Large indiscernible sets of a structure

Akito Tsuboi

1 Introduction

An indiscernible set of a given structure is by definition a set I such that every finite subset of the same cardinality has the same type. A singleton $I = \{a\}$ is trivially an indiscernible set, so it is called a trivial one. A transcienental basis of an algebraically closed field K is a good example of a non-trivial indiscernible set. In this example, if K is uncountable, then it has a large indiscernible set I, i.e. an indiscernible set I with $|I| = |K|$. Generally speaking, if a theory T is ω-stable then every uncountable model of T has such a large indiscernible set. However, in the structure $R = (R, 0, 1, +, \cdot)$, there is no non-trivial indiscernible set, i.e. $tp(a) = tp(b)$ implies $a = b$.

In this note we show that every L-structure M can be embedded into a structure M^* of an expanded language L^* such that any L^*-structure $N \equiv M^*$ has a large indiscernible set. We also show that if T is stable and non-ω-stable then there is a model of power \aleph_1 which has no large indiscernible sets.

2 Preliminaries

In what follows, T is a complete theory formulated in a countable language L. We give some necessary definitions and review some basic results.

Definition 1. (1) Let I be a subset of a struture M. I is said to be an indiscernible set if whenever $F \subseteq I$ and $G \subseteq I$ are finite sequences of the same length then $tp(F) = tp(G)$.
We will say that an indiscernible set I in a structure M is large if I has the same cardinality as M.

Fact 1 (Theorem 2.8 of [S, CH.I, §2]). If T is ω-stable, then every uncountable model of T includes a large indiscernible set.

If T is not ω-stable, then any (a,ω)-model is uncountable. And any $(a,\kappa(T))$-prime model does not have indiscernible set of power greater than $\kappa(T)$. So we have:

Fact 2. If T is a non-ω-stable, superstable theory, then there is a model of power \aleph_1 without a large indiscernible set.

Let T be the theory of refining equivalence relations. i.e., T is the theory of the structure $(2^\omega, E_1, E_2, ...)$, where $E_i = \{(\eta_1, \eta_2) \in (2^\omega)^2 : \eta_1|_i = \eta_2|_i\}$. Then T is a superstable theory with $|S(T)| = 2^{\aleph_0}$. Let M be any uncountable elementary submodel of $(2^\omega, E_1, E_2, ...)$. M has no large indiscernible sets.

Definition 2. A model $M \supset A$ is said to be ℓ-atomic over A if for every $\bar{a} \in M$, and every finite set Δ of formulas, $tp_\Delta(\bar{a}/A)$ is a principal type.

Fact 3. Let T be stable.

1. For every set A, there is an ℓ-atomic model over A.
2. Let a_1 and a_2 be independent over M. Let M_i be an ℓ-atomic model over $M \cup \{a_i\}$. Then M_1 and M_2 are independent over M.

3 Main Result

We want to extend fact 2 to a non-ω-stable, stable theory T. The following lemma will play a crucial role.

Lemma. Let T be a non-ω-stable, stable theory and $\kappa \leq 2^{\aleph_0}$ an uncountable cardinal. Then there is a set R of types over a set A, $|A| < \kappa$ such that whenever $B \supset A$ is a set with $|B| < \kappa$ and S is a set of stationary types over B with $|S| < \kappa$ then there is a non-algebraic type $r \in R$ which is almost orthogonal to any type in S.

Proof. This lemma remains true for a superstable theory, but we concentrate on an unsuperstable theory. (Superstable case is easier.) Since T is not superstable, there are infinitely long continuous sequence $\{p_i : i \leq \alpha\}$ of types such that
(1) dom\(p_i \) is a countable set;

(2) \(p_i \) is a forking extension of \(p_j \), if \(i > j \);

(3) \(\alpha < \omega_1 \) is a countable limit ordinal;

(4) \(U(p_\alpha) < \infty \).

By choosing a subsequence of \(\{ p_i : i \leq \alpha \} \), we can assume that \(\alpha = \omega \). Now by the definition of forking, we can easily find a countable set \(A_0 \), and continuously many types \(\{ q_i : i < 2^{\aleph_0} \} \) over \(A_0 \) such that each \(q_i \) is \(U \)-ranked \((U(q_i) < \infty) \). We can assume that each type \(q_i \) is stationary.

Suppose that our lemma does not hold. By induction on \(j < \omega \), we define a set \(A_j \) of cardinality \(\kappa \) and types \(q_{i,j} \in S(A_j) \ (i < 2^{\aleph_0}) \) such that for any \(i < 2^{\aleph_0}, k < j \),

\[
q_{i,k} \text{ is algebraic} \quad \text{or} \quad q_{i,j} \text{ is a forking extension of } q_{i,k}.
\]

