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MARKOV’S PRINCIPLE, CHURCH’S THESIS
AND LINDELOF’S THEOREM
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Abstract. The principal results of this paper are: in constructive mathematics
(1) the theorem “Mappings from a complete metric space into a metric space
are sequentially continuous” can be proved using a disjunctive form of Church’s
“thesis only, and (2) the theorem “Every open cover of a complete separable metric
space has an enumerable subcover” can be proved using the Extended Church’s
Thesis only; Markov’s principle is not needed.
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In constructive mathmatics which is formalized by, for example EL + AC, ', the

cxtended Church’s thesis, where A is almost negative:

ECT,. Vz(Az — JyBzy) — 2Ve(Ar — Fu(Tzau A B{z,Uu)))
yiclds, in combination with Markov’s principle:

MP. Va[-—3In(an # 0) — In(an # 0)],

interesting mathematical conscquences, in particular the KLST-thcorem ([3, Chapter

9], [6, 7.2.11])

Assuming ECTo+ MP, all mappings from complete separable metric spaces

into metric spaces are continuous
and a version of Lindel6f’s theorem ({3, Theorem 1, 9.3], [6, 7.2.13])

Assuming ECTy + MP, cvery open cover of a complete separable metric

space has an enumerable subcover.

Recently, the author investigated the interrelation between a weak version of Markov's

principle:
WMP. Va[V3(~-3n(8n # 0) V ~=3In(an # 0 A Sn = 0)) — 3In(an # 0)]

and certain continuity principles [1, 2].
In this paper, we shall show that MP is cquivalent to WMP and a disjunctive version

of Markov’s principle:
MPY. Va3[-=3n{an # 0V 8n # 0) — ==In(an # 0) V ~—3In(Sn # 0)],

and that thce lesser limited principle of omniscicnee, here we call it SEP according to

[3, 6]:

SEP. Vaj[-3n(an # 0V fAn # 0) — ~In(an # 0) V =3In(fn # 0)]

!For detailed exposition of EL and AC, see [5, 6]; also we follow notations and convensions in [5, 6];
for example a, 3, v, 6 range over N — N.



implics MPY. (WMP and MPV is cquivalent to WLPE and LLPE in [4], respectively;
sce [2] and comparc MPY and [4, Theorem 4.1 (j)]. So these results correspond to the
results in [4].) Then we shall prove that WMP is derivable from Church’s thesis for

disjunctions:
CT{. Vz(Az V Bz) — Ja € TRECVz((az = 0 — Az) A (az # 0 — Bz)),
So assuming CTy, MP is cquivalent to MPY. Using these results we shall prove

Assuming CTy, all mappings from complete metric spaces into metric spaces

are scquentially continuous
and

Assuming ECTy, any open cover of a complete separable metric space has

an enumerable subcover.

Now we turn to our first result [4].

Proposition 1
(1) MP & WMP + MP";
(2) SEP = MP".

Proof. (1). It is casy to scc that MP = WMP + MP". To sce the converse, let a be

such that =—=3n(an # 0), and for arbitrary 3 define v by

1 ifan#0AfGn=0,
~mo=
0 otherwise.

Then =—3n(An # 0V vn # 0). Appling MPY, we have
—=3n(Fn # 0) V ~-3n(yn £ 0)

or

—=dn(An # 0) V-3n{an #0 A Gn = 0).



Since /J is arbitrary, we have In(an # 0) by WMP.
(2). Let o and 3 be such that =—3n(an # 0V Sn # 0), and dcfine ~ and é by

o=

1 fVi<n(ai=0AFGi=0Aan#0A3n=0,
0 otherwisc;

p { 1 #fVi<n(ai=0ABi=0Aan=0A3n#0,
n =

0 otherwise,

Then —~(In(vn # 0) A In(én # 0)). Hence cither -~3In(yn # 0) or ~3In(én # 0) by
SEP. In the former casc, if =3n(3n # 0), then =3n(an # 0), a contradiction; hence

——3n(An # 0). Similarly, in the latter case, we have —1—|37z(a7z #0). 0
Lemma 1 CTy proves
Vz(~—3InTzan V Az) — Jy(InTyyn A Ay).

