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Recent Results in Hyperbolic Geometry and Diophantine Geometry
Pit-Mann Wong*

Introduction In his monograph "Hyperbolic Manifolds and Holomorphic Mappings",
Kobayashi [K] raised the question of whether the complement of a generic curve of degree
d = 5 in P»(C) is Kobayashi hyperbolic. The problem is still open at this time but some
progress have been made towards this problem. The purpose of this note is to describe
some of these developments. In recent years there also emerged evidence that the theories
of hyperbolic geometry and diophantine geometry are closely related. Indeed the underlying
complex manifolds of all known Mordellic varieties (following Lang [L], a projective
variety V defined over an algebraic number field K is said to be Mordellic if the K-rational
points V(K) is finite; an affine variety defined over K is said to be Mordellic if the number
of K-integral points is finite) are hyperbolic. We shall indicate also in this note how one
may "translate” a proof of "hyperbolicity" into a proof of "finiteness". The main principle is
this:

"if a proof that a variety is hyperbolic is based entirely on the standard Second Main
Theorem of Value Distribution Theory then the proof can be translated into a proof
of finiteness of the corresponding variety defined over an algebraic number field".

The basic correspondence is Vojta's observation that the Second Main Theorem of Value
Distribution Theory correspondes to the Thue-Siegel-Roth-Schmidt Theorem in the Theory
of Diophantine Approximations. For further details of this correspondence we refer the
reader to Vojta [V1] and Ru-Wong [RW].

§ 1 The case of 4 or more components

Let S(d) be the space of curves of degree d =2 5 in P2(C), then S(d) is a projective
variety of dimension {(d+1)(d+2)/2} - 1 = d(d+3)/2. Kobayashi's problem is to show that:

“there exists a Zariski closed subset F, of strictly lower dimension, of S(d) such that P»(C)
- C is Kobayashi-hyperbolic and hyperbolically embedded in P(C) for all C € 5(d) - F'.
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More generally, let $(dy, ..., dk) be the space of configurations of curves (Cj, ..., Cx) with
degree Cj =dj and dj + ... + dx 2 5, the problem is to show that

"there exists a Zariski closed set Ty, of strictly lower dimension, in S(d\, ..., dy) such that
P>(C) - C is Kobayashi-hyperbolic and hyperbolically embedded in Po(C) for all C e
Sy, ... dy) - F".

An indication that the conjecture might be true is the following result of Zaidenberg [Z]:

Theorem (Zaidenberg) The set of curves of degree d (= 5) in P2(C) with Kobayashi
hyperbolic complement (in fact hyperbolically embeddedness) is (non-empty) open, in the
classical topology, in the space Xd).

Classically it is known that the complement of d (= 5) lines in general position in P2(C)
is Kobayashi-hyperbolic and hyperbolically embedded. Zaidenberg obtained his result by
deformation, indeed he showed that small deformation of the complement of d (= 5) lines
in general position preserves hyperbolicity. For compact manifolds it is a result of Brody
[B] that hyperbolicity is preserved under small deformation. Zaidenberg's result can be
interpreted as a non-compact (but with compactification) version of Brody's Theorem.

Definition 1 Let C be a curve in P2(C) with (reduced) irreducible components Cy, ...,
Cq. Then Cis said to be set theoretically in general position if no point is contained in more

that 2 irreducible components of C.

Definition 2 Let C be a curve in Po(C) with (reduced) irreducible components Cq, ...,
Cq- Then C s said to be geometrically in general position if it is set theoretically in general
position and if the components intersect transversally, i.e. the components have no
common tangents at the points of intersection.

