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A series of identities for the coefficients of inverse matrlces
on a Hamming scheme
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Abstract .

In this paper, a series of identities on Hammimg schemes concerned with inverse matrices
of linear combinations of association matrices is given, which is useful in the statistical
design of experiments.

1. Statistical background

In time series analysis or spatial data analysis, correlated data are often treated. Sim-
ilarly, in factorial experiments the closeness of level combinations (assemblies) of factors
may cause the correlation between the observations. Here, we consider factorial experi-
ments with p factors of g levels each.

Let Ay, -, A, be factors with ¢ levels. We assume that there are no interaction effects
between these factors, and assume the following model :

y~—u+a +a , o tof +e fori=1,2,---,N, (1)

where y; and ¢; are the i-th observation and the error ; p is the general mean ; -;; is the
level of the j-th factor in the i-th experiments ; and o, is the main effect for the k-th level
of the j-th factor. Without loss of generality, we assume that

adh+aof+-+a_ =0

holds for any j. Let I' = (v;;) be an array of level combination (assembly). The model (1)
can be also represented by

y=pl+Xa+e, cov(e)=

where y = (y1,--+,yn)’,€ = (€1, -+, €n)’, 1 is the all-one column vector, a = (eg, -+, 0] _;;
o, ee,ab ), X = (Xi,---,Xp) is an N X pg design matrix and X; = (z};) isan N x ¢
matrix such that
j __{ 1 if’)’ij‘—‘k,
k

Tie = if Yij 76 k.

Let v; = (Yi1,***,7%ip) and Y& = (Y1, -, Tkp) be the i-th row and the k-th row of T,
respectively. The number of j such that v;; # 7x; is called the Hamming distance between
7; and 7, denoted by d(7;, V). We assume that the correlation of errors €; and ¢ of the
i-th and the k-th experiments depends only on the Hamming distance d(~;,yx) and that
two kinds of covariance structure are given as follows :

a? if i = k,
cov(g;, ) = o'? if v; = and @ # k, - (2)
o2p¥) if § # k and d(;, ) > 0.
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o2 ifi=k,

2 ify; =k and i #k, 3)
o?p i d(vi,w) =1,

0 ifd(y,m)> 1.

We assume that p > 0, which may be natural in usual cases. If p = 0 (that is, for
uncorrelated case), the “optimality” of orthogonal array is well-known (see, for example,
Kiefer (1975), Kiefer and Wynn (1981)). In a practical use, “linear” orthogonal array is
often utilized. Our aim is to find designs which are “optimal” not only for p = 0 but also
for any p > 0. Thus we restrict ourselves to the class of linear orthogonal arrays. When
we use the generalized least square estimate (GLSE ), we have to calculate the C-matrix
C(X) = X’S71X in order to evaluate the “optimality” of the design. In the midst of the
calculation, we need to obtain the values

su(ta-1, u(i0e-v, @

=0

cov(es, er) =

where n is an integer (< N) and b;’s are real numbers corresponding to ¥~! which will
be defined in the next section. These formulas are evaluated in the theorems of the next
section. For the details in this section, we refer the reader to Mishima and Jimbo (1992).

2. Identities

Let U = {uy,- -, u,} be a finite set. We assume that n + 1 binary relations Ry,---, R,
are defined on the set U. Let D; = (d\) be a v x v (0,1)-matrix such that

49 = 1 if (ug,w) € R,
1 0 otherwise.

Definition. The (n + 1)-tuple < Dy, ---, D, > is called an association scheme on a finite
set U of v points if D; satisfies the following conditions :

(i) D; is symmetric for ¢ = 0,1,---,n,
(i) X, Di = J,, where J, is the v x v all-one matrix,
(iii) Dy = I,,, where I, is the v X v identitiy matrix,

(iv) Di;D; = ¥i_gcijeDr = D;D; for i,j = 0,1,---,n, where ¢, is a constant depending
on ¢,j and k.

It is well-known that the number of 1’s contained in a row or a column of D; is a constant
(=v;) not depending on the particular choice of a row or a column. And the vector space
consisting of all matrices Y 1. a;D; is a ring (see, for example, MacWilliams and Sloane
(1977)). It is obvious that if an element Y7, a;D; has the inverse, then (7 a;D;)~! can
be written by a linear combination of Dy, .-, D,,, if it exists.

The vector space consisting of all matrices 3} a;D; has the unique basis of primitive
idempotents Ey,-- -, E,. Let '

D;E; = pi(j)Ej,
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where p;(j),(j =0,---,n), are the eigenvalues of D;. Let

po(0) p1(0) --- pa(0)
po | M pi(l) -+ pa(1)
Po(.n) p1(n) Pnin)
be the first eigenmatrix and let
20(0) a(0) --- ¢a(0)
0=vpl= (1) @) - ¢(1)
w(m) @) » an(n)

be the second eigenmatrix.

It is known that po(j) = qo(j) = 1 and p;(0) = v;. And the following proposition is
obtained.

