such that

\[
L_0^\sigma := \{ h \in L_0 \mid \sigma(h) = h \} \supset L(x) \supset (L_0^\sigma)^\circ.
\]

Then, for any \(x \in V_{\mathbb{R}} - S_{\mathbb{R}} \), there exists an involution \(\sigma \) of \(L_0 \) defined over \(\mathbb{R} \) satisfying (3.1). The involution \(\sigma \) induces an involution of \(L_0^+ \), which we denote also by \(\sigma \), satisfying

\[
(L_0^+)^\sigma \supset L_0^+ \cap L(x) = L(x)^+ \supset (L_0^+)^\sigma.
\]

Therefore the homogeneous spaces \(X_i \) (\(1 \leq i \leq \nu \)) defined in §1.4 are reductive symmetric spaces and the construction of zeta functions given in §1 can be applied to \((G, \rho, V) \) with symmetric structure.

Lemma 3.1 Suppose that \((G, \rho, V) \) satisfies the condition (A-5) in §2, namely, \(V \) contains a regular subspace \(F \). Then the decomposition \(G = LU \) determines a symmetric structure also on \((G, \rho^*, V^*) \), the p.v. dual to \((G, \rho, V) \) with respect to \(F \).

Proof. By (A-5), one can find a relative invariant \(P \) of \((G, \rho, V) \) with coefficients in \(\mathbb{Q} \) for which the rational mapping \(\phi_P : V - S \rightarrow V^* \) defined by

\[
\phi_P(x_1, x_2) = (x_1, \text{grad}_{x_2}(\log P(x_1, x_2)))
\]

gives rise to a \(G \)-equivariant biregular mapping of \(V - S \) onto \(V^* - S^* \) defined over \(\mathbb{Q} \). For \(x \in V_{\mathbb{Q}} - S_{\mathbb{Q}} \), put \(x^* = \phi_P(x) \in V_{\mathbb{Q}}^* - S_{\mathbb{Q}}^* \). Then we have \(G_x = G_{x^*} \) and \(L(x) = L(x^*) \) (cf. [S1, Lemma 2.4]). Now the assertion is obvious.

3.2 Let \(P_L \) be a parabolic subgroup of \(L \) and put \(P = P_LU \). We denote the restriction of the representation \(\rho \) to \(P \) by the same symbol \(\rho \). We do not assume that \(P_L \) is defined over \(\mathbb{Q} \). In fact, in §4, we need to consider a parabolic subgroup defined over \(\mathbb{R} \).

Lemma 3.2 Suppose that \(G = LU \) determines a symmetric structure of \((G, \rho, V) \). Then

(i) \((P, \rho, V) \) is also a p.v.

(ii) If \((G, \rho, V) \) is regular, so is \((P, \rho, V) \).
Proof. Let $V_1 = \{ x \in V | P_1(x) = \cdots = P_n(x) = 1 \}$. Then V_1 is a single $\rho(G_0)$-orbit (cf. [S6, Lemma 1.1]). Fix a point $x_0 \in V_1$. The mapping $\beta : V_1 \rightarrow L_0/L_{(x_0)}$ defined by $\beta(\rho(hu)x_0) = h \cdot L_{(x_0)} \ (h \in L_0, u \in U)$ is clearly L_0-equivariant. Since $L_0/L_{(x_0)}$ is a symmetric space and $P_{L_0} = P_L \cap L_0$ is a parabolic subgroup of L_0, there exists a Zariski-open P_{L_0}-orbit Ω_0 is $L_0/L_{(x_0)}$ (see [V, §1]). Then $\Omega = \rho(T)\beta^{-1}(\Omega_0)$ is a Zariski-open P-orbit in V. Hence (P, ρ, V) is a p.v. The second assertion is obvious.

We denote by S_P the singular set of (P, ρ, V). It is obvious that $S_P \supset S$. Recall that the parabolic subgroup $P_{L_0} = P \cap L_0$ of L_0 is called σ-anisotropic for an involution σ of L_0 if $P_{L_0} \cap \sigma(P_{L_0})$ is a Levi subgroup of P_{L_0} (cf. [V, §1]).

Lemma 3.3 Suppose that $G = LU$ determines a symmetric structure of (G, ρ, V) and $P_{L_0} = P_L \cap L_0$ is σ-anisotropic for the involution σ corresponding to some $x_0 \in V - S$. Then

(i) the point x_0 is in $V - S_P$.
(ii) For $x \in V - S_P$, the isotropy subgroup $P_x = \{ p \in P | \rho(p)x = x \}$ is (not necessarily connected) reductive.
(iii) The singular set S_P is a hypersurface.

Proof. We use the notation in the proof of Lemma 3.2. By replacing x_0 by $\rho(t)x_0 \ (t \in T)$ if necessary, we may assume that $x_0 \in V_1$. By [V, Theorem 1] and the assumption that P_{L_0} is σ-anisotropic, we see that $\beta(x_0)$ is in Ω_0. This implies the first assertion. To prove the second assertion, it is sufficient to consider the case where $x = x_0$. Since the identity component of P_{x_0} coincides with that of $(P_{L_0} \cdot U)_{x_0} = P_{x_0} \cap (P_{L_0} \cdot U)$, we prove that $(P_{L_0} \cdot U)_{x_0}$ is reductive. It is obvious that $(P_{L_0} \cdot U)_{x_0}$ is the semi-direct product of $P_{L_0} \cap L_{(x_0)}$ and $U_{x_0} = U \cap G_{x_0}$. By (A-1), G_{x_0} is reductive; hence its normal subgroup U_{x_0} is reductive. Put $L' = P_{L_0} \cap \sigma(P_{L_0})$. By the assumption, L'_0 is a Levi subgroup of P_{L_0}. The group $P_{L_0} \cap L_{(x_0)}$ is reductive. This proves the second part. The third assertion is an immediate consequence of the second.