The following result is to some extent well-known (cf. [DSW]):

Theorem 3 Let C be a curve in Po(C) with (reduced) irreducible components C, ...,
Cq. Then

(i) ifq=5andif Cis set theoretically in general position, then Po(C) - C is Kobayashi-
hyperbolic and hyperbolically embedded in Py(C);
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(ii) if @ =4 and if every irreducible component of C is smooth and geometrically in general
position,then P»(C) - C is Kobayashi-hyperbolic and hyperbolically embedded with 3
exceptional cases: B

(a) Cis a union of 4 lines:

(b) C consists of 3 lines (L1, Lp and L3) and 1 smooth quadric (Q) such that the line
joining the intersection pointp of L1, Lz‘and one of the intersection points q of L3 and Q is
tangent to Q;

(¢) C consists of 2 lines (L1, Lp) and 2 smooth quadrics (Q1 and Q2) such that the two
lines pass through a point p on Q1 and a point q of Q2 where the line joining p and q is a
bitangent of C:

The figures below is helpful in visualizing the 3 exceptional cases:

™~
~

The dotted lines are isomorphic to P;(C) minus two distinct points, hence the complements
of the configurations are clearly not hyperbolic.

The proof of Theorem 1 is based on the works of M. Green ([Gm 1], [Gm?2]). First we -
give the following definition:

Definition 4 . Let C be a divisor in a projective manifold with (reduced) irreducible

components Cf, ..., Cq. Then C is said to be hyperbolically stratified if for any partition I

andJof {1,..,q} (.e. INnT=2,1UJ ={1, .., q}) the following condition is'satisfied:
Vie1 Ci~ Yies G

is Kobayashi-hyperbolic.

It is well-known that Kobayashi-hyperbolicity implies Brody-hyperbolicity and the two
concepts are equivalent for compact manifolds; the following lemma of Green [Gm 1] gives
a sufficient condition for the reverse implication in the case of complements of divisors.
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Lemma Let C be a divisor which is hyperbolically stratified in a projective manifold M.
Then V=M - C is Kobayashi hyperbolic and is hyperbolically embedded in M if V is
Brody hyperbolic.

The assumptions in Theorem 1 guarantee that C is hyperbolically stratified in P(C).
Thus it is enough to show that P2(C) - C is Brody hyperbolic. Let C; = {z € P2(C) | Pi(z)
= (0} where the Pj's are homogeneous polynomials of the same degree. Using an argument
of Green [Gm2] one can show that every entire holomorphic curve in the complement of C
is algebraically degenerate. Namely, using the fact that the transcendence degree of the
rational function field of P7(C) is 2 implies that the rational functions P1/Pg, P2/Pg, P3/Pg
are algebraically dependent. If f is an entire holomorphic curve in the complement of C then
gi = Pi(f)/Pg(f) are non-vanishing entire functions satisfying a polynomial relation. Borel's
lemma then implies that the gj's are algebraically dependent and hence f is also algebraically
dependent, i.e. the image f(C) is contained in an algebraic curve of P»(C). By a direct
argument (cf. § 3 below) one sees that every algebraic curve intersects the components of C
in at Jeast 3 distinct points (with 3 exceptional cases listed in the Theorem), this shows that
the entire curve f must be a constant.

The case where C has 5 or more components, set theoretically in general position, is
easier as every algebraic curve in P2(C) must intersects C in at least 3 distinct points and so
there is no exceptional cases. In this case the Theorem also follows immediately from a
Second Main Theorem of Eremenko and Sodin [ES]:

Theorem (Eremenko-Sodin) Let f: C — Py(C) be a holomorphic map and let C be a

divisor with irreducible components Ci, ..., Cqg which is set theoretically in genéral
position. Let Q; be a defining polynomial (of degree d;) of C;. If Qi(f) #0 for all i then

(g-2n)T(,r) < i di IN(f,Ci,r) + o(T(f, r)).

i=1

Indeed, Eremenko-Sodin's Theorem implies that the complement of a divisor D with at
least 2n + 1 components, set theoretically in general position, is Brody-hyperbolic. The
condition that the components are set theoretically in general position implies that D is
hyperbolically stratified hence the complement is Kobayashi-hyperbolic by Green's lemma.
However, the analogue in diophantine approximation of the SMT of Eremenko-Sodin is

still open:
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Conjecture: Let C be a divisor in Py(K) where K is an algebraic number field such that
the components Cy, ..., Cq are set theoretically in general position. Then the estimate
(Q-2n) h(x) < i di"IN(x,Cy) + O(1)
i=1

holds for all but finitely many points x € Py(K) - C.

The conjecture is open even in the case where n =2 and C is a curve. On the other hand
the analogue of Borel's lemma in diophantine approximations is known (cf. § 2), hence we
prefer the proof sketched above.

