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COMPLETELY Z SYMMETRIC R MATRIX

BRIy YERE=/RE (Kimio Uewo)
72X 5@1 ;’,ﬂi o 1‘%— (Youichi Shasukaws)

1. INTRODUCTION

In this paper, we shall introduce an infinite-dimensional R matrix related to the
limiting case n — oo of the completely Z, symmetric R matrix. This is not the same
as the R matrix of Gaudin [8], Gémez-Sierra [9], and Fateev—Zamolodchikov [5]. Of

course, this R matrix satisfies the Yang-Baxter equation
(1.1) Ria(A1)Riz( A1 + Ag) Raa(A2) = Raa(A2)Ruz(Ar + A2) Raa(M).

By means of the Fourier transformation, we shall give an R operator on C*(S* x S).
This R operator is also a solution of the Yang-Baxter equation (1.1). Moreover we
shall apply the fusion procedure to the R operator, and shall construct a finite-

dimensional R matrix from the R operator.
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The reason why we begin investigations of such an infinite-dimensional R matrix

1s as follows.

The quantum group is useful for the geometric interpretation of Macdonald’s sym-
metric polynomials. In fact, Ueno-Takebayashi [17] and Noumi {13] proved that Mac-
donald’s symmetric polynomials are the zonal spherical functions on some quantum
homogeneous space. Although Macdonald’s symmetric polynomials have two param-
eters, they dealed with the case of only one parameter. Further it is rather more
natural to consider Macdonald’s symmetric functions than Macdonald’s symmetric
polynomials. Roughly speaking, Macdonald’s symmetric functions are the polyno-
mials with infinite variables. Then we aim at defining the quantum group U, +(¢9lx),
a deformation of U(gl,) with two parameters ¢ and ¢ for giving the geometric in-
terpretation of Macdonald’s symmetric functions. In view of Sklyanin algebra [16],
it is important to find out the infinite-dimensional R matrix which can define the

quantum group U, ;(9ls)-
On the other hand, Freund-Zabrodin [7] and Zabrodin [19] showed that Macdon-
ald’s symmetric functions are related to the limiting case n — oo of the completely

Z,, symmetric model.

The details will be discussed in a forthcoming paper [15].
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2. COMPLETELY Z, SYMMETRIC R MATRIX

Let us quickly review the completely Z, symmetric R matrix. We denote by
Rf{()) the Boltzmann weight for a single vertex with bond states ¢,7,k,£ € Z,.
These Boltzmann weights Rf/(\) define a matrix R()\) in the standard basis
{ei ® e;;1,7 € Z,} for C* ® C*. This matrix R(A) is said to be completely Z,

symmetric if Rff()) satisfies the conditions below:

(1) REY(A)=0 unlessi+j=4k+£ modn,

(2) REPAP(N) = RE(\)  for Vi, j, k,£ € Z,.

+p,j+p

Because of Z, symmetry, there exists $?*(\) (a,b € Z,) satisfying
(2.1) RE(X) = 8ipjpseS (V).

We define the Jacobi theta functions 19['2] (2,7) of rational characteristics a,b € 1Z
by
(2.2) J [Z] (z,7) = Y exp[rvV=1(m + a)*r + 27v/—1(m + a)(z + b)),
meZ
and put
J [b_;g;%] (A + k,n7)
2
Y [-%+%](n,nr)19 [%1'%] (A, n7)
2

1
2

(2.3) 5\ =

Here Im 7 > 0, and « is a constant. These weights S°(\) give a solution of the Yang-
Baxter equation (1.1). This completely Z, symmetric R matrix has been studied by

Belavin [2], Cherednik [3] [4], and Richey-Tracy [14].
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The weight S°*()\) is expressed as follows.

24 S = 50,
S*())
= q—%zéezﬂ‘/:—l(%"‘_%’\)
2-5 o o] n{m-—1j}—-{o—a =27\ - ® nm —a P x
(25) y 0o (] — gim=1)=(b-0) g=2nV=T(0+r))(] _ gnm+(b=a) 2rv/=T(\+x))

®_ (1 — grim=Ntee—2mV/=1r)(] — gnm=a)e2rV~Ix)
(1 _ qnm+be27r\/:T,\)
(1 — gnlm=1)-beg-2m/=Tr)’

X
Here ¢ = €2™V=17. Taking Im 7 > 0 into account,

(2.6) lim $%()) = 1 — g te VIO .
n—00 (1 _ qae—21r\/—-_1r.)(1 - q—be—27r\/—_l,\)