3.3 Let the assumption be as in Lemma 3.3. Take a field k such that $x_0 \in V_k - S_k$, P_{L_0} and the involution σ are defined over k. We examine the group $X_\rho(P)_{k}$ of k-rational characters corresponding to relative invariants of (P, ρ, V).

For simplicity, we assume that

(A-6) the basic relative invariants P_1, \ldots, P_n of (G, ρ, V) over Q are absolutely irreducible.

This is equivalent to the condition

$X_\rho(G)_Q = X_\rho(G)_C$.

Let T_0' be the identity component of the center of L_0'. The central torus T_0' is σ-stable. Hence we get a separable isogeny $T_{0,+}' \times T_{0,-}' \to T_0'$, where

$$T_{0,+}' = \{ t \in T_0' \mid \sigma(t) = t \}^o \quad \text{and} \quad T_{0,-}' = \{ t \in T_0' \mid \sigma(t) = t^{-1} \}^o.$$

We consider the following commutative diagram of the natural mappings:

$$\begin{array}{ccc}
X(P)_k & \leftrightarrow & X(P)_k \oplus X(T_0')_k \\
\uparrow & & \downarrow \text{restriction to } T \times T_{0,-}' \\
X_{\rho}(P)_k & \xrightarrow{\xi} & X(T)_k \oplus X(T_{0,-}')_k.
\end{array}$$

Here note that $X(T)_k = X(T)_Q$, since T is a Q-split torus.

Lemma 3.4 The homomorphism $\xi : X_{\rho}(P)_k \to X(T)_k \oplus X(T_{0,-}')_k$ is injective and of finite cokernel.

Proof. Any character χ in $X_{\rho}(P)_k$ is trivial on $P_{x_0}U$. The group $P_{x_0}U$ contains $(P_{x_0} \cap L_{(x_0)})U$ and hence $((L_0')^*)^o U$. Since $T_{0,+}'$ is a subgroup of $((L_0')^*)^o$, χ is trivial on $T_{0,+}'$. This implies that ξ is injective. As we have already seen in §1, $\xi(X_{\rho}(G)_k) = \xi(X_{\rho}(G)_Q)$ is of finite index in $X(T)_k (= X(T)_Q)$. Let χ be a k-rational character of $T_{0,-}'$. Then, for some integer c_1, χ^{c_1} can be extended to a k-rational character of P such that $\ker \chi^{c_1}$ contains $TT_{0,+}'D(L_0')U'$, where $D(L_0')$ is the derived group of L_0'. Since $(P_x)^*$ is contained in $TT_{0,+}'(D(L_0')U')$, there exists an integer e such that χ^e is trivial on P_x. This implies that $\chi^{e} \in X_{\rho}(P)_k$. Therefore $\xi(X_{\rho}(P)_k)$ is of finite index in $X(T)_k \oplus X(T_{0,-}')_k$.

Let $P_1, \ldots, P_n, P_{n+1}, \ldots, P_{n+l}$ be the basic relative invariants of (P, ρ, V) over k, where P_1, \ldots, P_n are the basic relative invariants of (G, ρ, V). We have $l = \text{rank } X(T_{0,-}')_k$ by Lemma 3.4.

Let $\chi_{n+1}, \ldots, \chi_{n+l}$ be the k-rational characters corresponding to P_{n+1}, \ldots, P_{n+l}, respectively. Take a positive integer e such that $(\chi_i^{e}|_{T})$ $(n + 1 \leq i \leq n + l)$ are in $\xi(X_{\rho}(G)_k)$. Then one can find $m_{ij} \in e^{-1}Z$ $(1 \leq i \leq n, 1 \leq j \leq l)$ such that

$$\chi_{n+i}^{e} \prod_{i=1}^{n} \chi_i^{em_{ij}} \equiv 1 \quad \text{on } T.$$

These m_{ij} will play a role in the algebraic construction of the Poisson kernel in §4.

§4 Functional equations — The case of symmetric structure of K_e-type

Let (G, ρ, V) be a p.v. with symmetric structure $G = L \cdot U$ satisfying the assumptions (A-1), (A-3), (A-5) and (A-6). The assumption (A-2) is automatically satisfied. In this section
we prove the functional equation satisfied by zeta functions attached to automorphic forms under the following assumption:

(A-7) \(L_0 \) is semisimple and the symmetric spaces \(X_i = L_0^+/L_{(x_i)}^+ \) (1 \(\leq i \leq \nu \)) are \(K_\epsilon \)-space in the sense of [OS].

4.1 Let \(\theta \) be a maximal compact subgroup of \(L_0^+ \) and \(\theta \) the corresponding Cartan involution. Let \(P_0 \) be a minimal parabolic subgroup of \(L_0^+ \) with Langlands decomposition \(P_0 = MAN \) with respect to \(\theta \). Denote by \(L_0, m \) and \(a \) the Lie algebras of \(L_0^+, M \) and \(A \), respectively. Let \(\Sigma (\subset a^*) \) be the set of restricted roots and \(\Sigma^+ \) the set of positive restricted roots corresponding to \(P_0 \). Put \(L_0^* = \{ X \in L_0 | [H, X] = \alpha(H)X \} \) for \(\alpha \in \Sigma \).

