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On the b-Function of Nonisolated Hypersurface Singularities
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RIMS Kyoto University, Kyoto 606 Japan

Let f be a germ of holomorphic function of n variables, and by(s) the b-function (i.e.
Bernstein polynomial) of f. It is the monic generator of the ideal consisting of polynomials
b(s) which satisfy the relation

(0.1) b(s)f*= P! in O, [f I[s]f?

for P € Dy[s], where D, denotes the germs of holomorphic differential operators on X :=

Yx
(C", 0), and D,[s] = Qx®c©[s]. Substituting s = -1, we can check easily that by(s) is
divisible by s + 1. Let f)f(s) =b(s)/(s+1), R; the roots of Bf(—s), a; = min R;, and m (f)
the multiplicity of a root & of b,(-s). By Kashiwara [7], we have

(0.2) Theorem. o, >0, and R, C Q.

Assume f has isolated singularity and n> 1. Let Hf = Qx/ df/\dQ&_z, following
Brieskorn [2]. Then H; is a free C{{t}}-module of rank p (the Milnor number of f), and has
a regular singular meromorphic connection. Let Hf = ¥, , (tat)in < H{[t'] (the saturation

of Hf). By Malgrange [13], we have
(0.3) Theorem. b(s) is the minimal polynomial of the action of - 8t on Hj /tH;.
Combined with a result of Varchenko [29] (and [26]), this implies (see also [17]) :
(0.4) Theorem. R.C [a, n - a.
(0.5) Theorem. ma(f) sn-o;-a+l(sn-20+1).
In the isolated singularity case, we proved also (see [16]) :
(0.6) Proposition. Y = f'l(O) has rational singularity if and only if o > 1.

Using the theory of mixed Hodge Modules [18] [19] [20], we extend these to the
nonisolated singularity case (see [23] [24]), i.e.

(0.7) Theorem. (0.4-6) are valid also in the nonisolated singularity case, where we assume
Y reduced in (0.6).

Note that (0.5) is an improvement of m_(f)<n-23 wl (where d w1 18 Kronecker’s delta)

which is shown in [14] as a corollary of the relation with Deligne’s vanishing cycle sheaf
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@{Cy [3]. Seealso [8]. This relation implies for example that exp(2mia) for o € R, are the
eigenvalues of the monodromy on @ C,. But ¢Cy cannot be replaced with the reduced
cohomology of a Milnor fiber at the origin as in the isolated singularity case, because we have

to take the Milnor fibration at several points of Sing f ~}0) even when we consider the b-
function of f at the origin.

For the proof of the generalization of (0.4-5), we introduce the notion of microlocal b-
function (1.1), and show an assertion (1.2) which may be viewed as a generalization of (0.3).
Using this, we can prove the Thom-Sebastiani type theorem for b-function in some case (2.8).

In the nondegenerate Newton boundary case [12], we get an estimate of o by the Newton

polyhedron (2.7). Note that the b-function is also related with the spectrum [27] of f, and
with a result of Deligne-Dimca [5]. See [23].

§1. Microlocal b-Function

(1.1) Let d(t-f) denote the delta function on X' := X x (C, 0) with support {f=t}, where t
is the coordinate of C. Then, setting s = -0t, f * and d(t-f) satisfy the same relation (see

for example [13]). So f° in (0.1) can be replaced by d(t-f), and f**! by t5(t—f). We define
the microlocal b-function Sf(s) by the monic generator of the ideal consisting of polynomials
b(s) which satisfy the relation

(1.1.1) b(s)3(t-f) = P '5(t-) in  0,[0,,8; '15(t-f)

for P € D,[6, l,s]. Here we can also allow for P a microdifferential operator [7] [9] [10]
[25] satisfying a condition on the degree of t and 0, (see [24, (1.4)]).
We can show (see [24, (1.5)]):

(1.2) Proposition. bys) = (s+1)b(s).
(1.3) Let Ry =D,[t,8], Ry =D,[t,8,0,'], and
(1.3.1) B, =0,[015(t-), B,=0,[6,0; 15(t-f),

where O,[0,]5(t-f) is a free module of rank one over 0,[0,] with a basis (t-f) (similarly for
B_f). Then B,, B_f have naturally a structure of Ry-module and ﬁx-module respectively.
Let V be the filtration on Rx, Rx by the differences of the degrees of t and 3, i.e.,

(1.3.2) VPR, =¥, .. D@ (same for R,).

i~j2p
We define a decreasing filtration G on B, Bf by
(1.3.3) GP’B, = VPR, d(t-f), GPB, = VPR, d(t-1),

and an increasing filtration F by
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(1.3.4) Fp_Bf OSISPO old(t-1), F B = C+)lsp0 6‘6(t f).

Then we have

(1.3.5) ¢,:G’B, > G*B, &:FB SF B

(1.3.6) _x[s](Fpr) C GTPB.

(1.4) Remark. b(s) and Bf(s) are the minimal polynomial of the action of s:=-4gt on

GrgB, and Grng respectively, because s belongs to the center of Gr?;RX = GrgR, =
Dylsl.

§2. Filtration V

(2.1) Let V denote the filtration of Kashiwara [8] and Malgrange [14] on B, indexed by Q.

Here we index V decreasingly so that the action of ¢t~ a on Gr{yB; is nilpotent, where

Gry = V/V'* with V7% = Ugsg VP. By [7] (see also (0.2) above), we have
(2.2.1) FB, C VB,.
We can show (see [24, (2.2) and (2.4)]) :

(2.2) Lemma. We have a decreasing filtration V on B such that
(2.2.1) VOB, = VOB, + 0,10, '10; '5(t-f) for a=1,
(2.2.2) 0: : VB, ;V“'jB_f forany j, o

(2.3) Proposition. We have

(2.3.1) Gr{B, = Dx(FpGrg‘,Bf) if F, Gy, "B, = 0.

