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1.Introduction.

We first define a new game played on graphs. Let G be a finite
graph without loops or multiple edges, and # a set of graphs. This
game is played by two players on the graph G. Each player in turn
removes a set of edges which induces a graph isomorphic to a graph
in #. The winner is a player who removes edges such that the
resulting graph contains no graph of #, that is, the player who
cannot move loses. We call this game an edge-removing game of
normal ¥ type. If we change the rule to one where the player who
removes the last edges loses, then the game is called an edge-removing
game of misere ¥ type. In this paper, we shall discuss only games
of normal type.

We call the complete bipartite graph K = K(1,n) the star of

1,n
order n+l, and denote by Pn the path of order n. If ¥ is the set
of all stars, then we call this game the edge-removing game of normal
star type, or simply ER-game of star type. If we play ER-game of
star type on a graph consisting of some stars, then this game is
nothing but the game of Nim. Similarly ER—game of star type played

on a graph consisting of some paths is equivalent to the game

called Kayles. So ER-game of star type is a generalization of these
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two games., In this paper we give some results on ER-game of star

type played on double stars, forks and trees.

2. ER-game of star type played on doubles stars
In order to solve ER-game of normal # type played on a graph
G, it suffices to determine the Sprague-Grundy number g(G) of G,
which is often called the Grundy number [1,2,3]. The Grundy number
is defined inductively as follows: If a graph G1 contains no graph
of #, then g(G1)=0. Let H1’H2’ ...,Hm be the set of all graphs
which can be obtained from a graph G by one move. Then
9(G) = min{{0,1,2,3,...} - {g(Hi) [1 =1 <m}}
By this definiton, we can easily show that g(G) < | E(G) | by induction

on |E(G)|. It is well-known that if a graph G consists of the

components Dl’ cer s Dr’ then
g(G) = the nim-sum of g(Dl), g(Dz), g(DT).
=g(D1) + g(Dz) + ...+ g(Dr).
Namely if
_ N\ ol .
1=0
then
i r
9(6)= Y y(¥) 2, y@)= L) (mod 2) and y(i)€{0,1}
120 k=1

Moreover, it is easy to see that the player going second can win
if and only if g(G) =0.
We denote by (...) an order set, that is, (xl,xz, ...,:z:k)=(y1,y2

y ves ,yk) means that x =Y, for all 1, 1=<i<k.

Theorem A. [1,2,3] The Grundy numbers of stars K1 n and paths

b

Pn of ER-game of star type are given by the following statements.
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(i) g(Klm) =n.
(ii) g(Pn + 12) = g(Pn) if n =72, and
( Q(Pk) | 72 < k < 84) = (7,4,1,2,8,1,4,7,2,1,8,4).

For convenience, we denote by KlO a graph with one wvertex

° 9
and no edge. The double star DS(n,m) is a graph obtained from two
stars Kl'n and Klm by joining their two centers by a new edge.

Then the order of DS(nm) is n+m + 2 and its size is n+m+ 1. We

now give a conjecture on the grundy numbers of double stars.

Conjecture B. Suppose that ER-game of star type is played
on a double star DS(n,m)). Then

(i) For every positive odd integer n, there exists an integer
M = M(n) for which g(DS(n;m))=n+m+1 if m =2 M.

(ii) For every positive even integer n, there exists integers
p=p(n) and M = M(n) for which g(DS(n,m+p))=g(DS(n,m)) + p if m = M.

We shall show that the conjecture is true if n = 2}C -1, n= 2k or
1 <n <10, Moreover, by making use of computer, we observe that
if n < 50 and m = 5000 then the conjecture holds and that M(n) < 800

except n =33 (M(n) =1953), n =34 (M(n) =2141) and n =48 (M(n) = 2157),
k+1

furthermore, we may give a conjecture on p(n) that p(n) =2 if
Zk =n < 2k+1 except n =24 (p(n) = 64).
Theorem 1. Suppose that ER-game of star type is played on

a double star. Then

(i) For every integers k=21 and m =2 0, we have



9(0s2* - 1,m)) = 2X + m.

(ii) For every integers k=1 and h =20, we have

k+1 k+1

g(0s@F R 2K p o)y = n2ft L 2R h s 41,

where —1§s§2k—1 and

k+ k k+1

o(Ds@X R 2K ok Ly =noF L 541,

where 0 £s < 2k - 2. In particular,

9(DS(28m + 28*1y) = o(Ds(2% m)) + 251

for all m = 0,
Proof We first prove Statement (i). For convenience, let
n='2k-—1. We shall prove that g(DS(n,m))=n+m +1 by induction on

m. Since a double star DS(n,0) is a star K g(DS(n,0))=n+1

1,n+1’
by Theorem A.