Following [OS], we call a mapping \(\epsilon : \Sigma \rightarrow \{ \pm 1 \} \) a signature of roots, if it satisfies the condition

\[
\epsilon(\alpha) = \epsilon(-\alpha) \quad (\alpha \in \Sigma),
\]

\[
\epsilon(\alpha + \beta) = \epsilon(\alpha)\epsilon(\beta) \quad \text{if} \ \alpha, \beta \in \Sigma \ \text{and} \ \alpha + \beta \in \Sigma.
\]

For a signature of roots \(\epsilon \), define an involution \(\theta_\epsilon \) of \(L_0 \) by

\[
\theta_\epsilon(X) = \epsilon(-\alpha)\theta(X) \quad X \in L_0^*, \alpha \in \Sigma,
\]

\[
\theta_\epsilon(X) = \theta(X) \quad X \in m + a.
\]

Then a precise formulation of the condition (A-7) is as follows:

(A-7)' for each \(i = 1, \ldots, \nu \), there exists a representative \(x_i \in V_i \) and a signature of roots \(\epsilon_i \) such that \(L_{(x_i)}^+ = M \cdot K_{\epsilon_i}^* \), where \(K_{\epsilon_i}^* \) is the analytic subgroup of \(L_0^+ \) with the Lie algebra

\[
\mathfrak{k}_{\epsilon_i} = \{ X \in L_0 | \theta_\epsilon(X) = X \}.
\]

In this case, one can apply the results in [OS] to the homogeneous spaces \(X_i = L_0^+/L_{(x_i)}^+ \).

Let \(W = N_K(A)/Z_K(A) \) be the Weyl group. Note that \(M = Z_K(A) \). Define a subgroup \(W^{(i)} \) of \(W \) by \(W^{(i)} = (L_{(x_i)}^+ \cap N_K(A))/M \). Put \(r_i = [W : W^{(i)}] \) and fix a complete system \(\{w_1^{(i)}, \ldots, w_{r_i}^{(i)}\} \) of representatives of \(W/W^{(i)} \). Then, by [OS, Proposition 1.10] (or by [Mat]), the set

\[
\bigcup_{j=1}^{r_i} ANw_j^{(i)}L_{(x_i)}^+ = \bigcup_{j=1}^{r_i} P_0w_j^{(i)}L_{(x_i)}^+ \quad \text{(disjoint union)}
\]

is an open dense subset of \(L_0^+ \).

Let \(P_{L_0} \) be a minimal \(\mathbb{R} \)-parabolic subgroup of \(L_0 \) such that \(P_{L_0,\mathbb{R}} \cap L_0^+ = P_0 \). The parabolic subgroup \(P_{L_0} \) is \(\theta_\epsilon \)-anisotropic. Put

\[
P = TP_{L_0}U \quad \text{and} \quad P^+ = T^+P_0U^+.
\]
Note that P^+ is not necessarily connected. Using the notation in §3.3, we have $T'_0 = T'_{0,-}$ and $T'_{0,+} = \{1\}$.

As in §3.2, let S_P the singular set of (P, ρ, V). Then it follows from (4.1) that the P^+-orbit decomposition of $V_B - S_{P,B}$ is given by

$$V_B - S_{P,B} = \bigcup_{i=1}^{\nu} \bigcup_{j=1}^{\tau} V_{ij}, \quad V_{ij} = \rho(P^+)x_{ij}, \quad x_{ij} = \rho(w^{(i)}_j)x_i.$$

Let $P_1, \ldots, P_n, P_{n+1}, \ldots, P_{n+l}$ be the basic relative invariants of (P, ρ, V) over R. As in §3.3, P_1, \ldots, P_n are the basic relative invariants of (G, ρ, V). We have $l = \dim A$ in the present case. Let m_{ij} ($1 \leq i \leq n, 1 \leq j \leq l$) be the rational numbers given by (3.2). Then the function

$$|p_{ij}(x)| = |P_{n+j}(x)|/\prod_{i=1}^{n}|P_i(x)|^{m_{ij}} \quad (i \leq j \leq l)$$

on $V_B - S_B$ satisfies that

$$|p_{ij}(\rho(tmanu)x)| = \chi_{n+j}(a)|p_{ij}(x)| \quad (t \in T^+, m \in M, a \in A, n \in N, u \in U^+, x \in V_B - S_B).$$

This implies that $|p_{ij}|$ defines a function $|\overline{p}_{ij}|$ on X_i:

$$V_i \xrightarrow{|p|} \mathbb{R}^*_+ \xleftarrow{|\overline{p}_{ij}|} X_i.$$

By Lemma 3.4, $\{\chi_{n+1}, \ldots, \chi_{n+l}\}$ gives a basis of $X(T'_0)_R \otimes \mathbb{C}$. We can identify $X(T'_0)_R \otimes \mathbb{C}$ with $\mathfrak{a}^*_c = \mathfrak{a}^* \otimes \mathbb{C}$ by $X(T'_0)_R \ni \chi \mapsto \log(\chi \circ \exp) \in \mathfrak{a}^*$. For $\lambda \in \mathfrak{a}^*_c$, write $\lambda = \sum_{j=1}^{l}\lambda_j \log(\chi_{n+j} \circ \exp)$ and put

$$|p(x)|^\lambda = \prod_{j=1}^{l}|p_j(x)|^{\lambda_j} \quad (x \in V_B - S_B)$$

and

$$|p(x)|^\lambda_{ij} = \begin{cases} |p(x)|^\lambda & \text{if } x \in V_{ij}, \\ 0 & \text{otherwise.} \end{cases}$$