(2.4) Proof of (0.4) in the general case. We have G Gr{’,ﬁf > D, (F_,GryB,) by (1.3.6).
So it is enough to show Gr{",Bf = QX(F_IGr?,Bf) for a >n-a; by (1.4), because it implies
GryGryB, = GryGrdB, = 0. By definition of o, we have

(2.4.1) F,Gr¢B, = G°Gr2B, =0 for a<a,

using (1.3.6). So the assertion follows from (2.3) applied to p =- 1.
By a similar argument, we prove (0.5) using also the monodromy filtration W. Here W
is uniquely characterized by the properties (see [4]) :

(2.4.1) NW,CW,_, N:G¥ 5GrY (>0),

where N=s+ a on Gr{",Bf. See [24, (2.8)] for the details. We can show also the following:
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(2.5) Remark. Let @Cy be Deligne’s vanishing cycle sheaf [3], and T, T, denote
respectively the unipotent and semisimple part of the monodromy T on ¢C,. Let ¢/Cy =
Ker(T, - exp(-2mia)) (as a shifted perverse sheaf [1]), and N =log T,/ 2mi. Then we have
N*'=0 on ofCy for a € [a, o+ 1) and r=[n- ;- al. In particular, N*'=0 on
@ Cy for r=[n-20a]. See[24,(0.6)].

(2.6) Remark. If Sing f -10) is isolated and f is a quasi-homogeneous polynomial of
weight (w,,+++,w ) (i.e. f isalinear combination of monomials x,'---xg= such that m,w,

+:+mw,_ = 1), then it is well-known that m_(f) = 1 for a € R, and o belongs to R; if

and only if the coefficient of t* in

(2.6.1) I0; (- 0A1-t")

is nonzero. This follows for example from Steenbrink [28] (using [13] [29]) and also from

Brieskorn or Kashiwara (unpublished). In particular, we have max R; = n - o; in this case.

(2.7) Remark. If f has nondegenerate Newton boundary, we can show a.= 1/t for (tyees,

t) € oI () (see [24, (3.3)]), where I (f) is the Newton polygon of f. In the isolated
singularity case, it is known that the equality holds. (See also [22].)

(2.8) Remark. Let g be a holomorphic function on a germ of complex manifold Y. Let Z =
XxY,and h=f+ge€ Q,. We define Rg, R, as in the introduction. Then Rng CR,+
Z.o» Ry, CRR, +Z_, Furthermore, if there is a holomorphic vector field € such that Eg=
g, then Rng =R,, and mY(h) = maxa+ﬁ=y{ma(f) + mﬁ(g) - 1}. See {24, (4.3-4)]. The last
assertion is proved in [30] if f and g have isolated singularities.

§3. Rational Singularity
(3.1) Let Y be a reduced complex analytic space. We say that Y has rational singularity, if
the natural morphism

(3.1.1) O, — R0,

is an isomorphism for a resolution of singularity w: Y’ — Y. If Y is Cohen-Macaulay and
pure dimensional, it is equivalent to the bijectivity of the trace morphism

(3.1.2) T Wy, = Wy

by duality [15], because Rin',(ny, =0 for i >0 by [6] (this follows also from [11] [21])

where 7 is assumed projective. Here w, denotes the dualizing sheaf (i.e., the dualizing
complex [15] shifted by the dimension to the right). The trace morphism (3.1.2) is injective,
and its image is independent of the choice of resolution, because (3.1.2) is an isomorphism if
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Y is smooth. We will denote by (I)Y the image of (3.1.2).

(3.2) Assume Y is a reduced divisor D on the germ of complex manifold X in the
introduction. Let f be a reduced defining equation of D.

Using the coordinate system (x;,+++, X ) of X, we have the involution of D, such that
(PQ)* =Q’P*, (x)" = x, (0/0x)” = - 9/0x;. So the right D-module w, is identified with the
left D-module O, using the basis dx = dx;A +«+ AdX of w,,and we get isomorphisms

(3.2.2) B, = w,[0J5(t-f), B,=w,[d,0; 15(t-D.
We can show (see [23]) : .
(3.3) Theorem. We have a commutative diagram
0 — ®p - Wp - wp/0p — 0
(3.3.1) ! ! !

0 - FWGHB, — F(B/V'B) — F,®B/V'B) » 0,
such that the vertical morphisms are isomorphisms.

(3.4) Remark. The horizontal short exact sequences correspond to the short exact sequence of
mixed Hodge modules [19] : '

(34.1) 0 — Qpln-1] - w,QXInl ~ ¢Q¥[nl - 0.
of the underlying filtered D-module of (3.4.1)
(using (2.2.1)), because the underlying filtered D-modules w0, @0y of y, Q¥n], cpf@ﬁ[n]

In fact, taking Gr, of (3.3.1), we get F

1-n

are defined by
(3.4.2) Yy =@, GriyB, @uy=®, _ GryB.

Here we have a shift of the filtration F coming from the transformation of left and right
filtered D-modules (see [23]). Furthermore, G)D is F,_ of the underlying filtered D-module

of the intersection complex ICD@H which is a quotient of QH[n-11].
As a corollary of (3.3), we get (0.6) and the following

(3.5) Corollary. We have a canonical isomorphism
(3.5.1) Fo_.(pwy) =@, . Gri(w/wp),

such that Gr{j(w/wp,) corresponds to the exp(-2mia)-eigenspace of ¢;w, With respect to the
action of monodromy.
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