ON CERTAIN CLASSES OF MEROMORPHICALLY P-VALENT STARLIKE FUNCTIONS

Nak Eun Cho (釜山水産大学)

Shigeyoshi Owa (近畿大·理工 尾和重義)

Abstract. Let $M_{n+p-1}(\alpha)$ denote the class of functions of the form

$$f(z) = \frac{1}{z^p} + \frac{a_0}{z^{p-1}} + \dots + a_{k+p-1}z^k + \dots (p \in N = \{1, 2, 3, \dots\})$$

that are regular in the annulus $D = \{z : 0 < |z| < 1\}$ and satisfy

$$\operatorname{Re}\left\{\frac{z(D^{n+p-1}f(z))'}{D^{n+p-1}f(z)}\right\} < -\alpha$$

for $0 \le \alpha < p$ and |z| < 1, where

$$D^{n+p-1}f(z) = \frac{1}{z^p} \left(\frac{z^{n+2p-1}f(z)}{(n+p-1)!} \right)^{(n+p-1)}.$$

We prove that $M_{n+p}(\alpha) \subset M_{n+p-1}(\alpha)$, where n is any integer greater than -p. We also consider some integrals of functions in the class $M_{n+p-1}(\alpha)$.

1. Introduction

Let \sum_{p} denote the class of functions of the form

$$f(z) = \frac{1}{z^p} + \frac{a_0}{z^{p-1}} + \dots + a_{k+p-1}z^k + \dots,$$
(1.1)

^{* 1990} Mathematics Subject Classification: 30C45.

which are regular in the annulus $D = \{z : 0 < |z| < 1\}$, where p is a positive integer. The Hadamard product or convolution of two functions f and g in \sum_{p} will be denoted by f * g. Let

$$D^{n+p-1}f(z) = \frac{1}{z^p(1-z)^{n+p}} * f(z), \ (z \in D)$$
 (1.2)

or, equivalently,

$$D^{n+p-1}f(z) = \frac{1}{z^p} \left(\frac{z^{n+2p-1}f(z)}{(n+p-1)!} \right)^{(n+p-1)}$$

$$= \frac{1}{z^p} + (n+p)a_0 \frac{1}{z^{p-1}} + \frac{(n+p+1)(n+p)}{2!} a_1 \frac{1}{z^{p-2}} + \dots$$

$$\dots + \frac{(n+k+2p-1)\dots(n+p)}{(k+p)!} a_{k+p-1} z^k + \dots (z \in D),$$

where n is any integer greater than -p.

In this paper, among other things, we shall show that a function f(z) in \sum_{p} , which satisfies one of the conditions

$$\operatorname{Re}\left\{\frac{z(D^{n+p-1}f(z))'}{D^{n+p-1}f(z)}\right\} < -\alpha \ (z \in U = \{z : |z| < 1\}),\tag{1.3}$$

where n is any integer greater than -p, is meromorphically p-valent starlike in U. More precisely, it is proved that, for the classes $M_{n+p-1}(\alpha)$ of functions in \sum_{p} satisfying (1.3),

$$M_{n+p}(\alpha) \subset M_{n+p-1}(\alpha) \ (0 \le \alpha < p).$$
 (1.4)

Since $M_0(\alpha)$ equals $\sum^*(\alpha)$ (the class of meromorphically *p*-valent starlike functions of order α in U [4]), the starlikeness of members of $M_{n+p-1}(\alpha)$ is a consequence of (1.4).

2. Properties of the class $M_{n+p-1}(\alpha)$

In proving our main results, we shall need the following lemma due to Jack [3].

Lemma. Let w be non-constant regular in $U = \{z : |z| < 1\}$, w(0) = 0. If |w| attains its maximum value on the circle |z| = r < 1 at z_0 , we have $z_0w'(z_0) = kw(z_0)$, where k is a real number, $k \ge 1$.

Theorem 1. $M_{n+p}(\alpha) \subset M_{n+p-1}(\alpha)$ for each integer n greater than -p.