Suppose that 1 <= m £ n. For every integer j,0<j<n, let r=m
+j. Then 0 < » <n and r+m = j. We can remove a star from the double

star DS(n,m) such that the resulting graph is K

UK whose
T

1 i,m’
grundy number is rim = jJ. By the induction hypothesis, we have
that g(DS(n,r))=n+r+1 for every 0 = r < m. Therefore g(DS(n,m)) =
n +m + 1. Since g(DS(n,m)) < | E(DS(n,m))| =n +m + 1, we can conclude
that g(DS(nm))=n+m + 1.

Next assume that n < m. For every integer j5,0<j<n, let r=n
+j. Then 0 < r» <n and n+r =j. We can remove a star from the double

star DS(n,m) such that the resulting graph is K1 'nUK whose

1,
grundy number is n+r=j By the same ‘argument as above, we can
also show that g(DS(n,m))=n+m+1.

For convenience, we denote the star Kll by K(1,1). In order to

prove Statement (ii) we need to show that the following equation

holds.

85
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1 k+1

g(DS(h 28 1)y = 2Pt 4o

for every integers 0 < m < Zk and h 2 1. We prove the above equation

by induction on m. Let 0<j<2X and 0<t<h-1. If m < 25, then

k+l 1,m) such that

k+1

r=j+ < Zk, and we can remove stars from DS(h 2

k+1 ) UK(1,m) and K(1,t 251 4 2% 4 )

UK(1,m), whose grundy numbers are t2k+1+j and tzk"'1 +2k+j,

k+1

the resulting graphs are K(1,t2

respectively. If m=2k then we can remove stars from DS(h 2
- 1,m) such that the resulting graphs are K(1,t 2k+1 + j)UK(l,zk) and

k(1,2 2k
t2k+1

+ 2k + j)UK(l,Zk), whose grundy numbers are L‘Zk"'1 + Zk +j and

+ j, respectively. By the induction hypothesis, we have that

g(DS(h 2’°+1 -1,4)=h 2k+1 +y for every 0=y <m. Thus g{(DS(h 2k+1

k+l +m, and so g(DS(h 2k+1 -1,m)) =h 2k+1 + m.

We now prove Statement (ii) by induction on h2k+1 +s or hzk"'1

+ 2k +s. By Theorem A and the above statement, g(DS(Zk,O)) = Zk +1

k+ k+1 +

-1m)) 2h2

and ‘g(DS(Zk,h 2 1_ 1)=h2 Zk' Consider a double star DS(Zk,h

2k+1—1),0§h,0§s§2k—1. For every integers 0 <t <r-1, and O

§x<2k, we have that

o(K(1,25) g1t 28 4 2% 4 1)y =1 2K 4 4

and

k+1 k+1

g(K(l,Zk))-i-g(K(l,t 2 +x))=t2 + 28 4o,

Moreover,
(K1, )+g(B(1,h 25y = n ¥ L 2 for 0 < 2 < 2K,
and for every integer y,0=<y <s, it follows from the induction

hypothesis that

g(ps@Fn 2y =n2F L2k gy 41,

k+ k+1

Therefore g(DS(2Xh 25" 4 s)) 2 h 28+ 284541, and thus g(D(2Fn 2
+s))=h zk + zk +s+1.



We next consider a double star DS(Zk,h 2k+1 + Zk +s),0<s < Zk - 2.

By the same argument as above, we can easily show that

(9(K(1,2%) 1981,y 10 sy s R 2P 428 4 gy

kL syutn 28 w2k, L h o 1028 Sy,

Thus g(DS(2Xn 2%t 4 2%+ s)) 2 n 2" 4541, It is obvious that for

every 0<t <2, Ds(th2®* 425 4s) contains K(1,HUK(LR 25 4 1),

={0,1,2,... ,h 2

r=t+(s+1), whose grundy number is h 2k+1 +s+1. Therefore

g(DS(t,h 2k+1 + Zk +s8))#h 2k+1 +s +1. Consequently we can conclude

that o(DS(2Fn 28t 4 2F 4 o)y =n2F* 4 s 41,

Theorem 2. The Grundy numbers of double stars DS(nm), n <
10, of ER-game of star type are given by the following statemtents.
(i) If n=0, n=1, n=3, n=5 and m=215 n =7 or n=9 and
m = 95 then
g(DS(nm))=n+m+1.
(ii) Let p=4,8 or 16 according as n=2, n=4,6, or n =8, 10,
Suppose that m 215 if n =6, and m = 110 if n =10. Then

9( DS(n,m + p) ) = g( DS(n,m) ) + p.

Note that Theorem 2 holds forn=0,1,2,3,4,7,8 by Theorem A and
Theorem 1. We shall prove the following proposition instead of

remaining Statement (ii) of of Theorem 2.

Proposition 3. Consider g(DS(n,m)) with n=2,4,6,8 or 10. Let
t and s be integers such that 0<{, and 0 £s <4, 0<s<8, or 0L

s < 16 according as n=2, n=4,6 or n=8,10. Then the following

statements hold.

