<table>
<thead>
<tr>
<th>Title</th>
<th>Bernstein-Gelfand-Gelfand resolution for generalized Kac-Moody algebras</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>内藤 聡</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1992), 816: 169-174</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1992-12</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/83101</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Bernstein-Gelfand-Gelfand resolution for generalized Kac-Moody algebras

(1) Notation

$A = (a_{ij})_{i,j \in I}$ を次のように定義する。
(C1) $a_{ii} = 2$, or $a_{ii} \leq 0$;
(C2) $a_{ij} \leq 0$ for $i \neq j$, $a_{ij} \in \mathbb{Z}$ if $a_{ii} = 2$;
(C3) $a_{ij} = 0 \iff a_{ji} = 0$.

そして、$g(A)$ を、この GGM により生成された構造を示す。$g(A)$ は、根空間の分解：$g(A) = \mathfrak{h} \oplus \sum_{\alpha \in \Delta} g_{\pm \alpha}$ を持つ。ここで、g_{α} はルート $\alpha \in \Delta \subseteq \mathfrak{h}^{*}$ に対応する root space である。

今、J を、添字集合 I の部分集合で有限型のもの、即ち対応する A の部分行列 $A_{J} := (a_{ij})_{i,j \in J}$ が（古典的な）有限型の Cartan 行列であるものをとし、これに対して次の $g(A)$ の部分構造と、Weyl 群 W の部分構造を定義する。

$u^{\pm} := \sum_{\alpha \in \Delta^{\pm}} g_{\pm \alpha}$, $m := \mathfrak{h} \oplus \sum_{\alpha \in \Delta_{J}^{\pm}} (g_{\pm \alpha})$, $p = m \oplus u^{+}$,

$W(J) := \{w \in W \mid \Delta^{+} \cap w(\Delta^{-}) \subset \Delta^{+}(J)\}$,

$\Delta^{+}(J) := \Delta^{+} \cap (\sum_{i \in J} \mathbb{Z}_{\geq 0} \alpha_{i})$,

2. The existence of the BGG resolution for GKM algebras

今、$P^{+} := \{\mu \in \mathfrak{h}^{*} \mid \mu, \alpha_{i}^{\vee} > 0 \ (i \in I), \mu, \alpha_{j}^{\vee} \in \mathbb{Z}_{\geq 0} \text{ if } a_{ii} = 2\}$, $P_{J}^{+} := \{\mu \in \mathfrak{h}^{*} \mid \mu, \alpha_{i}^{\vee} > 0 \ (i \in J), \mu, \alpha_{j}^{\vee} \in \mathbb{Z}_{\geq 0} \ (j \in J)\}$ とし、$L(\Lambda) (\Lambda \in P^{+})$ を、Λ を最高ウェイトとする既約最高ウェイト $g(A)$-加群、又 $\lambda \in P_{J}^{+}$ に対して、$L_{m}(\lambda)$ を、λ を最高ウェイトとする既約m-加群、$V_{m}(\lambda) = U(g(A)) \otimes_{U(p)} L_{m}(\lambda)$ を、λ を最高ウェイトとする generalized Verma module とする。特に、$J = \emptyset$ の場合には $V_{0}(\lambda) = V(\lambda)$ は、Verma module である。

$g(A)$ が有限次元半単純リー環の場合の、Bernstein-Gelfand-Gelfand の結果の拡張として次の Theorem が得られる。
Theorem 2.1. (存在定理) $A = (a_{ij})_{i,j \in I}$ を対称化可能な GGCM とする。このとき、$L(\Lambda) (\Lambda \in P^+) \text{ に対して、次の、} g(A)\text{-加群 } C_\mu(\Lambda) \text{ と } g(A)\text{-準同型 } \partial_\mu \text{ から成る完全系列が、存在する。}$

$$0 \hookrightarrow L(\Lambda) \xrightarrow{\partial_0} C_0(\Lambda) \xrightarrow{\partial_1} C_1(\Lambda) \xrightarrow{\partial_2} C_2(\Lambda) \xrightarrow{\partial_3} \cdots,$$

where $C_\mu(\Lambda) = \sum_{\substack{w \in W(J), \beta \in S(\Lambda) \\ell(w) + ht(\beta) = p}} V_m(w(\Lambda + \rho - \beta) - \rho) (p \geq 0)$.