§ 2 The case of 3 generic quadrics

The complement of 3 quadrics was first studied by Grauert; the hyperbolicity of the
complement of 3 generic quadrics is established recently in [DSW].

Theorem 4 Let C; = {z € P2(C) | Pi(x) =0, P; is a homogeneous polynomial of degree
2}, (i=0, 1, 2) be 3 quadrics in generic position. Then P2(C) - ., Ci is Kobayashi-
hyperbolic and hyperbolically embedded in P»(C).

The generic conditions can be explicitly described as follows. Two quadrics Q; = {z €
P2(C) | Pi(x) = 0, Pj is a homogeneous polynomial of degree 2}, i =0, 1, are said to be in
general position if they are smooth and the intersection Qg N Qg consists of 4 distinct
points {Aél, Agl }. (This condition is equivalent to set theoretically in general position
and, since the quadrics are smooth, also equivalent to geometrically in general position as
defined in the previous section). By joining any two distinct points of these 4 points we get
6 distinct lines. Two distinct lines of these 6 lines is said to be a pair if all 4 points of
intersection Qg M Qg are on these two lines. In these way, these 6 lines are grouped into 3
distinct pairs of lines: '

{Ly, 11<i<2), {3, 11<i<2}and {K}, | 1 <i<2).
Note that the condition of being a pair is equivalent to (say the pair {L(i)l | 1<i<2)})the
existence of constants a and b such that
Ly, VU LZ = {x € P5(C) | aPy(x)+ bPy(x) = 0}.
Simply put, the pair of lines considered as a quadric is in the linear system of quadrics
generated by Qg and Q1.
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Three smooth quadrics Qi = {z € P2(C) | Pi(x) = 0, P; is a homogeneous polynomial
of degree 2}, (i =0, 1, 2), are said to be in general position if any distinct pair is in general
position and if the 12 points Qo N Q1 = {Ag;, -, Afy), QN Q2 = {A],, ..., A},} and
QN Qo= {A;O, ..y A;O} are distinct. For 3 quadrics in general position we have 18
distinct lines grouped into 9 pairs : ' . '

{Ly; 11<i<2}, {J:,l 11<i<2}and {Ky 11<i<2},
(L, 11<i<2), {3,11<i<2) and {K}, 1 1<i<2},
{(Li,11<i<2), (B, 11<i<2} and (K}, | 1 i< 2).
Notice that we have 3 linear system of quadrics: Lo1 = {ap1Po + bo1P1}, £12 = {a12P1 +
b12P2} and £p0 = {apoPg + b2oP1} and, the general position assumption implies that if we
take two quadrics from different linear systems then the intersection consists of 4 distinct
points but cannot contain any of the 12 points {A(l,l, Agl, Ai2, A‘;z, A;o,
Ago}. This implies, in particular, that only 3 of the 18 lines can pass through each of the 12
points. Each pair of lines determines a point and we have 9 points
A1 =L(§1 N L(z)v Bo1 = Jél N ng Co1 = Ktln N K(z)l
A12=L;; MLy, B2 =Jj,0 115, Cl2 =Kpp 0Ky
Ao = L;on L%o’ Bao = Jéoﬁ J%o’ Ca20= K;O M K%o-
The set of 3 smooth quadrics in general position is clearly Zariski open in the space of 3

quadrics.

Definition 5 Three smooth quadrics are said to be in generic position if -
(i) they are in general position,
(ii) none of the 18 lines is tangent to any of the 3 quadrics,
(iii) a line through a point of intersection of two of the quadrics is not a tangent of the
third quadric and
(iv) the following conditions are satisfied:
{Ao1, Bo1, Co1} is not contained in the 6 lines in the linear system £j2 and Lpq,
{A12, B12, C12} is not contained in the 6 lines in the linear system £pg and Ly,
{A20, B20, C20} is not contained in the 6 lines in the linear system £g7 and Li7.