For each \(i < 2^{\aleph_0} \), let \(q_{i,0} = q_i \). Suppose we have defined \(q_{i,k} \in S(A_k) \) for \(i < 2^{\aleph_0} \) and \(k < j \). Let \(\Lambda = \{ i < 2^{\aleph_0} : q_{i,j-1} \text{ is non-algebraic} \} \). Since we are assuming the negation of the statement in our lemma, there are a set \(B \supset A_{j-1}, |B| < \kappa \) and a set \(S \subset S(B), |S| < \kappa \) such that every \(q_{i,j-1} (i \in \Lambda) \) is not almost orthogonal to some \(s_i \in S \). For \(i \in \Lambda \), choose \(a_i \models q_{i,j-1}|B \) and \(b_i \models s_i \) such that \(a_i \) and \(b_i \) are dependent over \(B \). We can assume that if \(s_i = s_j \) then \(b_i = b_j \). Now let

\[
A_j = acl(A_{j-1} \cup \{ b_i : i \in \Lambda \});
\]

\[
q_{i,j} = \begin{cases}
\text{tp}(a_i/A_j) & i \in \Lambda \\
\text{arbitrary extension of } q_{i,j-1} & i \notin \Lambda
\end{cases}
\]

Finally let \(A_\omega = \bigcup_{j<\omega} A_j \). Note that \(|A_\omega| < 2^{\aleph_0} \). (If \(\kappa = 2^{\aleph_0} \), then \(cf(\kappa) > \omega \), so \(|A_\omega| < \kappa = 2^\omega \). If \(\kappa < 2^{\aleph_0} \), then \(|A_\omega| \leq \kappa < 2^{\aleph_0} \).) Since \(q_i \) is \(U \)-ranked by (4), \(q^*_i = \bigcup_{j<\omega} q_{i,j} \in S(A_\omega) \) must be an algebraic type. (Otherwise there is an infinitely long forking sequence starting from \(q_i \).) So we have constructed continuously many distinct algebraic types over a fixed set \(A_\omega, |A_\omega| < 2^\omega \). However this is a contradiction, since we are assuming that \(L \) is countable.
Theorem A. Let \(T \) be a non-\(\omega \)-stable, stable theory. Then for any uncountable cardinal \(\kappa \leq 2^{\aleph_0} \), there is a model of power \(\kappa \) without a large indiscernible set.

Proof. Choose a set \(A \) and types \(R \subseteq S(A) \) which satisfy the condition in the above lemma. Let \(\lambda = |A| \). Clearly \(\lambda < \kappa \). We construct an elementary chain of models \(\{ M_i : i \leq \kappa \} \) such that each model \(M_i \) has cardinality \(\leq |i| + \lambda \). Without loss of generality, \(A \) is a model. Let \(M_0 = A \), and \(M_1 \) an arbitrary proper extension of \(M_0 \) with the same cardinality. Suppose that we have constructed \(\{ M_i : i < \alpha \} \). If \(\alpha \) is a limit ordinal, then let \(M_\alpha = \bigcup_{i<\alpha} M_i \). So we assume that \(\alpha = \beta + 1 \), and let

\[
S_\beta = \bigcup_{i<\beta} \{ q(x) \in S(M_\beta) : q \text{ is based on } M_i, q|M_i \text{ is realized in } M_\beta \}
\]

Clearly \(|S_\beta| \leq |\beta| + \lambda < \kappa \). By the property of \(R \), there is a type \(r \in R \) which is almost orthogonal to each type in \(S_\beta \). Let \(M_{\beta+1} \) be an \(\ell \)-atomic model over \(M_\beta \cup \{ e_\beta \} \), where \(e_\beta \) is a realization of \(r|M_\beta \). Of course we can assume \(|M_{\beta+1}| < |\beta+1| + \lambda \).

Claim. There is no large indiscernible set in \(M_\kappa \).

Suppose that there was a large indiscernible set \(I \subseteq M_\kappa \). By stability, there is a countable set \(I_0 \subseteq I \) such that \(J = I - I_0 \) is a Morley sequence over \(I_0 \). Choose \(M_i \) (\(i < \kappa \)) which includes \(I_0 \). Since \(M_i < \kappa \), we may assume that \(J \) is a Morley sequence over \(M_i \), by choosing a subset of \(J \) if necessary. Choose \(M_j \) (\(j < \kappa \)) which intersects with \(J \). Let \(a \in J \cap M_j \). Since \(|J| = \kappa \), there is \(b \in J \) which is independent from \(M_j \) over \(M_i \). Choose the least \(k \) such that \(b \) and \(M_k \) are dependent over \(M_i \). Then \(k \) is a successor ordinal greater than \(j \), and

1. \(b \) and \(M_k \) are dependent over \(M_{k-1} \);
2. \(b \) and \(M_{k-1} \) are independent over \(M_i \).

Remember that \(M_k \) is \(\ell \)-atomic over \(M_{k-1} \cup \{ e_{k-1} \} \). From (1), using fact 3, we know that \(b \) and \(e_{k-1} \) are dependent over \(M_{k-1} \). By our choice of \(e_{k-1} \), \(\text{tp}(e_{k-1}/M_{k-1}) \) is almost orthogonal to every type in \(S_{k-1} \), hence \(\text{tp}(b/M_{k-1}) \) does not belong to \(S_{k-1} \). Note that \(\text{tp}(b/M_i) \) is realized by \(a \in M_{k-1} \). Then we must have
(3) $\text{tp}(b/M_{k-1})$ is a forking extension of $\text{tp}(a/M_i)$.