ここで、$\mathcal{S} := \{ \text{sum of distinct pairwise perpendicular simple roots } \alpha_i \text{ with } a_{ii} \leq 0 \}, S(\Lambda) := \{ \beta \in \mathcal{S} \mid \beta \text{ is perpendicular to } \Lambda \}$ であり、ρ は、$< \rho, \alpha_i^\vee >= (1/2) \cdot a_{ii} (i \in I)$ なる \mathfrak{h}^* の元である。

Theorem 2.1 の証明に於いては、次の Lemma が重要な役割を果たす。

Lemma 2.2. $\Lambda \in P^+, w_i \in W(J), \beta_i \in S(\Lambda) (i = 1, 2)$ とする。このとき、

$$\text{Ext}_{(g(A),m)}^1(V_m(w_1(\Lambda + \rho - \beta_1) - \rho), V_m(w_2(\Lambda + \rho - \beta_2) - \rho)) \neq 0,$$

である、$\ell(w_1) + ht(\beta_1) \leq \ell(w_2) + ht(\beta_2)$.

3. Homology vanishing theorems

Theorem 2.1 から、以下のホモロジー消滅定理が得られる。

Proposition 3.1. $\Lambda \in P^+, \mu \in P^+_J$ とする。このとき、$\mu \neq w(\Lambda + \rho - \beta) - \rho$ で

$\text{Tor}_{n}^{g(A)}(L^*(\Lambda), V_m(\mu)) = 0 \ (n \geq 0),$$\text{Tor}_{n}^{g(A),m}(L^*(\Lambda), V_m(\mu)) = 0 \ (n \geq 0).$

ここで、$L^*(\Lambda)$ は、$-\Lambda$ を lowest weight とする既約 lowest weight $g(A)$-加群である。

Theorem 3.2. $\Lambda_1, \Lambda_2 \in P^+$. 今、$\Lambda_1 - \Lambda_2 \neq \beta_1 - \beta_2$ で

$\text{Tor}_{n}^{g(A)}(L^*(\Lambda_1), L(\Lambda_2)) = 0 \ (n \geq 0),$$\text{Tor}_{n}^{g(A),m}(L^*(\Lambda_1), L(\Lambda_2)) = 0 \ (n \geq 0).$
Corollary 3.3. \(\Lambda \in P^+ \). Now, \(\Lambda \neq \beta_1 - \beta_2 \) for any \(\beta_1 \in S(\Lambda), \beta_2 \in S \) とする。このとき、

\[
H_n(g(A), L(\Lambda)) = 0 \quad (n \geq 0),
\]

\[
H_n(g(A), m, L(\Lambda)) = 0 \quad (n \geq 0).
\]

又、\(\Lambda = 0 \) の場合の relative Lie algebra homology \(H_n(g(A), m, C) \) に関しては、次の Theorem が成り立つ。

Theorem 3.4.

\[
H_{2s+1}(g(A), m, C) = 0 \quad (s \geq 0),
\]

\[
\dim_{\mathbb{C}} H_{2s}(g(A), m, C) = \text{the number of elements of the set } \{(w, \beta) \in W(J) \times S | \ell(w) + ht(\beta) = s\}
\]

= the number of \(m \)-irreducible components

in the Lie algebra homology \(H_s(u^-, C) \) \((s \geq 0) \).