The set of 3 smooth quadrics in generic position is Zariski open in the space of 3
quadrics because each of the conditions above is a close condition. We refer the reader to
[DSW] for the proof.
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We sketch the proof Theorem 4 below and refer the readers to [DSW] for more details.
First we make a very important reduction which, in the case of compact manifolds is due to
Brody [B]: '

Lemma (Brody) Let (M ds2) be a compact complex hermitian manifold which is not
Kobayshi-hyperbolic. Then there exists a holomorphic map f: C — M such that -

[ Fds2) < 0¢2)
Ar

where Ay is the disk of radius r in C centered at the origin.

In our situation, even though M = P2(C) - ., Qi is not compact, it does have a

smooth completion P2(C). Brody's proof actually applies (because a sequence of
holomorphic curves in M can of course be considered as a sequence of holomorphic curves
in P7(C), hence existence of convergent subsequences is not a problem). First note that the
generic condition implies that \_, , Qj is hyperbolically stratified (definition 3 in § 1).
Thus M is Kobayashi-hyperbolic if and only if it is Brody-hyperbolic. If M were not
hyperbolic then there is a non-constant holomorphic curve f : C — M. We may assume that
£(0) # 0. Let f({) = £(r{) for all { € A = unit disk (centered at the origin) in C, then If;"(0)I
— oo. By Brody's reparametrization, there exists a sequence of holomorphic maps gr: Ar
— M, with Ig,"(0)I = 1. Here for simplicity we denote by | | the norm of the complete
metric on M = P»(C) - Y Qj defined by

1
Y S 1Y )
: [PoP1PpI2+€ ds

where ds2 is the Fubini-Study metric. Since P2(C) is compact, a subsequence of {g;} does
converge to a holomorphic map g : C = P»(C). The maps {g,} actually are obtained from

{f;} by repara-metrization with f;(0) = g,(0), hence f and g actually have the same image
(not pointwise but as a set). In particular, g is an entire curve in M. It is clear that the

condition lg;"(0)I = 1 implies that

[ g*@2) < o).
Ar

Since ds2 < cdt? for some constant ¢, we have

Ten)= | U [grusdse fd—t‘- [ g*@?) < c 0a2).
0 At 0 Ar
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In the terminology of Nevanlinna Theory the map g is said to be an exponential map of
finite order < 2 (finite order 2 for short). In other words, in order to prove Theorem 4 it is
sufficient to show that '

"every entire holomorphic curve f: C — M of finite order is constant".

Remark (i) The above proof works whenever the manifold has a smooth completion and
the "infinity" is hyperbolically stratified. (ii) Note that in the proof above, f and g have the
same image, hence f is algebraically non-degenerate if and only if g is algebraically non-

degenerate.

As in the case of Theorem 1 in § 1, to show that an entire curve f (of finite order in this
case) in M is constant we first use Nevanlinna Theory to show that it is algebraically
degenerate and then use the generic condition to show that the entire curve f has to be

constant.

Lemma Let {Q;|1<i<3} be3 quadrics in generic position and let f : C — P3(C) -
Wysicr Qi be a holomorphic map. Then f is quadratically degenerate, in fact the image of f

must be contained in a quadric in the linear system {agQo + a101 + a203}.

Let Q; = {z € P2(C) | Py(z) = 0 where Pj is a homogenebus polynomial of degree 2}.

The branching (or ramification) divisor is defined to be:
B = {z.€ P2(C) | det (0Py/dz; (z) = 0}.

The degree of B is 3. If B consists of 3 lines then by the generic condition, each of the line
intersects the 3 given quadrics at at least 3 distinct points. If B consists of 1 irreducible
(hence smooth) quadrics and 1 line then as before the line intersects the 3 given quadrics at
at least 3 distinct points; if the quadric Q intersects the 3 given quadrics at only 2 distinct
points then one of them is a point of intersection of 2 of the 3 given quadrics. But any two
of the given quadrics intersects transversally and so Q cannot be non-singular at that point.
If B is an irreducible cubic intersecting the 3 given quadrics at only 2 points then both
points must be points of intersections of the given quadrics; otherwise it intersects one of
the given quadric at only one point which is impossible unless B is reducible. Thus, if there
is a non-constant holomorphic map from C into P2(C) - YUeico Qj the image cannot be

contained in the branching divisor B.
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We may assume that the map f is of finite order. We shall need the following special
cases of a well-known technical lemma of Ahlfors:

Lemma (i) Let f= [exp po, exp p1] : C = P1(C) be a holomorphic of finite order where
pi(0) = 4™ + lower order terms, 1 <i<2

are polynomials such that at least one of the ¢ # 0. Then the characteristic function of f

satisfies '

T(¢r) _log-ol
m g

(ii) Let ¢ = [exp pg, exp p1, exp p2] : C = P2(C) be a holomorphic of finite order

hm r—yoo

where
pi(0) = 04" + lower order terms, 1 <i<3
are polynomials such that at least one of the a; # 0. Then the characteristic function of f
satisfies :
T(,) _lag-oal + lag-aal + lag-agl
"o 2n '

limy—yeo

The main tool of the ;proof of the theorem is the Second Main Theorem (SMT) of
Nevanlinna Theory:

Second Main Theorem Letf: C — Py(C) be a linearly non-degenerate (i.e. the image
AC) is not contained in a hyperplane) holomorphic map. Let {L;1i=1, ..., q} be g
hyperplanes in general position. Then '

(g-n-1)T(f, r)SiN(f,L,-, r) + o(T(f, r))
=1

for all r > 0 and outside an exceptional set E of finite Lebesgue measure. If f is of finite

order then the exceptional set E is empty.

Proof of Theorem 4.  Suppose that the image of f is not contained in the linear system
{aQo + bQ1 + cQ2}. Consider the map P = [Py, P1, P2] : P2(C) — P2(C) where Q; = {P;
= 0}. Then P is a morphism because the P;j's have no common zeros. Hence the composite
¢ = Peof : C — P2(C) is linearly non-degenerate. Since the Pj's are of degree 2 and P is a
morphism, it is well-known and easily verified that

*) T, 1) =2T({ 1).
Since Pjef is non-vanishing, the map ¢ = Pof is an entire curve in P,(C) - << Hi Where

H; = {[wo, w1, w2] | wj = 0} are the coordinate hyperplanes. Thus ¢ is of the form [exp
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o, exp p1, exp p2] where pi({) = ;L™ + lower order terms, 1 < i < 3, are polynomials
such that at least one of the o # 0 (this is so because ¢ is of finite order and all its
components are non-vanishing, hence it must be of integral order* ). The there maps
601 = [Po°f, P1°f], $12 = [P1°f, P2°f] and ¢20 = [P2°f, Po°f]
are holomorphic maps from C into P1(C). The lemma of Ahlfors implies that
(**) 3 limpseo T(§ur)/r = 2{limr_500 T($po1,0/r™ + imr_seo T($12,r)/1" + limyr—300
T(¢p20,)/1"}. '

Now we apply the SMT to the 12 lines consisting of (any) two pairs of lines from each

of the linear system £1 = {aQq + bQ1}, £2 = {aQq + bQ3} and £3 = {ani + bQq}. These

12 lines, denoted by L;j (1 <i < 12), are in general position. Hence we have
12

(***) 9T(f,r)< ), N(f, Lj, 1) + o(T(f, r)).

i=1
Suppose that {L1, Lo} and {L3, L4} (resp. {Ls, Lg} and (L7, Lg}; resp. {Lg, L1g} and
(L11, L12}) are the two pairs in £; (resp. Lp; resp. £3). Then there exists constants a and b
such that LiLj = aPg + bPy. Thus N(f, Ly, r) + N(f, Lp, r) = N(f, L1Lp, r) = N(f, aPg +
bP1, r). On the other hand, N(f, aPg + bPq, r) = N(¢o1, [a, b], r). Now apply the SMT to
001 and the 3 points [0, 1], [1, 0] and [a, b], we have
T($o1, r) < N(do1, [0, 1], r) + N(do1, [1, 0], 1) + N(do1, [a, b], ) + o(T($o1, 1))
= N(¢o1, [a, b], ) + o(T(do1, 1)).
But the First Main Theorem of Nevanlinna Theory gives the reverse inequality
| N(6o1, [a, b], r) < T(¢o1, 1) + O(L).
Thus we must have
limp_yeo T(Po1,0)/1? = limy_yee N($g1,[a,b],r)/m? = lim;_y0o N(f,aPg+bP1,r)/r0