The function $|p(x)|^\lambda_{ij}$ is well-defined for $R(\lambda_1), \ldots, R(\lambda_l) > 0$ and we define $|p(x)|^\lambda_{ij}$ for arbitrary $\lambda \in \mathfrak{a}^*_c$ by analytic continuation. We denote by $|\overline{p}(x)|^\lambda_{ij}$ the function on X_i induced by $|p(x)|^\lambda_{ij}$. Then $|\overline{p}(x)|^\lambda_{ij}$ ($1 \leq j \leq r_i$) coincide with the functions $\exp \left\{ \lambda \left(H^{w_j^{(i)}}_{x_i} (g) \right) \right\}$.
4.2 Now we examine the space $\mathcal{E}(X_1; \pi, \chi)$ of spherical functions of type (π, χ) introduced in §1.5. Let $\mathcal{D}(X_1) = \mathcal{D}(L_0^+/L_{(x_i)}^+)$ be the algebra of L_0^+-invariant differential operators on X_1. Denote by $\mathcal{Z}(X_1)$ the subring of $\mathcal{D}(X_1)$ consisting of the restrictions \overline{D} of bi-invariant differential operators D in $\mathcal{Z}(L_0^+)$. It is known that $\mathcal{Z}(X_1) = \mathcal{D}(X_1)$ if L_0^+ is of classical type and $\mathcal{D}(X_1)$ is a finite $\mathcal{Z}(X_1)$-module in general ([Hel1, §7], [Hel4]).

Let

$$\gamma_i : \mathcal{D}(L_0^+/L_{(x_i)}^+) \cong U(L_0) t_i / (U(L_0) t_i \cap U(L_0)(L_0))(\psi) \cong U(a)^W$$

be the standard isomorphism of $\mathcal{D}(L_0^+/L_{(x_i)}^+)$ onto the ring $U(a)^W$ of the Weyl group invariants (cf. [OS, §2.3], [Hel3, Chap. II, §4, §5]). For $\mu \in \mathfrak{a}_C$, we obtain an algebra homomorphism of $U(a)^W$ into \mathbb{C} by extending it to $U(a)^W$, which we denote by the same symbol. Put

$$\chi_\mu := \mu \circ \gamma_i : \mathcal{D}(L_0^+/L_{(x_i)}^+) \rightarrow \mathbb{C}.$$

Let π be an irreducible unitary representation of K on W_π and $\chi : \mathcal{Z}(L_0^+) \rightarrow \mathbb{C}$ be an infinitesimal character. It is obvious that $\mathcal{E}(X_1; \pi, \chi) = \{0\}$ unless $\chi : \mathcal{Z}(L_0^+) \rightarrow \mathbb{C}$ factors through $\mathcal{Z}(X_1) = \mathcal{Z}(L_0^+/L_{(x_i)}^+)$:

$$\chi : \mathcal{Z}(L_0^+) \rightarrow \mathbb{C}$$

$$\Downarrow$$

$$\mathcal{Z}(L_0^+/L_{(x_i)}^+)$$

Now assume that $\mathcal{E}(X_1; \pi, \chi) \neq \{0\}$ and denote the character of $\mathcal{Z}(L_0^+/L_{(x_i)}^+)$ induced by χ also by the same symbol.

For $\mu \in \mathfrak{a}_C$, put

$$\mathcal{E}(X_1; \pi, \chi_\mu) = \left\{ \psi : X_1 \rightarrow W_{\pi} \mid \psi(kx) = \pi(k)\psi(x) \quad (k \in K, x \in X_1) \right\}.$$

Since $\mathcal{D}(X_1) \supset \mathcal{Z}(X_1)$, we have

$$\mathcal{E}(X_1; \pi, \chi_\mu) \subseteq \mathcal{E}(X_1; \pi, \chi_{\mu}|_{\mathcal{Z}(X_1)}).$$

On the other hand, since $\mathcal{D}(X_1)$ is a commutative algebra, the ring $\mathcal{D}(X_1)$ acts on $\mathcal{E}(X_1; \pi, \chi)$ ($\chi \in \text{Hom}(\mathcal{Z}(L_0^+), \mathbb{C})$). We assume that

(A-8) There exists a finite number of $\mu_1, \ldots, \mu_d \in \mathfrak{a}_C$ such that
(4.2) \[\mathcal{E}(X_i; \pi, \chi) = \bigoplus_{j=1}^{d} \mathcal{E}(X_i; \pi, \chi_{\mu_j}). \]

Remark. The assumption always holds unless the symmetric space \(X_i \) contains an irreducible symmetric space of type EVII or EIX ([Och]). Even in this exceptional case, the assumption holds for generic \(\chi \). By [OS, Lemma 2.24], \(\mu_1, \ldots, \mu_d \) do not depend on \(i = 1, \ldots, \nu \). If \(G \) is of classical type, then \(d = 1 \) for any \(\chi \). In some exceptional cases, it may occur that \(d \geq 2 \); however, for a generic \(\chi \), we may take \(d = 1 \) ([Hel4]).