4. Verma module embeddings and the strong BGG resolution for GKM algebras

Theorem 2.1 では、map \(\partial_p (p \geq 0) \) の形については何も述べられていなかった。ここで

は、resolution を、\(J = \emptyset \) の場合に explicit に構成し、それが Theorem 2.1 に於けるものと equivalent な事を示す。

\[
\Pi^{re} := \{\alpha_i \in \Pi | a_{ii} = 2\}, \quad \Pi^{im} := \{\alpha_i \in \Pi | a_{ii} \leq 0\}
\]

\[
\Pi^{re} := \text{real root の全体}, \quad \Pi^{im} := \text{imaginary root の全体とする}.
\]

Definition 4.1. \(w_1, w_2 \in W, \gamma \in \Delta^{re} \cap \Delta^+ \) に対して、\(w_1 = r_\gamma w_2 \) \((r_\gamma \text{ は } \gamma \text{ の定める simple reflection}) \) かつ \(\ell(w_1) = \ell(w_2) + 1 \) であるとき \(w_1 \overset{\gamma}{\rightarrow} w_2 \) \(\gamma \text{ と書き、又この\(\gamma \text{ は } \Delta^{re} \cap \Delta^+ \) が存在するとき単に } w_1 \leftarrow w_2 \text{ と書く。さらに、} w, w' \in W \text{ に対し、}\)

\[
w = w_0 \leftarrow w_1 \leftarrow \cdots \leftarrow w_r \leftarrow w_{r+1} = w'
\]

なる \(w_1, \cdots, w_r \in W \text{ が存在するとき、} w \leq w' \text{ と書く。}
Definition 4.2. \(\beta_1, \beta_2 \in S, \alpha_j \in \Pi^{im} \) において、\(\beta_1 = \beta_2 + \alpha_j \) なるとき \(\beta_1 \overset{\alpha_j}{\rightarrow} \beta_2 \) と書き、又このような \(\alpha_j \in \Pi^{im} \) が存在するとき単に \(\beta_1 \leftarrow \beta_2 \) と書く。さらに、
\(\beta = \sum_{k \in K} \alpha_k, \beta' = \sum_{l \in L} \alpha_l \in S \) に対して、\(K \supset L \) であるとき \(\beta \geq \beta' \) と書く。

Definition 4.3. \((w_1, \beta_1), (w_2, \beta_2) \in W \times S\) に対して、

\[
\begin{align*}
 w_1 & \leftarrow w_2 \text{ and } \beta_1 = \beta_2 \quad \text{又は} \quad w_1 = w_2 \text{ and } \beta_1 \leftarrow \beta_2
\end{align*}
\]

なるとき \((w_1, \beta_1) \circ (w_2, \beta_2)\) と書く。

Remark 4.4. 各 \((w_1, \beta_1), (w_2, \beta_2) \in W \times S\) に対して、

\[
\begin{align*}
 (w_1, \beta_1) \circ (w, \beta) \circ (w_2, \beta_2)
\end{align*}
\]

なる \((w, \beta) \in W \times S\) の数は 0 か 2 である。

Proposition 4.5. \(\Lambda \in P^+, w_1, w_2 \in W, \beta_1, \beta_2 \in S(\Lambda) \) とする。このとき、

\[
\dim \mathbb{C} \operatorname{Hom}_{g(A)}(V(w_1(\Lambda + \rho - \beta_1) - \rho), V(w_2(\Lambda + \rho - \beta_2) - \rho)) \leq 1.
\]

Remark 4.6. 勝手な \(\lambda, \mu \in \mathfrak{h}^* \) について、\(f \in \operatorname{Hom}_{g(A)}(V(\lambda), V(\mu)) \) が non-zero であれば、\(f \) は injective である。そこで、このとき \(V(\lambda) \subset V(\mu) \) と書く。

