A generalization class of certain subclasses of P-valenty analytic functions with negative coefficients

Author(s)
YAGUCHI, Teruo; KWON, Ohsang; CHO, Nak Eun; YAMAKAWA, Rikuo

Citation
数理解析研究所講究録 (1993), 821: 101-111

Issue Date
1993-02

URL
http://hdl.handle.net/2433/83190

Type
Departmental Bulletin Paper

Textversion
publisher

Kyoto University
A generalization class of certain subclasses of p-valently analytic functions with negative coefficients*

Teruo YAGUCHI, Ohsang KWON, Nak Eun CHO and Rikuo YAMAKAWA

Abstract
Recently we [5] have discussed a new generalization class $A(n, \alpha, \beta)$ of certain subclasses of analytic functions with negative coefficients in the unit disk and have proved some properties of functions belonging to the class $A(n, \alpha, \beta)$. In the present paper we introduce a new generalization class $A_p(n, \alpha, \beta)$ of certain subclasses of p-valently analytic functions with negative coefficients in the unit disk and discuss some properties of functions belonging to the class $A_p(n, \alpha, \beta)$.

1. Introduction
Let p be a positive integer, and let $A_p(n)$ denote the class of functions of the form

\[(1.1) \quad f(z) = z^p - \sum_{h=n+p}^{\infty} a_h z^h \quad (a_h \geq 0, \ n \in N = \{1, 2, 3, \cdots \}),\]

which are analytic in the unit disk $U = \{z : |z| < 1\}$. A function $f(z)$ in the class $A_p(n)$ is said to be a member of the class $R_p(n, \alpha)$ if it satisfies

\[(1.2) \quad \text{Re} \left\{ \frac{pf(z)}{z^p} \right\} > \alpha \quad (z \in U)\]

*1990 Mathematics Subject Classification. Primary 30C45.
for some $\alpha(0 \leq \alpha < p)$. Further, a function $f(z)$ in the class $A_p(n)$ is said to be in the class $P_p(n, \alpha)$ if it satisfies

$$\text{Re} \left\{ \frac{f'(z)}{z^{p-1}} \right\} > \alpha \quad (z \in U)$$

for some $\alpha(0 \leq \alpha < p)$.

By generalization of some results due to Sarangi and Uralegaddi [2], we see that

Lemma A. A function $f(z) \in A_p(n)$ is in the class $R_p(n, \alpha)$ if and only if

$$\sum_{h=n+p}^{\infty} \frac{p}{p-\alpha} a_h \leq 1.$$

Lemma B. A function $f(z) \in A_p(n)$ is in the class $P_p(n, \alpha)$ if and only if

$$\sum_{h=n+p}^{\infty} \frac{k}{p-\alpha} a_h \leq 1.$$

Now, we define

Definition. Suppose that $f(z) \in A_p(n), 0 \leq \alpha < p$ and $\beta \geq 0$. Then the function $f(z)$ is said to be a member of the class $A_p(n, \alpha, \beta)$ if it satisfies

$$\text{Re} \left\{ (1-\beta)\frac{pf(z)}{z^p} + \beta \frac{f'(z)}{z^{p-1}} \right\} > \alpha \quad (z \in U).$$

We note that $A_p(n, \alpha, 0) = R_p(n, \alpha)$ and $A_p(n, \alpha, 1) = P_p(n, \alpha)$. We have
Lemma 1. Suppose that \(f(z) \in A_p(n), 0 \leq \alpha < p \) and \(\beta \geq 0 \). Then the function \(f(z) \) is in the class \(A_p(n, \alpha, \beta) \) if and only if

\[
\sum_{h=n+p}^{\infty} \left\{ \frac{(1-\beta)p + \beta k}{p-\alpha} \right\} a_h \leq 1.
\]

Proof: Let \(f(z) \in A_p(n, \alpha, \beta) \). Then we have, by (1.6),

\[
\text{Re} \left\{ (1-\beta)\frac{pf(z)}{z^p} + \beta \frac{f'(z)}{z^{p-1}} \right\} = \text{Re} \left\{ p - \sum_{h=n+p}^{\infty} \{(1-\beta)p + \beta k\} a_h z^{h-p} \right\} > \alpha \quad (z \in U).
\]

Letting \(z \to 1 \) through real values, we obtain (1.7). Conversely, let \(f(z) \in A_p(n) \) satisfy inequality (1.7). Then we have

\[
\left| \left\{ (1-\beta)\frac{pf(z)}{z^p} + \beta \frac{f'(z)}{z^{p-1}} \right\} - p \right| = \left| \sum_{h=n+p}^{\infty} \{(1-\beta)p + \beta k\} a_h z^{h-p} \right| \leq \sum_{h=n+p}^{\infty} \{(1-\beta)p + \beta k\} a_h |z|^{h-p} < p - \alpha \quad (z \in U).
\]

This proves that inequality (1.6) holds true. \(\blacksquare \)

The class \(A_1(n, \alpha, \beta) \) is a special case \(B_k = \frac{1+(k-1)\beta}{1-\alpha} \) of the class \(A(n, B_k) \) introduced by Sekine [3].