Now we define \(\text{End}(W_\pi) \)-valued spherical functions \(\Psi_{i,j}^{\pi,\mu}(\overline{x}) \) \((\overline{x} \in X_i)\) by the analytic continuation (with respect to \(\mu \)) of the integral

(4.3) \[\Psi_{i,j}^{\pi,\mu}(\overline{x}) := \int_{K} \mathcal{P}(k^{-1} \cdot \overline{x})^{\mu + \rho}(k) \pi(k) \, dk \quad (\mu \in a_c^*, 1 \leq i \leq \nu, 1 \leq j \leq r_i), \]

where \(\rho = \frac{1}{2} \sum_{\alpha \in \Sigma^+} \alpha \) and \(dk \) is the normalized Haar measure on \(K \). Then, using the Poisson integral representation of eigenfunctions on \(X_i \) of invariant differential operators ([OS, Theorem 5.1]), we immediately obtain the following proposition:

Proposition 4.1 If \(\mu \in a_c^* \) satisfies \(\frac{2(\mu, \alpha)}{(\alpha, \alpha)} \not\in \mathbb{Z} \) for all \(\alpha \in \Sigma \), then the linear mapping

\[\mathcal{P}_{i,\mu} : \bigoplus_{j=1}^{r_i} W_\pi^M \rightarrow \mathcal{E}(X_i; \pi, \chi_{\mu}) \]

\[(v_j)_{j=1}^{r_i} \rightarrow \sum_{j=1}^{r_i} \Psi_{i,j}^{\pi,\mu}(\overline{x}) \cdot v_j \]

is an isomorphism, where

\[W_\pi^M = \{ v \in W_\pi \mid \pi(m)v = v \ (m \in M) \}. \]

Thus we have constructed a basis of \(\mathcal{E}(X_i; \pi, \chi) \) for generic \(\mu \in a_c^* \).

Let \(\mu_1, \ldots, \mu_d \) be the elements in \(a_c^* \) appearing in the right hand side of the decomposition (4.2). We assume in the following that \(\frac{2(\mu, \alpha)}{(\alpha, \alpha)} \not\in \mathbb{Z} \) for all \(\alpha \in \Sigma \) and \(1 \leq l \leq d \). Then, for \(\phi \in \mathcal{A}(L_0^+; \pi, \chi) \) and \(x \in V_Q \cap V_i \), one can find constants \(v_{j,\mu_{l}}^{(i)}(\phi; x) \) such that

\[\mathcal{M}^{(i)}_{x\phi}(\overline{y}) = \sum_{l=1}^{d} \sum_{j=1}^{r_i} v_{j,\mu_{l}}^{(i)}(\phi; x) \cdot \Psi_{i,j}^{\pi,\mu_{l}}(\overline{y}). \]

We put

\[\zeta_{j,l}^{(i)}(\phi, f_0; s) = \frac{1}{v(\Gamma)} \sum_{x \in \Gamma \backslash V \cap V_i} \frac{\mu(x)f_0(x)v_{j,\mu_{l}}^{(i)}(\phi; x)}{\prod_{t=1}^{n} |P_t(x)|^s}. \]
\[\Phi_{j}^{(:)}(f_{\infty}; \pi, \mu_{l}, s) = \int_{V:} \prod_{t=1}^{n} |P_{t}(y)|^{s} \Psi_{j}^{\dot{\pi}_{), \mu_{l}}}(\overline{y}) f_{\infty}(y) \Omega(y). \]

Here \(\zeta_{j,l}^{(i)}(\phi, f_{0}; s) \) are Dirichlet series with values in \(W_{\pi}^{M} \) and \(\Phi_{j}^{(i)}(f_{\infty}; \pi, \mu_{l}, s) \) are local zeta functions with values in \(\text{End}(W_{\pi}) \).

Now Proposition 1.4 can be formulated as follows:

Proposition 4.2 We have
\[Z_{\phi}(s)(f_{\infty} \otimes f_{0}) = \sum_{1=1j}^{\nu} \sum_{=1}^{\tau} \sum_{l=1}^{d} \Phi_{j}^{(i)}(f_{\infty}; \pi, \mu_{l}, s) \cdot \zeta_{j,l}^{(*)}(\phi, f_{0}; s). \]

4.3 Let \((G, \rho, V) = (G, \rho_{1} \oplus \rho_{2}, E \oplus F)\) and assume that \(F \) is a regular subspace. Denote by \((G, \rho^{*}, V^{*})\) the p.v. dual to \((G, \rho, V)\) with respect to \(F \). In the following we indicate with the superscript * the notion for \((G, \rho^{*}, V^{*})\). For example, we denote by \(P_{1}^{*}, \ldots, P_{n}^{*} \) the basic relative invariants of \((G, \rho^{*}, V^{*})\).

Take a relative invariant \(P \) of \((G, \rho, V)\) with coefficients in \(\mathbb{Q} \) such that \(\phi_{P} \) defined in the proof of Lemma 3.1 gives a biregular map of \(V - S \) onto \(V^{*} - S^{*} \). Since \(\phi_{P} \) is defined over \(\mathbb{Q} \) and \(G \)-equivariant, we have a one to one correspondence of \(P^{+} \)-orbits in \(V_{B} - S_{P,B} \) and those in \(V_{R}^{*} - S_{P,B}^{*} \). Hence we have
\[V_{R}^{*} - S_{P,R} = \bigcup_{i=1}^{\nu} \bigcup_{j=1}^{r_{i}} V_{ij}^{*}, \quad V_{ij}^{*} = \phi_{P}(V_{ij}) = \rho^{*}(P^{+})x_{ij}^{*}, \quad x_{ij}^{*} = \phi_{P}(x_{ij}) = \rho^{*}(w_{j}^{(*)})\phi_{P}(x_{ij}). \]

Since \(L_{x_{ij}}^{x_{ij}} = L_{(x_{ij})}^{(x_{ij})} \) for \(x_{ij} = \phi_{P}(x_{ij}) \), we may identify \(X_{i} = L_{x_{ij}}^{x_{ij}} / L_{(x_{ij})}^{(x_{ij})} \) with \(X_{i} = L_{0}^{x_{ij}} / L_{(x_{ij})}^{(x_{ij})} \) and the assumption (A-7) holds also for \((G, \rho^{*}, V^{*})\). Moreover we have the commutative diagram
\[\begin{array}{ccc} V_{i} & \xrightarrow{\phi_{P}} & V_{i}^{*} \\ \downarrow & & \downarrow \\ X_{i} & \xrightarrow{\phi_{P}} & X_{i}^{*} \end{array} \]