3. COMPLETELY Z SYMMETRIC R MATRIX

Let us consider an infinite-dimensional R matrix,
(3.1) RN = Y R(NEx® Ej.
i3,k LEL
Here E;; is the matrix unit in Z x Z matrix algebra. We impose a constraint of the

completely Z symmetry on such an R matrix. Namely, we assume that there exists

S%(X) (a,b € Z) such that

(3:2) REF(N) = GigipaeSFTHTE(N).

in
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Then the Yang-Baxter equation (1.1) reads, in terms of these weights S°*()\) as

follows:
Z Gk=i1 ,iz—k()‘l)Sjl—k,is—jl (/\1 + A2)5j2"i1 —i2+k,j3—i1—i2+k(/\2)
(3.3) e
— Z Sjl +j2_i2_k’j3—i1_i2+k(/\Q)Sk_il WJ3—i1 ()‘1 + /\z)Sjl —k,jz—k(Al)’
k=—o0

for all ¢;,12,13, J1,J2,J3 € Z s.t. 1y + 12 + 13 = J1 + J2 + J3-
In view of the limiting case n — oo (2.6) of the completely Z,, symmetric R matrix,

we find a solution of the Yang-Baxter equation.

Theorem 3.1. We assume |q| < 1, and then

a b

ab — q 9
(34) S (/\) - —ezﬂ\/__ln —q° + 621r\/—_1)\ —_ qb

is a solution of the equation (3.3). Here k is an arbitrary constant.

Note that the both sides of equation (3.3) are absolutely convergent. We can prove

. . . def oy
the theorem above by residue calculus in a variable u; = 2"V,

Remark 3.1. We put ¢ = e2™~17 (Im 7 > 0), and replace x with 7« in (3.4). In the

limiting case ¢ — 1,

(3.5) (- 1)S*(rN) | == L —+ A_l——b

g—1

It is same as the weight S% given by Gaudin [8].
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4. R OPERATOR

We shall realize the R matrix as an operator on some function space making use

of the formula below (see [11] p.446):

19,(0)ds(z +y)
m 3y (z)d1(y)
(4.1) = cotwz +cotmy +4 Y ¢™"sin2x(mz + ny)
m,n=1

[Imz| < ImT, [Imy| < ImT.

Here 9,(z) is the elliptic theta function,

(4.2) Vi(2) = 2g% sin 7z II (1 —¢™)(1 —2¢™ cos2mz + ¢*™).

m=1
Using the formula above, we can compute the Fourier transformation of the Boltz-

mann weight R}f (cf. Gaudin [8]).

Theorem 4.1. For z,y € R, |ImA| < Im7, and |Imk| < ImT,

Z Rk,@(x)e2rm(ix+jy)
'lYJ
(4.3) ii€L
=Gz—y: )\)e2vr\/:l_(lx+ky) ~Gz-y: &)621r\/:—1'(k.1:+£y),

where

o1 (09 + o)
(4.4) Gle:X) = sy

Let V be the set of C*®-functions on the unit circle S, and let @i(z) = €2™V~1%2,

The set {x; k € Z} is a basis of V. Then the theorem above says that the R matrix
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gives rise to a linear operator on V ® V defined by

(R(A)(x ® we))(z,y)
(4.5)

LGz —y: N)er @ po)y,2) — Gl —y : &)(px @ po)(2,y).

In this case we call R()\) the R operator. Further the R operator can be regarded as

a non-local operator on VRV = C®(S! x S),
(4.6) R(A) = G(\)o — G(k).
Here G()\) and o is an operator on V®? defined by

(4.7) (GA)p)(z,y) = G(z —y : No(z,y),

(4.8) (op)(z,y) = p(y,z).

We can see that the R operator actually belongs to End(V®?) i.e. R(\)p € V2 for
@ € V82,
Now let us establish the Yang-Baxter equation for the R operator (4.6). For N > 2,

we define the operator R;;(\) € End(V®N) (1 <14,5 < N,i # j).
(4.9) Ri;(A) = Gij(A)ai; — Gii(x),
where for ¢ € V&N

(4.10) (Gi;(N)e)(z1, 22y . -y 2N) = Gz — 25 N)p(21,2Z2,...,2ZN),

(4.11) (0i;0)(c s iy oy Tgy e ) =@(ce Ty Ty ).
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Theorem 4.2. R()) satisfies the Yang-Baater equation (1.1) in End(V®?). Namely

the operators defined by (4.9) for N = 3 satisfy
(4.12) Ria(A) Raz(A + Az)Raa(A2) = Raa(A2) Riz(M + Az2) Raa( ).
This theorem can be verified in a slightly more general context.