Proof. Assumc Vz(=—3nTzan V Az) and apply CTy. Then we find a total recursive
~ such that
Va((ye = 0 — —~—~InTzan) A (vx # 0 — Azx)).

Let {y} be a partial recursive function such that
7w #0 —  dnTyzn,

and supposc that vy = 0. Then —=—-3InTyyn and -InTyyn, a contradiction. Hence

~y # 0 and thercfore InTyyn and Ay. O
Proposition 2 Assuming CTy, WMP holds.

Proof. Let the 3 in VA(==3n(8n # 0) V -=3n(an # 0 A fn = 0)) range over the

characteristic function of T'zzn as predicate in n. Then

Va(-~—InTzazn V ~-In(an # 0 A ~Tazn)).



Apply Lemma 1. Then we find y such that
InTyyn A ==3In(an # 0 A =Tyyn).

Choosc n so that Tyyn and supposc that Vk < n(ak = 0). Then ~3In(an # 0A-Tyyn),

a contradiction. Hence 3k < n{ak # 0). O
Theorem 1 Assuming CTy, MP is equivalent to MPY.
Proof. By Proposition 1 (1) and Proposition 2. O

Theorem 2 Assuming CTY, all mappings from complete metric spaces into metric
Q0:

spaces are sequentially continuous.

Proof. By CTj = —V-PEM ([3, Corollary 1, 4.3.4]), Proposition 2, and [2, Corollary
‘1]. m

Let M = (X, p) be a complete scparable metric space with basis (p,),. Let {2} be

a total recursive function such that

Ay(z) == V7L(P(I){x}(n),]3{x}(n+1)) < 2—,1,-1)); : (%)

we write [2]y for im(pis}(n))n-

If My := {y € R:y >0} with mctric inherited from R, we lct
Sn = U([31n]any, [J2n] mr);

here U(r, ¢) denotes the open ball with radius r and ceter ¢, and jy, j2 arc the projections
for the pairing j(z,y).

Here and in the sequel, the usc of the notation [z]a is tacitly taken to imply that
z satisfics (*).

A partial rccursive « is said to be effective covering of open sheres of M if

Viz)sm(E(ax) A [2]ar € Sasz)-



Proposition 3 Assuming CTy, every effective covering of open spheres of a complete

separable metric space has an enumerable subcover.

Proof. Let (p,), be a basis for a complete scparable metric space M. We put

{z}(n) if =3k < nTyyk,

Wz, y,n) = n(z,y)(n) = _
{z}(ming<, Tyyk)  if Ik < nTyyk.

Then
Ap(z) = VyAu(n(z,y))

Let R be the r.c. predicate defined by
R(z,y) == FK[Tyyk AVi < KEA(5,1,1) AVi < K(p(Dro iy Priogisn) < 2]
So if R(z,y), then Ap(v(z,y)). Let 8; cnumerate {j(z,y) : R(z,y)}, and put
om = 1 (j1(61m), ja(dr1m)).
Let o be an cffective covering. Then
Aw(z) = VYE(a(n(2,9) A [n(@,9)ln € Satn @]

We shall prove that {Sssm) : m € N} is a covering. To sce this, et 72 := ji(ax) and

cx := js(azx), and assume that Au(x). Then
Vylp([z]m, 712, y)lar) > 0 — InTyyn]
and

Vylo([2l s, [ (2. 1)) ar) < 7 (2 9)—p(Fn (@ 9)]ars [ (2, 9))]ar) = [a]ar € Sotn(@l;

hence

Vy(3nTyyn V [x]m € Saty(zy))-

Apply Lemma 1. Then we find z such that
InTzan A [2]ar €+Sa(an(2,e))-

and therefore R(z, z). Hence ad is an ecnumecrable subcovering of «. O
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Theorem 3 Assuming ECTq, any open cover of a complete separable metric space has

an enumerable subcover.

Proof. Similar to the proof of [6, Theorem 7.2.13] using Proposition 3. O
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