MARKOV'S PRINCIPLE, CHURCH'S THESIS AND LINDELÖF'S THEOREM

石原 哉

北陸先端科学技術大学院大学 情報科学研究科

Abstract. The principal results of this paper are: in constructive mathematics (1) the theorem "Mappings from a complete metric space into a metric space are sequentially continuous" can be proved using a disjunctive form of Church's thesis only, and (2) the theorem "Every open cover of a complete separable metric space has an enumerable subcover" can be proved using the Extended Church's Thesis only; Markov's principle is not needed.

1991 Mathematical Subject Classification. Primary 03F65; Secondary 46S30. Key words and phrases. Markov's principle, Church's thesis, Lindelöf's theorem.

In constructive mathmatics which is formalized by, for example $\mathbf{EL} + \mathbf{AC_0}^{-1}$, the extended Church's thesis, where A is almost negative:

$$ECT_0$$
. $\forall x(Ax \to \exists yBxy) \to \exists z \forall x(Ax \to \exists u(Tzxu \land B(x,Uu)))$

yields, in combination with Markov's principle:

MP.
$$\forall \alpha [\neg \neg \exists n (\alpha n \neq 0) \rightarrow \exists n (\alpha n \neq 0)],$$

interesting mathematical consequences, in particular the KLST-theorem ([3, Chapter 9], [6, 7.2.11])

Assuming $ECT_0 + MP$, all mappings from complete separable metric spaces into metric spaces are continuous

and a version of Lindelöf's theorem ([3, Theorem 1, 9.3], [6, 7.2.15])

Assuming $ECT_0 + MP$, every open cover of a complete separable metric space has an enumerable subcover.

Recently, the author investigated the interrelation between a weak version of Markov's principle:

WMP.
$$\forall \alpha [\forall \beta (\neg \neg \exists n (\beta n \neq 0) \lor \neg \neg \exists n (\alpha n \neq 0 \land \beta n = 0)) \rightarrow \exists n (\alpha n \neq 0)]$$

and certain continuity principles [1, 2].

In this paper, we shall show that MP is equivalent to WMP and a disjunctive version of Markov's principle:

$$\mathsf{MP}^{\vee}. \ \forall \alpha\beta [\neg\neg\exists n(\alpha n \neq 0 \lor \beta n \neq 0) \to \neg\neg\exists n(\alpha n \neq 0) \lor \neg\neg\exists n(\beta n \neq 0)],$$

and that the lesser limited principle of omniscience, here we call it SEP according to [5, 6]:

SEP.
$$\forall \alpha \beta [\neg \exists n (\alpha n \neq 0 \lor \beta n \neq 0) \to \neg \exists n (\alpha n \neq 0) \lor \neg \exists n (\beta n \neq 0)]$$

¹For detailed exposition of **EL** and AC, see [5, 6]; also we follow notations and convensions in [5, 6]; for example α , β , γ , δ range over $\mathbf{N} \to \mathbf{N}$.

implies MP^V. (WMP and MP^V is equivalent to WLPE and LLPE in [4], respectively; see [2] and compare MP^V and [4, Theorem 4.1 (j)]. So these results correspond to the results in [4].) Then we shall prove that WMP is derivable from Church's thesis for disjunctions:

$$CT_0^{\vee}$$
. $\forall x(Ax \vee Bx) \to \exists \alpha \in TREC\forall x((\alpha x = 0 \to Ax) \land (\alpha x \neq 0 \to Bx)),$

So assuming CT_0^\vee , MP is equivalent to MP^\vee . Using these results we shall prove

Assuming CT_0^{\vee} , all mappings from complete metric spaces into metric spaces are sequentially continuous

and

Assuming ECT_0 , any open cover of a complete separable metric space has an enumerable subcover.

Now we turn to our first result [4].

Proposition 1

- (1) $MP \Leftrightarrow WMP + MP^{\vee}$;
- (2) SEP \Rightarrow MP $^{\vee}$.