Proposition 4.3. If an analytic function 8(z) satisfies the three term equation
8(z + y)0(z — )O(z + w)O(z — w)
+0(a +2)6(z ~ 2)0(w + 1)0(w ~ y)
(4.13)
+0(z + )0z — W)y + 2)8(y — 2)
=0,
then the operator

(4.14) R(\) ¥ G(\)o — G(x)

is a solution of the Yang-Bazter equation in the same sense as in Theorem 4.2. Here

6'(0)0(\ + z —
0(A)0(z — y)

(4.15) (G () = Y oz, )

for a function ¢(z,y).

Remark 4.1. (1) The elliptic theta function ¥;(z) satisfies (4.13). It is actually
Fay’s trisecant formula (see [6] p.33-35). It is worthwhile noticing that the

prime form on an elliptic curve is given by

o _Wy—=z)
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(2) Analytic solutions of the three term equation (4.13) are given by

(4.17) 6(z) = d1(z) exp(%A:z:2 + B),
(4.18) 0(z) = sin(7z) exp(—é—Aw2 + B),
(4.19) 0(z) = :1r;exp(%A:1r:2 + B),

where A and B are arbitrary constants (see [18] p.461). In the situation of
Proposition 4.3, we simply assume V to be a space of functions with one

variable and V®V to be a space of functions with two variables, respectively.

In what follows, we shall assume that the R operator is the generalized one in

Proposition 4.3. We state the first inversion relation for R.

Proposition 4.4 (The first inversion relation).

(4.20) Riz(MRa1 (=) = p(N)id,

where

f ’ 2191(A+I€)191(A—K) .
9,(0) TN in case (4.17) ,
(4.21) p(A) = { 7*(cot? 7k — cot? 7)) in case (4.18)
\ % - —Xl—:; in case (4.19) .



5. FUSION PROCEDURE
From the definition of the operator R(\) on V®2, we obtain
(5.1) R(x) = —2G(x)PD),
(5.2) R(—k) = —2PMG(k).
Here P = L(1 4 o) and PC) = J(1 — o) are the projectors on SH(V®?) the

space of symmetric functions and S(‘)(V®2) the space of anti-symmetric functions,

respectively. Specializing the spectral parameter in the Yang-Baxter equation (4.12),

we get
Riz(A + ’C)st()‘)Pg) = PP Ris(A + K’)R_23()‘)Pl(;)
(5.3)
()‘1 = K,A2 = A))
Ry3(A)Riz(A — /c)P2(;') = Pz(;)Rla()\)Rlz(/\ - K)Pz(;)
(5.4)

(/\1 = A, Ag = —K).
Taking the equations above into account, we can apply the fusion procedure for vertex
models which was developed in [12] (see also [3] and [10]), to our case.

We define a product of the R operators on the function space VOLRY'OM —

{So(xl" 0 ZL Y1y ,yM)}:

Rl:]'...M'()‘) = RZ:M'()‘)RI:M'—I()‘ - “) ce Rm'()‘ - (M - 1)"‘),
 (5.5)
Ry pv.m(A)= Rl:l’...M’(’\ +(L—1)k)... RL:l’...M’()‘)>

where V' is a copy of V. Rex()) indicates the action on the variables z, and y;. Let

31
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SH)(Y8L) and S)(V®L) be the spaces of symmetric functions and anti-symmetric

functions, respectively, and let P, (ﬂ:) be the projector onto S (*)(V®L ),

(5.6) P = 3 (21) ™.

wGGL

Here we denote by &y the symmetric group and by #(w) the length of w. For

€1,€2 = (+), (=), define the operator RE};?M,)(A) by

(5.7) RN = PELLPR Ry ot e WP LPE
Theorem 5.1. In End(S1(V®L)@S52 (V' M) Ses (V'EN)),
REI )EiM )()‘ )R?L;?N )(’\1 +A2) (M') (N” )(’\2)

(5.8)
= RSQ 63) (N" )()‘2)R£L)E(N )(/\1 + )‘2) (L) (M )(’\1)’

where €1,€4,63 = (+),(=), and V" is a copy of V.

In a forthcoming paper, we will discuss that the equation (5.8) corresponds to

which functional equation of the elliptic theta function.