87
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(i) g( DS(2,4t+s) ) = 4¢+3, 4t+4, 4t+1, 4i+6 if s=0, 1, 2, 3,
respectively.

(ii) g( DS(4,8t+s) ) = 8t+5, 8i+6, 8t+7, 8t+8, 8i{+1, 8t+2, 8t+3, 8{+12 if
s=0,1, 2, ..., 7, respectively.

(iii) g9( DS(6,15+8t+s) ) = 8t+22, 81+23, 8{+24, 8t+21, 8t+26, 8{+25, 8t+28,
8t+27 if s=0,1, 2, ..., 7, respectively.

(iv) g( DS(8,16t+s) ) = 8t+s+9, 8t+s-7 or 8t+24 if 0<s<7, 8=s<l14 or
s =15, respectively.

(v) g(DS(10,110+8t+s) ) = 8t+117, 81+122, 81+123, 8t+124, 8{+121, 8¢+1286,
8t+127, 8t+128, 8{+125, 8t+130, 8i+119, 8{+132, 8t+129 if s=0, 1, ..., 15,

respectivley.

2. Grundy Numbers of Forks and trees
A fork F(n,m) is defined to be a graph which is obtained from a
star Kl,n and a path Pm by joining the center of the star to one
of the end vertices of the path by a new edge. Then the order of
F(nm) is n+m+1 and its size is n+m. Note that F(Om)=P

m+1’

F(1,m) = Pm+2’ 1,n

numbers are given by Theorem A.

F(n,0)=K and F(n,1)=K and these Grundy

1,n+1

Theorem 2. The Grundy numbers of forks F(n,m) with n £10
or m=10 of ER-game of star type are given by the following
statements.

(i) If n=2 and m=152, n=3 and m =141, n=4 and m = 142,
n=5 and m 2286, n=6 and m 2286, n=7 and m 2215, n=8 and m
=112, n=9 and m =2 141, or n =10 and m =2 190 then

g( F(n,m+12) ) = g( F(n,m) ).

(ii) If m=2, m=3 and n=22, m=4 and n25, m=6 and n = 15,



or m=10 and n = 30 then
g( F(n,m) ) =n + m,
(iii) Let p=4, 16 or 8 according as m=5, m=7,8 or m=09,
Suppose that n =8, 9, 10or 15 if m=56, 7, 8, or 9, respectively.

Then

9( F(n+p,m) ) = g( F(n,m) ) + p.

Conjecture C. (i) For every positive integer n, there exists an
integer M = M(n) for which g(F(nm+12)) = g(F(n,m)) if m = M.
(ii) For every positive even integer m, there exists integers

p=p(m) and M = M(m) for which g(F(n+p,m))=g(F(n,m)) +p if n = M.

We finally give some remarks on ER-game of star type on trees
and propose a related problem. The Grundy number of every tree
with order less than 10 is non-zero, and there exist 16 trees of
order 10 and seven trees of order 11 whose Grundy numbers are
equal to 0. These trees are given below. Let T’i denote a tree of
order 10 or 11 whose Grundy number is 0, and let V(T'i,) ={1, 2, ...,9, a}
or {1,2,...,9,a,b}. If the order of Ti is 110, then T'i contains a set
of edge F = {12, 23, 34, 45, 56}, and so we dnote only Fi=E(T) - F.

F1 = {67,78,89,2a}, F2 = {67,78,89,3a}, F3 = {67,78,79,4a}, F4 = {67,58,89,2a},
F5 = {67,78,79,6a}, F6 = {67,78,69,4a}, F7 = {67,58,89,3a}, F8 = {37,78,89,1a},
F9 = {37,78,89,2a}, F10 = {67,48,29,3a}, F11 = {37,78,29,7a}, F12 = {47,78,29,3a},

F13 = {47,78,79,6a}, F, =1{67,78,79,7a}, F15 = {67,68,69,4a} and F

14 16

= {47,78,29,2a}.
If the order of T'i, is 11, then the edge set Ei of Ti are given as

follows:
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E1 = {12,23,34,45,56,67,58,89,4a,ab}, E2 = {12,23,34,45,56,37,78,29,4a,4b},

E3 = {12,23,34,45,56,67,78,59,4a,4b}, E4 = {12,23,34,45,46,67,48,89,3a,3b},
E5 = {12,23,34,45,56,57,58,59,4a,4b}, EB = {12,13,14,15,16,67,68,89,7a,7b} and
E7 = {12,23,35,566,34,37,78,29,2a,2b}.

Problem Characterize trees whose Grundy numbers are equal
to O.

ER-game of path type (i.e. ¥ is the set of all paths ) will be
deal with other paper. Is it possible to solve ER-games of the
following # type on certain class of graphs: #* is the set of all
cycles, # is the set of all trees, ¥ is the set of all matchings,

# is the set of all forests, and so on.
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