Proof. (1). It is easy to see that MP \Rightarrow WMP + MP $^{\vee}$. To see the converse, let α be such that $\neg \neg \exists n (\alpha n \neq 0)$, and for arbitrary β define γ by

$$\gamma n :=
\begin{cases}
1 & \text{if } \alpha n \neq 0 \land \beta n = 0, \\
0 & \text{otherwise.}
\end{cases}$$

Then $\neg\neg\exists n(\beta n \neq 0 \lor \gamma n \neq 0)$. Appling MP $^{\lor}$, we have

$$\neg\neg\exists n(\beta n\neq 0) \vee \neg\neg\exists n(\gamma n\neq 0)$$

or

$$\neg\neg\exists n(\beta n\neq 0) \vee \neg\neg\exists n(\alpha n\neq 0 \wedge \beta n=0).$$

Since β is arbitrary, we have $\exists n(\alpha n \neq 0)$ by WMP.

(2). Let α and β be such that $\neg \neg \exists n (\alpha n \neq 0 \lor \beta n \neq 0)$, and define γ and δ by

$$\gamma n := \begin{cases} 1 & \text{if } \forall i < n(\alpha i = 0 \land \beta i = 0) \land \alpha n \neq 0 \land \beta n = 0, \\ 0 & \text{otherwise;} \end{cases}$$

$$\delta n := \begin{cases} 1 & \text{if } \forall i < n(\alpha i = 0 \land \beta i = 0) \land \alpha n = 0 \land \beta n \neq 0, \\ 0 & \text{otherwise,} \end{cases}$$

Then $\neg(\exists n(\gamma n \neq 0) \land \exists n(\delta n \neq 0))$. Hence either $\neg \exists n(\gamma n \neq 0)$ or $\neg \exists n(\delta n \neq 0)$ by SEP. In the former case, if $\neg \exists n(\beta n \neq 0)$, then $\neg \exists n(\alpha n \neq 0)$, a contradiction; hence $\neg \neg \exists n(\beta n \neq 0)$. Similarly, in the latter case, we have $\neg \neg \exists n(\alpha n \neq 0)$. \square

Lemma 1 CT₀ proves

$$\forall x(\neg\neg\exists nTxxn\vee Ax)\rightarrow\exists y(\exists nTyyn\wedge Ay).$$

Proof. Assume $\forall x(\neg\neg\exists nTxxn \lor Ax)$ and apply CT_0^{\lor} . Then we find a total recursive γ such that

$$\forall x ((\gamma x = 0 \to \neg \neg \exists n Txxn) \land (\gamma x \neq 0 \to Ax)).$$

Let $\{y\}$ be a partial recursive function such that

$$\gamma x \neq 0 \quad \leftrightarrow \quad \exists n T y x n,$$

and suppose that $\gamma y = 0$. Then $\neg \neg \exists n Tyyn$ and $\neg \exists n Tyyn$, a contradiction. Hence $\gamma y \neq 0$ and therefore $\exists n Tyyn$ and Ay. \Box

Proposition 2 Assuming CT_0^{\vee} , WMP holds.

Proof. Let the β in $\forall \beta (\neg \neg \exists n (\beta n \neq 0) \lor \neg \neg \exists n (\alpha n \neq 0 \land \beta n = 0))$ range over the characteristic function of Txxn as predicate in n. Then

$$\forall x(\neg\neg\exists nTxxn \vee \neg\neg\exists n(\alpha n \neq 0 \wedge \neg Txxn)).$$

Apply Lemma 1. Then we find y such that

$$\exists n Tyyn \land \neg \neg \exists n (\alpha n \neq 0 \land \neg Tyyn).$$

Choose n so that Tyyn and suppose that $\forall k < n(\alpha k = 0)$. Then $\neg \exists n(\alpha n \neq 0 \land \neg Tyyn)$, a contradiction. Hence $\exists k < n(\alpha k \neq 0)$. \Box

Theorem 1 Assuming CT_0^{\vee} , MP is equivalent to MP^{\vee} .

Proof. By Proposition 1 (1) and Proposition 2. \square

Theorem 2 Assuming CT_0^{\vee} , all mappings from complete metric spaces into metric spaces are sequentially continuous.

Proof. By $CT_0^{\vee} \Rightarrow \neg \forall$ -PEM ([5, Corollary 1, 4.3.4]), Proposition 2, and [2, Corollary 1]. \square

Let $M \equiv (X, \rho)$ be a complete separable metric space with basis $\langle p_n \rangle_n$. Let $\{x\}$ be a total recursive function such that

$$A_M(x) := \forall n(\rho(p_{\{x\}(n)}, p_{\{x\}(n+1)}) < 2^{-n-1})); \qquad (*)$$

we write $[x]_M$ for $\lim \langle p_{\{x\}(n)} \rangle_n$.