Proposition. For an association scheme < Dy,--+,D, > on U, let (X}_qarDy)™! =
E?:O b,‘D,‘, then
1 g;(7)
bj=-y —2~2 5
Vi 2k=0 akPk(]) ( )
holds and we have
i 1
bpi(l) = =~ forl=0,1,---,n. 6
i;) pi(1) ST arpelD) (6)

Proof. By noting the relations D; = 37_ypi(j)E; and E; = ; ¥7_,:(j) Dj, we have

Z;Obz'Di = (}:aka)_l=(Zzakpk(j)Ej)‘1

k=0 j-—O

= Z(Zakpk(])) R, = ZZ(Zakpk(J)) *¢;(4) Di.

j=0 k=0 U iZ0j=0 k=0

Thus we obtain (5). Furthermore, by using Y7 ¢;(¢)pi(!) = 6;1, we have

Sbal) = =3 3% wn() e (p0)

fl

i=0 i=0 ]—0 k=0
= Z(Z arpr(7)) 7" b = Z arpi (1)
Thus the proposition is proved. O

Now, let U = F", where F = {0,1,---,¢—1}. And define the relation R; as (z,y) € R;
if d(z,y) = ¢, then < Dy, -+, D, > is an association scheme, which is called a Hamming
scheme. In this case, p;(0) = v; = (?) (g — 1) holds.
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Theorem 1. For the Hamming scheme < Dy,---,D, > on F", let (S}t_p*Di)! =
i biD;, then

b o SO+ plg =2}

~(1=p{l+p(g- D} (7)
holds for ¢ = 0,1, -, n. Furthermpre ‘
S ("™ i—m _ (=p)"
;ijbi(z'_m)(q_l) Y CENE (8)

holds for m =0,1,---,n

Remark. Especially, let m = 0 and 1 in (8), then we can obtain the value of (4) for the
covariance structure (2) in the previous section.

Proof. In the case of a Hamming scheme, it is known that
; ; . : i k=i [T (P —1
(i) = @e(5) = Pe(sim) = 2 (=) (e = D) (), . ) 9)
=0

where Pi(j;n) is called a Krawtchouk polynomial (for the properties of the Krawtchouk
polynomial, see MacWilliams and Sloane (1977)).

By using (9), we have

> dnt) = 33 -oa-0= () (1)

1

- EEve ()
= (L4 pla—DY(1 - p.

Then by (5) and (9),
S e e () (G2

. i+
- qin{1+p<c_lz—1>}nlz§,§( a0 (o) ("5 {2 +

holds. After an straightforward but somewhat tedious calculation, we obtain (7). And it is
easy to show (8). O

bi =

2

Theorem 2. For a Hamming scheme < Dy, -+, D, >on F", let (Dy+pD;)~! = ¥ b;D;,

then
= _ m!(—p)
'i=zm b,( )(q by Hk..o{l +np(q — 1) — kpq}

m

(10)

holds for m = 0,1,---,n

] n.
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Remark. Let m = 0 and 1, then we can obtain the value of (4) for the covariance structure
(3) in the previous section. We may also prove (10) by using the properties Krawtchouk
polynomial in a similar manner to Theorem 1. But the following proof may be simpler and
the explicit formula of b; is more complicated than that of Theorem 1.

Proof. Let g(m) =X, ( )(q 1)"™. When m =0, let ] =0, ap = 1, a; = p and
ap=-:=a,=0in (6), then it is easy to show that
° n . 1
0)=Sb(")g-1)=—" 11
0= 3-5(}) -1 = e, (1)

since p;(0) = v; = (’:)(q — 1)* holds.

Now, let < D((,m), .++,D'™ > be a Hamming scheme on F*™ and let

7™ = (DY + ;)Dﬁ"))"1 : { ((%) e) ® 1qn_m} = (z:jo b,-DS")) : { (é) e) ® 1qn_,,.} ,

i=0
where € = (0,---,0,1)" is a g-dimensional vector, 14-= is the ¢"~™-dimensional all-one
column vector, ® mdlcates the direct product and @~,;e=e®---Qe.
‘——'v—’
m

For any two matrices A and B, let S be the set of the all ordered (I + h)-tuples consist
of Il A’s and h B’s and define the following function :

l+h

fABLEY= Y XS

(S1,+,5148)€S i=1

Since DY) = (J, = I,) ® D, + I, ® D holds for 0 < i < n — j + 1, where
D(’) D(’)H_ = 0, we obtain

5,00 =

bi(J, — I,) ® DY) +2b1 ® DIV =
=0

{f(J I, Ism — k,k) ® Z bD(—m+k’}7
=0 t=m—k

where I, is the ¢ X ¢ identity matrix and J; is the ¢ X ¢ all-one matrix.

I £

Furthermore, since (4; @ --- ® An) - (B1® -+ Q@ Bp,) = A1B; ® - -+ ® A By, holds for
any matrices {A;} and {B;},

f(Jy = I, I;m — k, k) - (ée) = f(j—e,e;m —k,k)
=0

holds, where j is the g-dimensional all-one column vector. Thus by noting that ng)lqn_m =
(":'") (g — 1)140-m holds, we can rewrite Z(™ as follows :

Z(m)=i{f(3—ee m—k,k)® ”Zk b( -m )(q—l)i—"”'qun-m}.

k=0 i=m—k -—m+k
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On the other hand, let € = (1,0,---,0)’, then similarly, we obtain

0 = {(&)ore) {(&e) ore-)
= {(Be) ot} o) 20

®s

- {( ,) ® Ly ,,.} ' {”f(Jq = I, I;;1,m — 1) ® D§™ + (®Iq) ® (DF™ + pDﬁ"‘))} Z
=1

i=1

m
=1

(12)
It is obvious that
m(qg—2) if k=0,
fG—e,esm—kk) - f(j7—-¢€,&51,m-1)=S m ifk=1, (13)
0 otherwise

holds. Thus by using (13) and (1"""::11 )
side of (12) is

( f;ﬁl) + ( ) the first term of the right hand

(f4 €& Lm=1) @ Lu-m) 2™ = ¢" ™ {m(g = 2) - g(m) +m - g(m ~ 1)},

and similarly the second term is

{ (é é,) ® 1:’”""‘} 2 =" - g(m).

Therfore by (12) we have

{1+p(n —m)(qg—1)}-g(m) = —mp- g(m - 1),
which proves the theorem together with (11). 0
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