Proof. Let $f(z) \in M_{n+p}(\alpha)$. Then

$$\operatorname{Re}\left\{\frac{z(D^{n+p}f(z))'}{D^{n+p}f(z)}\right\} < -\alpha. \tag{2.1}$$

We have to show that (2.1) implies the inequality

$$\operatorname{Re}\left\{\frac{z(D^{n+p-1}f(z))'}{D^{n+p-1}f(z)}\right\} < -\alpha. \tag{2.2}$$

Define w(z) in U by

$$\frac{z(D^{n+p-1}f(z))'}{D^{n+p-1}f(z)} = -\frac{p + (2\alpha - p)w(z)}{1 + w(z)}.$$
 (2.3)

Clearly, w(z) is regular and w(0) = 0. Using the identity

$$z(D^{n+p-1}f(z))' = (n+p)D^{n+p}f(z) - (n+2p)D^{n+p-1}f(z),$$
 (2.4)

the equation (2.3) may be written as

$$\frac{D^{n+p}f(z)}{D^{n+p-1}f(z)} = \frac{n+p+(n+3p-2\alpha)w(z)}{(n+p)(1+w(z))}.$$
 (2.5)

Differentiating (2.5) logarithmically, we obtain

$$\frac{z(D^{n+p}f(z))'}{D^{n+p}f(z)} = -\frac{p + (2\alpha - p)w(z)}{1 + w(z)} + \frac{2(p - \alpha)zw'(z)}{(1 + w(z))(n + p + (n + 3p - 2\alpha)w(z))}.$$
(2.6)

We claim that |w(z)| < 1 in U. For otherwise (by Jack's lemma) there exists z_0 in U such that

$$z_0 w'(z_0) = k w(z_0), (2.7)$$

where $|w(z_0)| = 1$ and $k \ge 1$. The equation (2.6) in conjuction with (2.7) yields

$$\frac{z_0(D^{n+p}f(z_0))'}{D^{n+p}f(z_0)} = -\frac{p + (2\alpha - p)w(z_0)}{1 + w(z_0)} + \frac{2(p - \alpha)kw(z_0)}{(1 + w(z_0))(n + p + (n + 3p - 2\alpha)w(z_0))}.$$
(2.8)

Thus

$$\operatorname{Re}\left\{\frac{z_0(D^{n+p}f(z_0))'}{D^{n+p}f(z_0)}\right\} \ge -\alpha + \frac{p-\alpha}{2(n+2p-\alpha)} \ge -\alpha,\tag{2.9}$$

which contradicts (2.1). Hence |w(z)| < 1 in U and from (2.3) it follows that $f(z) \in M_{n+p-1}(\alpha)$.

Theorem 2. Let $f(z) \in \sum_{p}$ satisfy the condition

$$\operatorname{Re}\left\{\frac{z(D^{n+p-1}f(z))'}{D^{n+p-1}f(z)}\right\} < -\alpha + \frac{p-\alpha}{2(c+p-\alpha)} \ (z \in U). \tag{2.10}$$

for a given integer n > -p and c > 0. Then

$$F_c(z) = \frac{c}{z^{c+p}} \int_0^z t^{c+p-1} f(t) dt$$
 (2.11)

belongs to $M_{n+p-1}(\alpha)$.

Proof. Let $f(z) \in M_{n+p-1}(\alpha)$. Define w(z) in U by

$$\frac{z(D^{n+p-1}F_c(z))'}{D^{n+p-1}F_c(z)} = -\frac{p + (2\alpha - p)w(z)}{1 + w(z)}.$$
 (2.12)

Clearly, w(z) is regular and w(0) = 0. Using the identity

$$z(D^{n+p-1}F_c(z))' = cD^{n+p-1}f(z) - (c+p)D^{n+p-1}F_c(z),$$
 (2.13)

the equation (2.12) may be written as

$$\frac{z(D^{n+p-1}f(z))'}{D^{n+p-1}f(z)} = -\frac{p + (2\alpha - p)w(z)}{1 + w(z)} + \frac{2(p-\alpha)zw'(z)}{(1 + w(z))(c + (c + 2p - 2\alpha)w(z))}.$$
(2.14)

We claim that |w(z)| < 1 in U. For otherwise (by Jack's lemma) there exists z_0 in U such that

$$z_0 w'(z) = k w(z_0), (2.15)$$

where $|w(z_0)| = 1$ and $k \ge 1$. Combining (2.14) and (2.15), we obtain

$$\frac{z_0(D^{n+p-1}f(z_0))'}{D^{n+p-1}f(z_0)} \ge -\alpha + \frac{p-\alpha}{2(c+p-\alpha)} \ge -\alpha, \tag{2.16}$$

which contradicts (2.10). Hence |w(z)| < 1 in U and from (2.12) it follows that $F(z) \in M_{n+p-1}(\alpha)$.