2. Distortion Theorem
Theorem 1. If \(f(z) \in A_p(n, \alpha, \beta) \) for \(0 \leq \alpha < p \) and \(\beta \geq 0 \), then

\[
|z|^p - \frac{p - \alpha}{p + n\beta}|z|^{n+p} \leq |f(z)| \leq |z|^p + \frac{p - \alpha}{p + n\beta}|z|^{n+p} \quad (z \in U)
\]

for \(\beta \geq 0 \), and

\[
|f'(z)| \leq p|z|^{p-1} + \frac{(p - \alpha)(n + p)}{p + n\beta}|z|^{n+p-1} \quad (z \in U)
\]

\[
(2.2)
\]

\[
|f'(z)| \geq p|z|^{p-1} - \frac{(p - \alpha)(n + p)}{p + n\beta}|z|^{n+p-1} \quad (z \in U)
\]

for \(\beta \geq 1 \). The equalities in (2.1) and (2.2) are attained for the function

\[
f(z) = z^p - \frac{p - \alpha}{p + n\beta}z^{n+p}.
\]

Proof: Note that

\[
(2.4)
\]

\[
\sum_{k=n+p}^{\infty} a_k \leq \frac{p - \alpha}{p + n\beta} \quad (\beta \geq 0)
\]

and

\[
(2.5)
\]

\[
\sum_{k=n+p}^{\infty} k a_k \leq \sum_{k=n+p}^{\infty} \{(1 - \beta)p + \beta k\} a_k \leq p - \alpha \quad (\beta \geq 1)
\]

for \(f(z) \in A_p(n, \alpha, \beta) \). Therefore, we have (2.1) and (2.2). \(\blacksquare \)

Remark. Putting \(p = 1 \) in Theorem 1, we have the corresponding result due to Yaguchi, Sekine, Saitoh, Owa, Nunokawa and Fukui [5].

3. Inclusion Relations

Theorem 2. If

\[
0 \leq \alpha_1 < p, \quad 0 \leq \alpha_2 < p,
\]

\[
0 \leq \beta_1, \quad 0 \leq \beta_2, \quad p(\beta_1 - \beta_2) < \alpha_2\beta_1 - \alpha_1\beta_2,
\]

\[
p\{\alpha_1 - \alpha_2 + (\beta_1 - \beta_2)n\} \leq n(\alpha_2\beta_1 - \alpha_1\beta_2),
\]

\[
(3.1)
\]
then we have

\[(3.2) \quad A_p(n, \alpha_2, \beta_2) \subset \neq A_p(n, \alpha_1, \beta_1).\]

Proof: Suppose \(f(z) \in A_p(n, \alpha_2, \beta_2) \). Since by Lemma 1

\[(3.3) \quad \sum_{h=n+p}^{\infty} \frac{(1-\beta_2)p+k\beta_2}{p-\alpha_2} a_h \leq 1,\]

we have only to prove the inequality

\[(3.4) \quad \frac{(1-\beta_1)p+k\beta_1}{p-\alpha_1} \leq \frac{(1-\beta_2)p+k\beta_2}{p-\alpha_2} \quad (k \geq n+p),\]

which is equivalent to the inequality

\[(3.5) \quad k \geq \frac{p\{((\beta_2-\beta_1)p+\alpha_1-\alpha_2+\alpha_2\beta_1-\alpha_1\beta_2)\}}{(\beta_2-\beta_1)p+\alpha_2\beta_1-\alpha_1\beta_2} \quad (k \geq n+p).\]