= limg_yoo N(f,L1,0)/t? + lim;_y0o N(f,Lp,r)/r0

= limp_yoo N(f,L1,0)/r? + lim;_yeo N(f,Lp,r)/r0
Analogously we get the estimate for T(¢12,r) in terms of N(f,Ls,r), N(f,Lg,r) (also
N(f,L7,r) and N(f,Lg,r)) resp. T(¢20,r) in terms of N(f,Lg,r), N(f,L10,r) (also N(f,L11,r)

and N(f,L12,r)). From (*), (;"*) and (**) we arrive at the following contradiction:
12

9 limy—yo0 T,/ < Y. limp_yeo N(f,Li,r)/r0

i=1

=2 limr—ye {T(¢01,1) + T(912,1) + T($20,1)}/1"
= 4 1im;_yeo T(¢,r)/1" = 8 limg_y00 T(F,r)/r"

* This fact an be proved directly in this special case or one can use the general result of S. Mori that an

entire curve of finite order and of maximal defect must be of integral order.
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Thus the supposition that f is quadratically non-degenerate is wrong and the lemma is
verified. QED

The previous lemma implies that the image of f is contained in a quadric of the form Q
= aQp + bQ1 + cQy. We can show that f must be constant by a direct argument. If the
quadric Q is irreducible (hence smooth), we claim that Q intersects the union of the 3 given
quadrics in at least 3 distinct points. Suppose the contrary, then Q intersects the 3 given
quadrics at only two points p and q and we may assume without loss of generality.thatp €
Qo N Q1 and g € Q1 N Q2 (because it must intersects all 3). If two quadrics intersects
transversally then there are 4 points of intersections, thus Q must be tangent to Qg (resp.

- Q2) at p (resp. q) and it must be tangent to Q at either p or q, say at p for definiteness).

But Qp and Qg intersects transversally, hence Q cannot be tangent to both at p. This
contradiction shows that Q must intersects the 3 given quadrics in at least 3 points. If Q is
reducible then it consists of a pair of lines (or one double line). But any line must intersects
the 3 quadrics in at least 3 distinct points by the generic conditions. This shows that every
entire holomorphic curve f : C —» M =P2(C) - 4., Q; is constant, i.e. M is Brody-

hyperbolic. Theorem 4 now follows from Green's lemma and the fact that Q = Yeica Qiis

hyperbolically stratified.

§ 3 Diophantine Geometry

Let K be an algebraic number field. Let S(d) be the space of curves of degree d 2 5 in
Py defined over K. The conjecture corresponding to the conjecture of Kobayashi is the
following:

"There exists a Zariski closed subset F, of strictly lower dimension, of S(d) such that

forall C e S(d) - F, Po(K) - C contains at most finitely many K-integral points".

More generally, let 5(dy, ..., dk) be the space of configurations of curves (Cy, ..., Cx) with
degree Cj = dj and dj + ... + dg = 5, then "
"There exists a Zariski closed set Fx, of strictly lower dimension, in 5y, ..., d) such that
forall C e Sy, ..., di) - Fr, P2(K) - C contains at most finitely many K-integ?al points".

First we recall the definition of finiteness of integral points for affine varieties (cf. [V1]
and [Si]).
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Definition 6 Let X be a non-singular projective variety defined over K. Let C be a
divisor on X with at worst simple normal crossing singualrities and let V = X - C. Choose
an embedding

¢ : X - PN(K)
such that ¢(C) = ¢(X) N {[wo, ..., WN] € PN(K) | wo = 0}. Then ¢(V) is embedded as a
closed sub-variety of the affine space KN. The affine variety V = X - C is said to contain
finitely many K-integral points (or Mordellic) if

o(V) N OgN

is a finite set where OkN is the N-fold Cartesian'product of the ring of K-integers. More
generally, let S be a finite set of valuations on K containing all the archimedean valuations
on K. Then the set of S-integral points, denoted Og = Og K, is defined to be the set of
elements x in K such that v(x) < 1 for all v ¢ ©Og. The affine variety V = X - C is said to
contain finitely many S-integral points if

o(V) N Og kN
is a finite set.