Example. We give an explicit formula for R™)  which is the case L = 1, &2 = (4)

1M’y
in (5.7).
(+) (+) M i
(5'9) R (M )(/\) M' ZU]— Gl (M )011' + (—]‘) IIl Glj'(K’)’
J:
where
(510) (0'11"!9)(371 Y- 7yM) = v(yl T L1 Y25 73/M),

(511) (0-1’...M'90)(x1 Y, )yM) = (,0(1'1 ‘Y25 UM, yl)’
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and GS(?M’) is a multiplication operator defined inductively by

GS(}W)(“J SYlyee oYM I A)

M .
= E{G(:vl -y A)ng&M_l)/)(yj CYly s Ui YM A — K)
=2
(5.12)

~

—G(z1—yj: ”)G£:ZM-1)’)(z1 SYlye ey Ui UM A —K)}
o M
+ (-1) 'I(M —DIG(zy —y1: A) H G(y1 — y; : k).
i=2
6. FINITE-DIMENSIONAL REPRESENTATION OF K OPERATOR

First we formulate the notion of finite-dimensional representations of the R op-
erator. Let § be a finite index set, and let V¥ = @,ez Cf. be a finite-dimensional

subspace of V with a basis {f, : a € §}.

Definition 6.1. If the R operator preserves V¥ ® V3, then we call V¥ ® V¥ a finite-
dimensional representation of R()), and define R¥()) to be the matrix representation

of R(\)|vsgvs € End(V3 @ V3) with respect to the basis {f, ® fs}-

We should remark that R¥()) automatically becomes a solution of the Yang-Baxter
equation (1.1).

Let us construct finite-dimensional representations of the trigonometric R()) (4.18)
in Proposition 4.3 with A = B = 0. (We can also obtain finite-dimensional represen-

tations of the rational R(A) (4.19) with A= B =0.)

Proposition 6.1. Forn > 1, wesetF = {0,1,...,n—1}, fo(z) = V"1 (a0 € §),



34

and V3 = @oe3 Cfo. Then VI @ V3 is a finite-dimensional representation.

Proof. This proposition follows immediately from the action of R()\) on V@ V3. Set

u= et = ™15 and ROW(A\) = —=(u5 — u~7)(t2 — t~7)R()), then

— 2v/-1

R™(N)(fa ® f3)
( u—%(t% - t_%)fﬁ ® fo — t%(u% - u_%)fa ® fs
(Ui =)t 1) Y farpr @, (a>B),
B<y<a
(6.1)
=1 Wittt —uit [, ® f, (a = B),
ui(t? —t73)fp ® fo -t (ui —u ) fa ® f3
+(ur —uTE) (= 173) Y £y ® farsy (@< B).
§ a<y<p
]

These finite-dimensional R matrices are new solutions of the Yang-Baxter equation.
But these are not triangular. Now we discuss how to obtain the trigonometric,

triangular R matrix from this matrix R(™()).

Definition 6.2. Let V = @ Cv, be a finite-dimensional vector space. For T €

End(V®YN), we denote

(62) T(val - UOIN) = Z Tgll.::b?vﬁl @ QUgy-
B ...Bn
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Then we define T(p) € End(V®N) b

(6.3) TPy (v, @ -+ ® Vay) = Z T:iu)owaw(mvaw(l) Q@ Vay(wy

weGy

which is called the permutation part of T with respect to the basis {vqa}.

Proposition 6.2. The permutation part R(P)( ) of R™)()\) with respect to the basis

{f«} satisfies the Yang-Baater equation (1.1).

Proof. From (1.1),
(6.4) (RS (A)RE (M + 22)RE (Ma))py = (R (A2)RE (M1 + M) RE (A1) -
By using (6.1), we easily see that
(6.5)

(BE )RS (1 + A)RE (M))p) = RE) (M) BE)1a(M + A2) R{F)as(Xa),
(6.6)

(B ()R (M + A2 R (00))p) = BBas(M) RE)s(n + A2) BF ()
This completes the proof of Proposition 6.2. O

The permutation part Rgl,))(/\) acts on V¥ ® V3 in the following way:

(P)( )(foa ® f5)

( 1 1 1 1 1 1
(2 —t72)fp® fo —t2(u —uT)fo @ fs (a>B),
- (6.7)

= (W —uitT)fo ® fa (a=7),

G-t Do - —u e fs  (a<h)
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Therefore Rg;))(/\) is a trigonometric, triangular R matrix, that is relavant to the one

given in [1].

Remark 6.1. The idea of finite-dimensional representations of the R operator origi-

nates from the paper of Gaudin [8]. We reformulated his idea in an algebraic way.

7. DISCUSSIONS

We propose some issues to be considered hereafter:

The first one is to calculate rigorously the free energy of our vertex model. This
problem may be relavant to the c-functions of the Macdonald’s symmetric functions
(cf. [7] [19]). Our original motivations of this study is to construct a two-parameter
deformation of U(gl.,), so it is important to consider the algebra of the L opera-
tors associated to our R operator. The third problem concerns finite-dimensional
representations of the R operator; namely, can we construct finite-dimensional rep-
resentations in the elliptic case? Furthermore we think of it interesting to generalize

the R operator to higher genus case.
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