Similarly, from Theorem 2, we have

Corollary. Let $f(z) \in M_{n+p-1}(\alpha)$. Then $F_c(z)$ defined by (2.11) belongs to the class $M_{n+p-1}(\alpha)$.

Remarks. (1). A result of Bajpai[1] turns out to be a particular case of the above Theorem 2 when $p = 1, n = 0, \alpha = 0$ and c = 1.

(2). For p = 1, n = 0 and $\alpha = 0$, the above Theorem 2 extends a result of Goel and Sohi[2].

Theorem 3. Let $f(z) \in M_{n+p-1}(\alpha)$. Then $F_{n+p}(z)$ defined by (2.11) with c = n + p belongs to the class $M_{n+p}(\alpha)$.

Proof. For the function $F_{n+p}(z)$ defined by (2.11) with c = n + p, we have

$$cD^{n+p-1}f(z) = (n+p)D^{n+p}F_{n+p}(z) - (n+p-c)D^{n+p-1}F_{n+p}(z)$$
 (2.17)

Taking c = n + p in the above relation (2.17), we obtain

$$D^{n+p-1}f(z) = D^{n+p}F_{n+p}(z). (2.18)$$

This implies that F_{n+p} belongs to the class $M_{n+p-1}(\alpha)$.

Theorem 4 Let $F_c(z) \in M_{n+p-1}(\alpha)$ and let f(z) be defined as (2.11). Then $f(z) \in M_{n+p-1}(\alpha)$ in $|z| < R_c$, where

$$R_c = \frac{-(p-\alpha+1) + \sqrt{(p-\alpha+1)^2 + c(c+2(p-\alpha))}}{c + 2(p-\alpha)}.$$
 (2.19)

Proof. Since $F_c(z) \in M_{n+p-1}(\alpha)$, we can write

$$\frac{z(D^{n+p-1}F_c(z))'}{D^{n+p-1}F_c(z)} = -(\alpha + (p-\alpha)u(z)), \tag{2.20}$$

where $u(z) \in P$, the class of functions with positive real part in U and normalized by u(0) = 1. Using the equation (2.13) and differentiating (2.20), we obtain

$$-\frac{\frac{z(D^{n+p-1}f(z))'}{D^{n+p-1}f(z)} + \alpha}{p-\alpha} = u(z) + \frac{zu'(z)}{(c+p) - (\alpha + (p-\alpha)u(z))}.$$
 (2.21)

Using the well known estimates, $\frac{|zu'(z)|}{Reu(z)} \leq \frac{2r}{1-r^2}(|z|=r)$ and $Reu(z) \leq \frac{1+r}{1-r}(|z|=r)$, the equation (2.21) yields

$$\operatorname{Re}\left\{-\frac{\frac{z(D^{n+p-1}f(z))'}{D^{n+p-1}f(z)} + \alpha}{p - \alpha}\right\} \ge \operatorname{Re}u(z)\left\{1 - \frac{2r}{(1 - r^2)(c + p - (\alpha + (p - \alpha)\frac{1+r}{1-r})}\right\}.$$
(2.22)

Now the right hand side of (2.22) is positive provided $r < R_c$. Hence $f(z) \in M_{n+p-1}(\alpha)$ for $|z| < R_c$.

References

- 1. S.K. Bajpai, A note on a class of meromorphic univalent functions, Rev. Roumaine Math. Pures Appl. 22(1977), 295-297.
- 2. R.M. Goel and N.S. Sohi, On a class of meromorphic functions, *Glas. Mat.* 17(1981), 19-28.
- 3. I.S. Jack, Functions starlike and convex of order α , J. London Math. Soc. (2) 3(1971), 469-474.
- 4. V. Kumar and S.C. Shukla, Certain integrals for classes of p-valent meromorphic functions, Bull. Austral. Math. Soc. 25(1982), 85-97.
- 5. St. Ruscheweyh, New criteria for univalent functions, *Proc. Amer. Math. Soc.* 49(1975), 109-115.

Nak Eun Cho Department of Applied Mathematics College of Natural Sciences National Fisheries University of Pusan Pusan 608-737 Korea

Shigeyoshi Owa Department of Mathematics Kinki University Higashi-Osaka, Osaka 577 Japan