We refer the reader to the papers of Silverman [Si] and Vojta [V1] for the proof that the
-definition of finiteness given above is well-defined (independent of the choice of the
embedding ¢).

Remark 7 For an affine open subset U of V, a set of integral points of V (remember the
embedding ¢) may not be a set of integral points of U (because ¢ is not an embedding of U
as a closed subvariety of an affine space). Thus it is possible that U has only finitely many
integral points (in some embedding of U as a closed subvariety in an affine space) yet it
contains infinitely many integral points of V. For instance U =K - {0, 1} is an open subset
of V = K and obviously contains infinitely many integral points of K but K - {0, 1} when
embedded in K2 (e.g. by the map x — (x, 1/x(x - 1))) has only finitely many integral
points (Thue-Siegel). On the other hand, for Zariski closed subset C of V, an embedding of
V in KN as a closed subvariety also restricted to an embedding of C as a closed subvariety
and indeed the set of integral points of C are contained in the set of integral points of V. In
particular, V contains infinitely many integral points if we can find a closed subvariety
containing infinitely many integral points; conversely, if V contains only finitely many

integral points then the same is true for any closed subvariety of V.

We shall give a proof of the Theorem in diophantine geometry corresponding to
Theorem 1 in § 1. The proof is based on the lemma of solutions of the unit equation (we
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include Borel's lemma for comparison), we refer the reader to Vojta [V1], van der Poorten
[vdP] and Schlickewei [Schl] for the proof (see also Ru [R] lemma 3.5).

Lemma (i) (Unit-Equation) Let {aj} be non-zero elements of K. Then all but finitely
many S-integral solutions {(u1, ..., un) | uj € Og K} (more generally, u;e T" where T is a

finitely generated subgroup of K - {0}) of the equation
n
2 aiu; =1
=1

is contained in a diagonal hyperplane

Hi={x1), x; =0}
' iel
where I is a subset of {1, ..., n} consisting of at least 2 elements.
(ii) (Borel's Lemma) Let {a;} be non-zero complex numbers. Let {u;} be entire non-

vanishing functions satisfying the equation
n
Z ajiu; =1
i=1

then the image of the entire curve f= (u1, ..., uy) (Where {u;} are the entire non-vanishing
solutions of the unit equation) is contained in a diagonal hyperplane.

It is well-known that Borel's lemma follows from the standard SMT as stated in § 2.
On the other hand, the lemma on the unit equation follows from Roth-Schmidt's Theorem.
As mentioned in the introduction, the SMT correspondes to Roth-Schmidt's Theorem in
Vojta's dictionary. Indeed in Ru-Wong [RW], Roth-Schmidt's Theorem was reformulated
in the form of SMT and, using this reformulation one can easily translated the proof of
Borel's lemma (usiné the SMT) to a proof of the lemma of the unit equation.

We shall use the unit-equation to give a proof of the counterpart of Theorem 11in § 1.

Theorem 6 Let C be a curve in Py defined over an algebraic number field K. Let C1,
..., Cq be the (reduced) irreducible components of C. Then ’

(1) ifg=5and C is set theoretically in general postion then Po(K) - C is Mordellic;
(ii) if g = 4 and if the components of C are smooth and geometrically in general
position then Po(K) - C is Mordellic with 3 exceptions:

(a) Cisaunion of 4 lines:
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(b) C consists of 3 lines (L1, L and L3) and 1 smooth quadric (Q) such that the
line joiningthe intersection point p of L1, Ly and one of the intersection points q of L3 and
Q is tangent to Q; ,

(c) C consists of 2 lines (L1, L) and 2 smooth quadrics (Q1 and Q3) such that the
two lines pass through a point p on Q1 and a point q of Q2 where the line joining p and q is
a bitangent of C:

Proof. We treat case (ii) first as case (i) follow easily from the proof of (ii). If we can
show that P2(L) - C contains at most finitely many S'-integral points for some finite
algebraic extension L of K and §' extension to L of the set of valutions S, then (a priori)
P,(K) - C contains at most finitely many S-integral points (cf. [V1] lemma 1.4.5). By
adjoining the coordinates of the points of intersection if necessary we may assume without
loss of generality (and for the convenience of exposition) that K already contains these
coordinates.