For \(x^{*} = \phi_{P}(x) \) \((x \in V_{i}) \), it is easy to check the following identity:
\[|p^{*}(x^{*})|_{ij}^{\mu} = |\overline{p}(x)|_{ij}^{\mu}. \]

If \(x \) is in \(V_{i} \cap V_{Q} \) (and hence \(x^{*} \) is in \(V_{i} \cap V_{Q}^{*} \)), then we have
\[M_{x}^{(i)}(\overline{y}) = M_{x}^{(i)}(\overline{y}) \quad (\overline{y} \in X_{i}), \]
\[v_{j}^{(i)}(\phi; x^{*}) = v_{j}^{(i)}(\phi; x) \]
The zeta functions and the local zeta functions associated with \((G, \rho^*, V^*)\) are defined as follows:

\[
\zeta_{J^l}^{(*)}(\phi, f_0^*; s) = \frac{1}{v(\Gamma)} \sum_{x^* \in \Gamma \backslash V_{\dot{\Phi}^\cap V}} \mu(x^*) f_0^*(x^*) v_{j,\mu_{l}}^{(l)}(\phi; x^*) \prod_{t=1}^{n} |P_t^*(x^*)|^{s_{t}}
\]

\[
\Phi_{j}^{(*)}(f_{\infty}^*; \pi, \mu, s) = \int_{V_{ij}} \prod_{t=1}^{n} |P_t^*(y^*)|^{s_{t}} \Psi_{\theta}^{\pi,\mu_{l}}(\overline{y}^*) f_{\infty}^*(y^*) \Omega^*(y^*).
\]

Theorem 4.3 For any \(f_{\infty} \in \mathcal{S}(V_{\mathbb{R}})\) and \(f_{\infty}^* \in \mathcal{S}(V_{\mathbb{R}}^*)\), the integrals \(\Phi_{j}^{(*)}(f_{\infty}^*; \pi, \mu, s)\), \(\Phi_{j}^{(*)}(f_{\infty}^*; \pi, \mu, s)\) \(((\mu, s) \in a_{c}^* \times C^n)\) converge absolutely, when \(\Re(s_1) > \delta_1, \ldots, \Re(s_n) > \delta_n\) and \(\Re((\mu, \alpha)) > 0\) for all \(\alpha \in \Delta\). Moreover they have analytic continuations to meromorphic functions of \((\mu, s)\) in \(a_{c}^* \times C^n\) and satisfy the functional equation

\[
\Phi_{j}^{(*)}(f_{\infty}^*; \pi, \mu, s) = \sum_{i=1}^{\nu} \sum_{g=1}^{\tau_1} \Gamma_{j,j^*}^{(i,*)}(\mu, s) \Phi_{j}^{(i)}(\overline{f_{\infty}}^*; \pi, \mu, (s-\lambda)U),
\]

where \(\Gamma_{j,j^*}^{(i,*)}(\mu, s)\) are meromorphic functions independent of \(f_{\infty}\) and \(\pi\) having an elementary expression in terms of the gamma function and the exponential function.

Proof. From (4.3), we have

\[
\Phi_{j}^{(*)}(f_{\infty}^*; \pi, \mu, s) = \int_{V_{ij}} \prod_{t=1}^{n} |P_t^*(y^*)|^{s_{t}} \left\{ \int_{K} |\overline{p}(k^{-1}y^*)|_{ij}^{\mu + \rho} \Phi_{j}^{(*)}(f_{\infty}^*; \pi, \mu, s) \right\} f_{\infty}^*(y^*) \Omega^*(y^*).
\]

Since \(P_t^*\)'s are \(K\)-invariant, we obtain

\[
(4.4) \quad \Phi_{j}^{(*)}(f_{\infty}^*; \pi, \mu, s) = \int_{V_{ij}} \prod_{t=1}^{n} |P_t(y)|^{s_{t}} \cdot |p(y)|^{\mu + \rho} \left\{ \int_{K} f_{\infty}(\rho(k)y) \pi(k) dk \right\} \Omega(y).
\]

Similarly we obtain

\[
(4.5) \quad \Phi_{j}^{(*)}(f_{\infty}^*; \pi, \mu, s) = \int_{V_{ij}} \prod_{t=1}^{n} |P_t^*(y^*)|^{s_{t}} \cdot |p^*(y^*)|^{\mu + \rho} \left\{ \int_{K} f_{\infty}^*(\rho^*(k)y^*) \pi(k) dk \right\} \Omega^*(y^*).
\]

From these expressions, the convergence of the integrals is obvious. Moreover, since any matrix coefficient of \(\int_{K} f_{\infty}(\rho(k)y) \pi(k) dk\) (resp. \(\int_{K} f_{\infty}^*(\rho^*(k)y^*) \pi(k) dk\))
is a rapidly decreasing function on V_r (resp. $V_r^*)$, the integrals $\Phi_{j}^{(i)}$ (resp. $\Phi_{j}^{*(i)}$) have analytic continuations to meromorphic functions on $\mathfrak{a}_C^* \times \mathbb{C}^n$. We note further that, for $u, v \in W_\pi$,

$$\left< \int_K f_\infty(\rho(k)y) \pi(k) dk \cdot u, v \right> = \left< \left(\int_K f_\infty(\rho(k)y) \pi(k) dk \cdot u, v \right) \right>^*.$$

By [S1, Theorem 1], there exist meromorphic functions $\Gamma_{j,j^{*}}^{(\cdot, \cdot)}(\mu, s)$ on $\mathfrak{a}_c^* \times \mathbb{C}^n$ such that the functional equation

$$\langle \Phi_{j}^{(i)}(f_{\infty}; \pi, \mu, s)u, v \rangle = \sum_{\nu=1}^{r_{j}} \sum_{l=1}^{\nu} \Gamma_{j,j^{*}}^{(\cdot, \cdot)}(\mu, s) \langle \Phi_{j}^{*(i)}(f_{\infty}; \pi, \mu, (s-\lambda)U)u, v \rangle^*$$

holds for all $u, v \in W_\pi$. This proves the theorem.