But conditions \((3.1)\) lead to the inequality

\[(3.6) \quad \frac{p\{((\beta_2-\beta_1)p+\alpha_1-\alpha_2+\alpha_2\beta_1-\alpha_1\beta_2)\}}{(\beta_2-\beta_1)p+\alpha_2\beta_1-\alpha_1\beta_2} \leq n+p,\]

which proves \((3.5)\). The function \(f_0(z) \) defined by

\[(3.7) \quad f_0(z) = z^p - \frac{p-\alpha_1}{p+(n+1)\beta_1} z^{p+n+1} \]

belongs to the class \(A_p(n, \alpha_1, \beta_1) - A_p(n, \alpha_2, \beta_2) \), which proves

\[(3.8) \quad A_p(n, \alpha_1, \beta_1) \neq A_p(n, \alpha_2, \beta_2). \]
Corollary 1. If

\[0 \leq \alpha_1 \leq \alpha_2 < p, \quad 0 \leq \beta_1 \leq \beta_2, \quad (\beta_2 - \beta_1) + (\alpha_2 - \alpha_1) > 0, \]

then we have

\[A_p(n, \alpha_2, \beta_2) \subset A_p(n, \alpha_1, \beta_1) \quad (3.10) \]

Proof: By Theorem 2, we have

\[A_p(n, \alpha_2, \beta_1) \subset A_p(n, \alpha_1, \beta_1) \quad \text{(0} \leq \alpha_1 < \alpha_2 < p), \]
\[A_p(n, \alpha_2, \beta_2) \subset A_p(n, \alpha_2, \beta_1) \quad \text{(0} \leq \beta_1 < \beta_2), \quad (3.11) \]

which prove Corollary 1. \[\square \]

Corollary 2. If \(0 < \beta_1 < 1 < \beta_2 \), then

\[A_p(n, \alpha, \beta_2) \subset P_p(n, \alpha) \subset A_p(n, \alpha, \beta_1) \subsetneqq R_p(n, \alpha). \quad (3.12) \]

4. Starlikeness

A function \(f(z) \) in the class \(A_p(n) \) is said to be \(p \)-valently starlike of order \(\alpha \) if it satisfies

\[\Re \frac{zf'(z)}{f(z)} > \alpha \quad (z \in U) \quad (4.1) \]

for some \(\alpha (0 \leq \alpha < p) \). We need the following lemma which is a generalization of a result due to Chatterjea [1] (also Srivastava, Owa and Chatterjea [4]).

Lemma C. A function \(f(z) \in A_p(n) \) is \(p \)-valently starlike of order \(\gamma \) if and only if

\[\sum_{h=n+p}^{\infty} \frac{k - \gamma}{p - \gamma} a_k \leq 1 \quad (4.2) \]

for some \(\gamma (0 \leq \gamma < p) \).

Lemma C is proved by using the similar method as in Chatterjea [1]. Using Lemma C, we have
THEOREM 3. If \(f(z) \in A_{p}(n, \alpha, \beta) \) for \(0 \leq \alpha < p \) and \(\beta \geq 1 \), then \(f(z) \) is starlike of order \((1 - \frac{1}{\beta})p \).

PROOF: It follows from \(f(z) \in A_{p}(n, \alpha, \beta) \) that

\[
\sum_{h=n+p}^{\infty} \{k - (1 - \frac{1}{\beta})p\}a_{h} \leq \frac{p - \alpha}{\beta} \leq p - (1 - \frac{1}{\beta})p.
\]

Therefore, by Lemma C, we have the assertion of Theorem 3. ■

5. Quasi-Hadamard product

For functions \(f_{1}(z) \) and \(f_{2}(z) \) defined by

\[
f_{j}(z) = z^{p} - \sum_{h=n+p}^{\infty} a_{j,h}z^{h} \quad (a_{j,h} \geq 0, \ n \in N, \ j = 1, 2)
\]
in the class \(A_{p}(n) \), we denote by \(f_{1} * f_{2}(z) \) the quasi-Hadamard product of functions \(f_{1}(z) \) and \(f_{2}(z) \), that is,

\[
f_{1} * f_{2}(z) = z^{p} - \sum_{h=n+p}^{\infty} a_{1,h}a_{2,h}z^{h}.
\]

THEOREM 4. If \(f_{j}(z) \in A_{p}(n, \alpha_{j}, \beta) \) for \(0 \leq \alpha_{j} < p, \beta \geq 0 \) and \(j = 1, 2 \), then \(f_{1} * f_{2}(z) \in A_{p}(n, \alpha, \beta) \), where

\[
\alpha = p - \frac{(p - \alpha_{1})(p - \alpha_{2})}{p + \beta n}.
\]
The result is sharp for functions \(f_{1}(z) \) and \(f_{2}(z) \) defined by

\[
f_{j}(z) = z^{p} - \frac{p - \alpha_{j}}{p + \beta n}z^{n+p} \quad (j = 1, 2).
\]