(2) and (3) yield a contradiction.

Next theorem shows that theorem A cannot be extended to an unstable theory.

Theorem B. Let M be an infinite L-structure. Then there is a structure M^* for an expanded language $L^* \supset L$ with the following properties:

(i) M is 0-definable in M^*;

(ii) In any L^*-structure $N \equiv M^*$, there is a large indiscernible set in N.

Proof. For $i < \omega$, let $L_i = L \cup \{F_j(*) : j = 0, \ldots, i\} \cup \{U(*)\} \cup \{R_j(*, *, *) : j = 1, \ldots, i\}$, where F_j's and U are unary predicate symbols, and R_j's are 3-ary predicate symbols. Let $L^* = \bigcup_{i < \omega} L_i$. We construct inductively countable L_i-structures M_i and countable subgroups S_i of $\text{Aut}(M_i)$ ($j < \omega$) with the following properties:

(1) $M_0 = F_0^{M_0} \cup U^{M_0}$, where $F_0^{M_0} = M$, and U^{M_0} is an infinite set disjoint from $F_0^{M_0}$.

(2) S_0 is a countable subgroup of $\text{Aut}(M_0)$ such that for given finite sequences $\bar{a} \in U^{M_0}$ and $\bar{b} \in U^{M_0}$ of the same length, there is a $\sigma \in S_0$ with $\sigma(\bar{a}) = \bar{b}$. Any two automorphisms $f \in S_0$ and $g \in S_0$ differ at finitely many points.

(3) $M_{i+1} = M_i \cup F_{i+1}^{M_i}$,

(4) $S_i = \{\sigma[M_i : \sigma \in S_{i+1}]\}$.

Assume that we have already constructed M_j and S_j for $j < i$. Choose a bijective function $f_0 : F_i^{M_i-1} \rightarrow U^{M_i-1}$ arbitrarily and let

$$F_i^{M_i} = \{\sigma \circ f_0 \circ \sigma^{-1} : \sigma \in S_{i-1}\}.$$

$F_i^{M_i}$ is a countable set of functions from $F_i^{M_i-1}$ to U^{M_i-1}. Define $R_i^{M_i} \subset F_i^{M_i} \times F_i^{M_i-1} \times U^{M_i-1}$ by

$$(f, a, b) \in R_i^{M_i} \Leftrightarrow f(a) = b.$$
Now let $M_i = M_{i-1} \cup F_i^{M_i}$. We can extend each $\tau \in S_{i-1}$ to an automorphism τ^* of M_i. Let $f = \sigma \circ f_0 \circ \sigma^{-1} \in S_{i-1}$. Then define

$$\tau^*(f) = \tau \circ f \circ \tau^{-1} = (\tau \sigma) \circ f_0 \circ (\tau \sigma)^{-1} \in S_{i-1}.$$

The following equivalence shows that τ^* is really an automorphism:

$$M_i \models R(f, a, b) \iff f(a) = b \iff \tau^*(f(\tau^*^{-1}(\tau^*(a)))) = \tau^*(b) \iff M_i \models R(\tau^*(f), \tau^*(a), \tau^*(b)).$$

Finally we set $M^* = \bigcup_{1<\omega} M_i$, $\tau^* = \text{Th}_{L^*}(M)$. Now it is sufficient to prove the following two claims.

Claim 1. In any model N of T^*, U^N is an indiscernible set.

It is sufficient to prove the statement for the case $N = M^*$. Let $\bar{a}, \bar{b} \in U^{M^*}$ be given. By the assumption on S_0, there is a $\sigma \in S_0$ such that $\sigma(\bar{a}) = \bar{b}$. σ can be extended to an automorphism of M^*. So $\bar{a} \equiv \bar{b}$.

Claim 2. If $N \models T^*$, then there is a large indiscernible set.

Clearly $U^N \cup \bigcup_i F_i^N$ has the same cardinality as N, or the complement $N - (U^N \cup \bigcup_i F_i^N)$ has the same cardinality as N. The second case clearly implies that $N - (U^N \cup \bigcup_i F_i^N)$ is a large indiscernible set. Let the second case hold. Note that an element in F_{i+1} gives a bijection between F_i^N and U^N. Then we see that U^N has the same cardinality as N. By claim 1, U^N is a large indiscernible set in this case.

Remark. (i) Any model of $T = \text{Th}(\mathbb{Z}, <)$ has a large indiscernible sequence. (ii) The construction of M^* was inspired by [F], in which Fuhrken showed the existence of an uncountable complete theory without the omitting types property. Note that our T^* is not stable: By our choice of S_0 and F_1, there is a sequence $\{(f_i, g_i) : i < \omega\} \subset F_1^{M^*} \times F_1^{M^*}$ such that the formulas $\forall y \in F_0 (R(f_i, x, y) \leftrightarrow R(g_i, x, y)) (i < \omega)$ define a strictly decreasing subsets of F_0.

Question. Does theorem A remain true, if we we replace ‘large indiscernible set’ by ‘uncountable indiscernible set’?
4 References