Let {Cj 10 <1< 3} be the components of C. Fori=0, 1, 2, 3 let P; be a homogeneous
polynomial with coefficients in Og k and deg P; = d (for all i) such that Cj = {z € P2(K) |
Pj(z) = 0}. Since transcendence degree of P is 2, the rational functions P1/Pg, P2/Py,
P3/Pg are algebraically dependent. Hence there exists a polynomial R such that

R(P1/Pg, P2/Pg, P3/Pg) =0

where we may assume that the coefficients of R are in K. Thus we have
n

2 ajRi/Rg =1

fi=l

where a; # 0 and each R;j is a monomial in {Pg, P1, P2, P3}. Let g be the set of S-integral
points of P2(K) - C. Since ajRj/Rg is a regular funtion on outside the curve Po(K) - C,
there exists a € K such that aa;Rj/Rg(x) € Og for all xe dandforall 1<i<n (cf. [V1]
lemma 1.4.6, see also [R] § 3). The lemma of the unit-equation implies that the solutions
{(Ri/Ro(x), ..., Rp/Ro(x)) | x € 9} of the equation

n
Y. aiRi/Ro(x) = 1

i=1
is contained in a diagonal hyperplane. This is equivalent to the condition that the set of S-
integral points 9 of Po(K) - C is contained in an algebraic curve D in Po(K).

Let D' be any irreducible component of D. Then D' n (U Cj) contains at least 2 distinct
points because C is in general position and D' must intersect every component. If C onsists
of 4 lines (exceptional case (a)) then it is possible that D' intersects C in exactly 2 points
(for instance D' is the line joining the point of intersection p of C1,C2 and the point of
intersection q of C3, C4). In this case we cannot conclude that P2(K) - C has only finitely
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many S-integral points (because a rational curve minus 2 points contains infinitely many
integral points). |

We now assume that at least one of the component of C (say Cg) is a smooth quadric.
Suppose that D' intersects C in 2 distinct points then these points must be intersection
points of the components of C, say p € C1 N Cz and q € C3 N C4 (this is so because D'
must intersect each component of C). If D' have distinct tangents at the point p then 7-1(p)
consists of two distinct points where ©t : D" — D' is the normalization (desingularization)
of D'. Thus =n-1(p) U n-1(q) consists of at least 3 points so that D" - ©-1(p) v n-1(q)
contains at most finitely many S-integral points by the Theorem of Thue and Siegel. It
follows that D' contains at most finitely many integral points of P2(K) - C (cf. [V1]
theorem 1.4.11) and we are done in this case. Thus we may assume that D' have no
distinct tangents at the point p. Since C is geometrically in general position and all of its
components are smooth, D' cannot be tangent to both C1 and C3 at p. Say D' is not tangent
to C1 at p. Then D' must intersect Cj at a point r other than p (in which case we are done
because p, q, r are 3 distinct points and any curve with 3 points deleted contains at most
finitely integral points) unless both C; and D' are lines. If C; is not a line (hence a smooth
quadric) then D' must be tangent to C, at p otherwise D' would intersect C; at a point r
other than p and we are done. Thus we have two cases to consider: (b) C3 is a line or (c)
C, is a smooth quadric and D' is tangent to Cp at p. In either case we apply the preceding
argument to the point q € C3 N C4. Since C4 is a smooth quadric we must héve the
situation where C3 is a line and D' is tangent to C4 at q. Thus we have the two exceptional
cases:

(b) C1, C and C3 are lines and C4is a smooth quadric and D' intersects C at the point
p € C1 N Cy and at the point q € C3 N C4 and D' is tangent to C4 at q;

(c) Cq, C3 are lines and Cp, C4 are smooth quadrics, D' intersects C at the point p € Cg
M Cz and at the point ¢ € C3 N C4 and D' is tangent to C3 at p and also to C4 at q. |

In all other cases every irreducible component of D intersects C in at least 3 points and
hence can only contain finitely many S-integral points. QED
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