For $(\mu, s) \in \mathfrak{a}_C^* \times \mathbb{C}^n$, put

$$P_{\mu,s}(y) = \prod_{i=1}^{n} P_{t}(y)^{s}:-\delta.-\Sigma!_{=1}:j\prod_{j=1}^{l} P_{n+j}(y)^{\mu_{j}}.$$

Let P_F^* be the relative invariant of (G, ρ^*, V^*) introduced just before Lemma 2.2. Then, by [S1, §3], there exists a polynomial $b_F(s, \mu)$, the b-function of (G, ρ, V) with respect to F, satisfying

$$(4.6) \quad P_F^*(y_1, \frac{\partial}{\partial y_2}) P_{\mu,s}(y) = b_F(s, \mu) P_{\mu,s+\alpha}(y),$$

where $\alpha = (\alpha_1, \ldots, \alpha_n)$ is defined by $\chi_{F}^{*} = \chi_{1}^{\alpha_{1}} \cdots \chi_{n}^{\alpha_{n}}$. We can similarly define the b-function $b_F^*(s, \mu)$ of (G, ρ^*, V^*) with respect to F.

Now we are in a position to prove the functional equation of the zeta functions $\zeta_{j,l}^{(i)}(\phi, f_0; s)$ and $\zeta_{j,l}^{*(i)}(\phi, f_0^*; s)$.

Theorem 4.4 Assume that $\frac{2(\mu, \alpha)}{(\alpha, \alpha)} \notin \mathbb{Z}$ for all $\alpha \in \Sigma$ and $1 \leq l \leq d$. Then

(i) the zeta functions $\zeta_{j,l}^{(i)}(\phi, f_0; s)$ and $\zeta_{j,l}^{*(i)}(\phi, f_0^*; s)$ can be extended to meromorphic functions of s in D and D^*, respectively (for the definition of D and D^*, see §2).

(ii) The functions $b_F(s, \mu_{l})\zeta_{j,l}^{(i)}(\phi, f_0; s)$ and $b_F^*(s, \mu_{l})\zeta_{j,l}^{*(i)}(\phi, f_0^*; s)$ are holomorphic functions of s in D and D^*, respectively.

(iii) The following functional equation holds for any $f_0 \in S(V_{\mathfrak{q}})$:

$$\zeta_{j,l}^{*(i)}(\phi, f_0^*; (s-\lambda)U) = \sum_{\nu=1}^{r_{j}} \sum_{l=1}^{\nu} \Gamma_{j,j^{*}}^{(\cdot, \cdot)}(\mu_{l}, s) \zeta_{j,l}^{(i)}(\phi, f_0; s).$$
Proof. (i) and (ii): Let the notation be as in §2. For an $f_{\infty}' \in C_{0}^{\infty}(V_{ij})$, put $f_{\infty} = P_{F}^{*}(x_{1}, \frac{\partial}{\partial x_{2}})f_{\infty}'(x_{1}, x_{2})$. Then, by Lemma 2.2, we can apply Proposition 2.1 to f_{∞} and we see that the function

$$Z_{\phi}(s)(f_{\infty} \otimes f_{0}) = \sum_{l=1}^{d} \Phi_{j}^{(i)}(f_{\infty}; \pi, \mu_{l}, s)\zeta_{j,l}^{(i)}(\phi, f_{0}; s)$$

is a holomorphic function of s in D. On the other hand

$$\Phi_{j}^{(i)}(f_{\infty}; \pi, \mu_{l}, s) = \int_{V_{ij}} \prod_{t=1}^{n} |P_{t}(y)|^{s_{t}} \cdot |p(y)|^{\mu_{l}+\rho} \left\{ \int_{K} P_{F}^{*}(y_{1}, \frac{\partial}{\partial y_{2}})f_{\infty}'(\rho(k)y)\pi(k)dk \right\} \Omega(y).$$

Since P_{F}^{*} is K-invariant, we have

$$P_{F}^{*}(y_{1}, \frac{\partial}{\partial y_{2}})f_{\infty}'(\rho(k)y) = P_{F}^{*}(y_{1}, \frac{\partial}{\partial y_{2}}) (k f_{\infty}'(y)), \quad kf_{\infty}'(y) = f_{\infty}'(\rho(k)y).$$

Hence, integrating by parts, we obtain

$$\Phi_{j}^{(i)}(f_{\infty}; \pi, \mu_{l}, s) = \pm b_{F}(s, \mu_{l}) \Phi_{j}^{(i)}(f_{\infty}'; \pi, \mu_{l}; s+\alpha),$$

where we use the identity (4.6). Thus we see that

$$(4.7) \quad Z_{\phi}(s)(f_{\infty} \otimes f_{0}) = \sum_{l=1}^{d} \pm b_{F}(s, \mu_{l}) \Phi_{j}^{(i)}(f_{\infty}'; \pi, \mu_{l}; s+\alpha)\zeta_{j,l}^{(i)}(\phi, f_{0}; s)$$

is a holomorphic function in D.