Proposition 4.7. \(\Lambda \in P^+, w_1, w_2 \in \dot{W}, \beta_1, \beta_2 \in S(\Lambda) \) とする。このとき、

\[
\begin{align*}
 V(w_1(\Lambda + \rho - \beta_1) - \rho) & \subset V(w_2(\Lambda + \rho - \beta_2) - \rho) \\
 \Uparrow \\
 w_1 & \leq w_2, \beta_1 \geq \beta_2 \\
 \Downarrow \\
 [V(w_2(\Lambda + \rho - \beta_2) - \rho) : L(w_1(\Lambda + \rho - \beta_1) - \rho)] & \neq 0.
\end{align*}
\]

ここで、\(\lambda, \mu \in \mathfrak{h}^* \) に対して、\([V(\lambda) : L(\mu)]\) は、\(L(\mu) \) の \(V(\lambda) \) における重複度を表す。

Definition 4.8. \{\((w_1, \beta_1), (w_2, \beta_2), (w_3, \beta_3), (w_4, \beta_4)\)\} なる \(W \times S \) の元から成る四つ組が "square" であるとは、

\[
\begin{align*}
 (w_1, \beta_1) \circ (w_i, \beta_i) \circ (w_4, \beta_4) \ (i = 2, 3), \quad (w_2, \beta_2) \neq (w_3, \beta_3)
\end{align*}
\]
Lemma 4.9. 各 curvearrow \((w_1, \beta_1) \setminus (w_2, \beta_2)\) に対して、\(c((w_1, \beta_1), (w_2, \beta_2)) \in \{1, -1\}\) なる数を対応させて、如何なる "square" \([(w_1, \beta_1), (w_2, \beta_2), (w_3, \beta_3), (w_4, \beta_4)\]についても、その 4 つの curvearrow に応答する数の積が -1 となる様にできる。

さて、Theorem 2.1 の resolution で \(J = \emptyset\) の場合には、

\[
C_p(\Lambda) = \sum_{w \in W, \beta \in S(\Lambda)} V(w(\Lambda + \rho - \beta) - \rho) \quad (p \geq 0)
\]

であった。今、各 \((w_1, \beta_1), (w_2, \beta_2) \in W \times S\) such that \(w_1 \leq w_2\) と \(\beta_1 \geq \beta_2\) に対して、

\[
0 \neq \iota_{(w_1, \beta_1), (w_2, \beta_2)} \in \text{Hom}_{\mathfrak{g}(A)}(V(w_1(\Lambda + \rho - \beta_1) - \rho), V(w_2(\Lambda + \rho - \beta_2) - \rho))
\]

を "compatible" になる様に取り、固定する。このとき、次の Theorem が成り立つ。

Theorem 4.10. \(\Lambda \in P^+\) とする。各 \(p \in \mathbb{Z}_{\geq 1}\) に対して \(d_p: C_p(\Lambda) \rightarrow C_{p-1}(\Lambda)\) を次の様に定める。(\(d_0: V(\Lambda) \rightarrow L(\Lambda)\) は 標準的商写像である。)

\[
d_p := \sum_{t(w_1) + ht(\beta_1) = p} d_p((w_1, \beta_1), (w_2, \beta_2)) \iota_{(w_1, \beta_1), (w_2, \beta_2)},
\]

where \(d_p((w_1, \beta_1), (w_2, \beta_2)) := c((w_1, \beta_1), (w_2, \beta_2))\) if \((w_1, \beta_1) \setminus (w_2, \beta_2)\),

and \(d_p((w_1, \beta_1), (w_2, \beta_2)) := 0\) otherwise.

このとき、次の sequence は exact であり、Theorem 2.1 に於ける exact sequence と equivalent である。

\[
0 \leftarrow L(\Lambda) \xrightarrow{d_0} C_0(\Lambda) \xrightarrow{d_1} C_1(\Lambda) \xrightarrow{d_2} C_2(\Lambda) \xrightarrow{d_3} \cdots,
\]

where \(C_p(\Lambda) = \sum_{w \in W, \beta \in S(\Lambda)} V(w(\Lambda + \rho - \beta) - \rho) \quad (p \geq 0)\).
REFERENCES