If $M_0 := \{y \in \mathbf{R} : y > 0\}$ with metric inherited from \mathbf{R} , we let

$$S_n := U([j_1n]_{M_0}, [j_2n]_M);$$

here U(r, c) denotes the open ball with radius r and ceter c, and j_1, j_2 are the projections for the pairing j(x, y).

Here and in the sequel, the use of the notation $[x]_M$ is tacitly taken to imply that x satisfies (*).

A partial recursive α is said to be effective covering of open sheres of M if

$$\forall [x]_M(\boldsymbol{E}(\alpha x) \land [x]_M \in S_{\alpha x}).$$

Proposition 3 Assuming CT_0^{\vee} , every effective covering of open spheres of a complete separable metric space has an enumerable subcover.

Proof. Let $\langle p_n \rangle_n$ be a basis for a complete separable metric space M. We put

$$\gamma(x,y,n) \simeq \gamma_1(x,y)(n) \simeq \begin{cases}
\{x\}(n) & \text{if } \neg \exists k \leq n Tyyk, \\
\{x\}(\min_{k \leq n} Tyyk) & \text{if } \exists k \leq n Tyyk.
\end{cases}$$

Then

$$A_M(x) \rightarrow \forall y A_M(\gamma_1(x,y))$$

Let R be the r.e. predicate defined by

$$R(x,y) := \exists k [Tyyk \land \forall i \leq k \boldsymbol{E} \gamma(x,y,i) \land \forall i < k (\rho(p_{\gamma(x,y,i)},p_{\gamma(x,y,i+1)}) < 2^{-i-1})].$$

So if R(x,y), then $A_M(\gamma_1(x,y))$. Let δ_1 enumerate $\{j(x,y):R(x,y)\}$, and put

$$\delta m := \gamma_1(j_1(\delta_1 m), j_2(\delta_1 m)).$$

Let α be an effective covering. Then

$$A_M(x) \to \forall y [\boldsymbol{E}(\alpha(\gamma_1(x,y))) \land [\gamma_1(x,y)]_M \in S_{\alpha(\gamma_1(x,y))}].$$

We shall prove that $\{S_{\alpha(\delta m)}: m \in \mathbb{N}\}$ is a covering. To see this, let $rx := j_1(\alpha x)$ and $cx := j_2(\alpha x)$, and assume that $A_M(x)$. Then

$$\forall y [\rho([x]_M, [\gamma_1(x, y)]_M) > 0 \to \exists n Tyyn]$$

and

$$\forall y [\rho([x]_M, [\gamma_1(x,y)]_M) < r(\gamma_1(x,y)) - \rho([\gamma_1(x,y)]_M, [c(\gamma_1(x,y))]_M) \to [x]_M \in S_{\alpha(\gamma_1(x,y))}];$$

hence

$$\forall y(\exists n Tyyn \lor [x]_M \in S_{\alpha(\gamma_1(x,y))}).$$

Apply Lemma 1. Then we find z such that

$$\exists nTzzn \land [x]_M \in S_{\alpha(\gamma_1(x,z))}.$$

and therefore R(x,z). Hence $\alpha\delta$ is an enumerable subcovering of α . \square

Theorem 3 Assuming ECT_0 , any open cover of a complete separable metric space has an enumerable subcover.

Proof. Similar to the proof of [6, Theorem 7.2.15] using Proposition 3. □

References

- [1] H. Ishihara, Continuity and nondiscontinuity in constructive mathematics, J. Symbolic Logic 56, 1349-1354 (1991).
- [2] H. Ishihara, Continuity properties in constructive mathematics, J. Symbolic Logic (to appear).
- [3] B. A. Kushner, Lectures on Constructive Mathematical Analysis, American Mathematical Society, 1985.
- [4] M. Mandelkern, Constructive complete finite sets, Z. Math. Logik Grundlagen Math. 34, 97-103 (1988).
- [5] A. S. Troelstra and D. van Dalen, *Constructivism in Mathematics*, Vol. 1, North-Holland, Amsterdam, 1988.
- [6] A. S. Troelstra and D. van Dalen, *Constructivism in Mathematics*, Vol. 2, North-Holland, Amsterdam, 1988.