Now we need the following lemma, whose proof is not hard and is omitted.

Lemma 4.5 Let $V = \mathbb{C}^{m}$ and $W = \mathbb{C}^{n}$. Let $\Psi : X \to \text{Hom}(V, W)$ be an $\text{Hom}(V, W)$-valued function on a domain X in \mathbb{R}^{N}. We identify $\text{Hom}(V, W)$ with $M(m, n; \mathbb{C})$ and denote by Ψ_{ij} the (i, j)-entry of Ψ. Put

$$\Psi_{j}(x) = \begin{pmatrix} \Psi_{1j}(x) \\ \vdots \\ \Psi_{mj}(x) \end{pmatrix} : X \to \mathbb{C}^{m} \quad (1 \leq j \leq n).$$

Assume that the functions $\Psi_{1}, \ldots, \Psi_{n}$ are linearly independent over \mathbb{C}. Then there exist $f_{1}, \ldots, f_{n} \in C_{0}^{\infty}(X)$ such that the rank of the matrix

$$\begin{pmatrix} \int_{X} \Psi(x)f_{1}(x)dx \\ \vdots \\ \int_{X} \Psi(x)f_{n}(x)dx \end{pmatrix}_{m} \in M(mn, n; \mathbb{C})$$

is equal to n.

When \(\frac{2(\mu_l, \alpha)}{(\alpha, \alpha)} \notin \mathbb{Z} \ (1 \leq l \leq d) \), the lemma can be applied to the function

\[
\Psi : V_1 \rightarrow \text{Hom}(\bigotimes W_\pi^M, W_\pi)
\]

defined by

\[
\Psi(x)(v_1, \ldots, v_d) = |P(x)|^s \sum_{l=1}^{d} \Psi_{j}^{\mu_l}(\overline{x}) \cdot v_l.
\]

Hence, by (4.7), we see that the functions \(b_F(s, \mu_i) \zeta^{(i)}_{j_l}(\phi, f_0; s) \) are holomorphic in \(D \). The holomorphy of \(b_F^*(s, \mu_i) \zeta^{(i)}_{j_l}(\phi, f_0^*; s) \) can be shown quite similarly.

(iii): Now we take \(f_\infty^* \in C^\infty_0(V_{\pi}^*) \) and put \(f_\infty^*(x_1, x_2^*) = P_F(x_1, \frac{\partial}{\partial x^*_2})f_\infty^*(x_1, x_2^*) \) and \(f_\infty = \overline{f_\infty^*} \). The we can apply Proposition 2.1 to \(f_\infty \) and get the functional equation

\[
Z_{\phi}^*((s - \lambda)U)(f_\infty^* \otimes \overline{f_0}) = Z_{\phi}(s)(f_\infty \otimes f_0) \quad (s \in D).
\]

By proposition 4.2 and Theorem 4.3, we have

\[
\sum_{i=1}^{d} \Phi_{j}^{*(i)}(\overline{f_\infty}; \pi, \mu_l, (s - \lambda)U) \zeta_{jl}^{*(i)}(\phi, \overline{f_0}; (s - \lambda)U)
\]

\[
= \sum_{i=1}^{\nu} \sum_{j=1}^{\tau} \sum_{l=1}^{d} \Phi_{j}^{(i)}(f_\infty; \pi, \mu_l, s) \zeta_{jl}^{(i)}(\phi, f_0; s)
\]

\[
= \sum_{i=1}^{\nu} \sum_{j=1}^{\tau} \sum_{l=1}^{d} \Gamma_{i}^{i:j_l}(\mu_i, s) \zeta_{jl}^{(i)}(\phi, f_0; s) \Phi_{j}^{*(i)}(\overline{f_\infty}; \pi, \mu_l, (s - \lambda)U) \zeta_{jl}^{*(i)}(\phi, \overline{f_0}; (s - \lambda)U).
\]

Therefore

\[
\sum_{i=1}^{d} \Phi_{j}^{*(i)}(\overline{f_\infty}; \pi, \mu_l, (s - \lambda)U)
\]

\[
\times \left(\zeta_{jl}^{*(i)}(\phi, \overline{f_0}; (s - \lambda)U) - \sum_{i=1}^{\nu} \sum_{j=1}^{\tau} \Gamma_{i}^{i:j_l}(\mu_i, s) \zeta_{jl}^{(i)}(\phi, f_0; s) \right) = 0.
\]

By the argument based upon Lemma 4.5, we see that the functional equation

\[
\zeta_{jl}^{*(i)}(\phi, \overline{f_0}; (s - \lambda)U) = \sum_{i=1}^{\nu} \sum_{j=1}^{\tau} \Gamma_{i}^{i:j_l}(\mu_i, s) \zeta_{jl}^{(i)}(\phi, f_0; s).
\]

holds for any \(s \in D \).

Remarks. 1. As we mentioned at the beginning of §2, the functional equation of zeta functions are based on local functional equations, the existence of b-functions anbd the
functional equations of the zeta integrals. In the case considered above, the local functional equation (Theorem 4.3) and the b-function (4.6) are reduced to the usual local functional equations and the b-functions of the prehomogeneous vector space \((P, \rho, V)\).

2. Even when the symmetric spaces \(X_i = L_{x_i}^+ / L_{(x_i)}^+\) is not of \(K_i\)-type, we can argue quite similarly to prove the functional equations of zeta functions attached to automorphic forms on the basis of the results of Oshima [O1]. In the general case, \(P\) is not necessarily minimal parabolic, and the functional equations are reduced to the local functional equations discussed in [S6].

References