PROOF: We have to find the largest \(\alpha \) such that

\[
\sum_{h=n+p}^{\infty} \frac{(1 - \beta)p + \beta k}{p - \alpha}a_{1,h}a_{2,h} \leq 1.
\]
For functions $f_j(z) \in A_p(n, \alpha_j, \beta)$, we have

$$
\sum_{h=n+p}^{\infty} \left\{ \frac{(1-\beta)p+\beta k}{p-\alpha} \right\} a_{j,h} \leq 1 \quad (j = 1, 2).
$$

By the Cauchy-Schwarz inequality, inequality (5.6) lead to the inequality

$$
\sum_{h=n+p}^{\infty} \frac{(1-\beta)p+\beta k}{\sqrt{(p-\alpha_1)(p-\alpha_2)}} \sqrt{a_{1,h}a_{2,h}} \leq 1.
$$

Therefore, it is sufficient to prove that

$$
\frac{(1-\beta)p+\beta k}{p-\alpha} a_{1,h}a_{2,h} \leq \frac{(1-\beta)p+\beta k}{\sqrt{(p-\alpha_1)(p-\alpha_2)}} \sqrt{a_{1,h}a_{2,h}} \quad (k \geq n+p),
$$

that is, that

$$
\sqrt{a_{1,h}a_{2,h}} \leq \frac{p-\alpha}{\sqrt{(p-\alpha_1)(p-\alpha_2)}} \quad (k \geq n+p).
$$

From (5.7), we need to show that

$$
\frac{\sqrt{(p-\alpha_1)(p-\alpha_2)}}{(1-\beta)p+\beta k} \leq \frac{p-\alpha}{\sqrt{(p-\alpha_1)(p-\alpha_2)}} \quad (k \geq n+p)
$$
or

$$
\alpha \leq p - \frac{(p-\alpha_1)(p-\alpha_2)}{(1-\beta)p+\beta k} \quad (k \geq n+p).
$$

Noting that the function

$$
\phi(k) = p - \frac{(p-\alpha_1)(p-\alpha_2)}{(1-\beta)p+\beta k} \quad (k \geq n+p)
$$
is increasing on k, we have

$$
\alpha \leq \phi(n+p) = p - \frac{(p-\alpha_1)(p-\alpha_2)}{p+\beta n}.
$$

Finally, we derive
THEOREM 5. Let \(f_j(z)(j = 1, 2) \) define by (5.1). If \(f_j(z) \in A_p(n, \alpha_j, \beta)(j = 1, 2) \), then the function

\[
f(z) = z^p - \sum_{k=n+p}^{\infty} \left\{ (a_{1,k})^2 + (a_{2,k})^2 \right\} z^k
\]
is in the class \(A_p(n, \alpha, \beta) \), where

\[
\alpha = p - \frac{2(p - \alpha_0)^2}{p + \beta n} \quad (\alpha_0 = \min\{\alpha_1, \alpha_2\}).
\]
The result is sharp for the function \(f(z) \) defined by

\[
f_j(z) = z^p - \frac{p - \alpha_0}{p + \beta n} z^{n+p} \quad (j = 1, 2),
\]
when \(\alpha_0 = \alpha_1 = \alpha_2 \).

PROOF: Since

\[
\sum_{k=n+p}^{\infty} \left\{ \frac{(1-\beta)p + \beta k}{p - \alpha_j} a_{j,k} \right\}^2 \leq \sum_{k=n+p}^{\infty} \left\{ \frac{(1-\beta)p + \beta k}{p - \alpha_0} a_{j,k} \right\}^2 \leq 1 \quad (j = 1, 2),
\]
we obtain that

\[
\sum_{k=n+p}^{\infty} \left\{ \frac{(1-\beta)p + \beta k}{p - \alpha_0} \right\}^2 \left\{ (a_{1,k})^2 + (a_{2,k})^2 \right\} \leq \sum_{k=n+p}^{\infty} \left\{ \frac{(1-\beta)p + \beta k}{p - \alpha_1} a_{1,k} \right\}^2 + \sum_{k=n+p}^{\infty} \left\{ \frac{(1-\beta)p + \beta k}{p - \alpha_2} a_{2,k} \right\}^2 \leq 2,
\]
where α_0 is defined by (5.15). This implies that we only find the largest α such that

\[(5.19) \quad \frac{(1 - \beta)p + \beta k}{p - \alpha} \leq \frac{1}{2} \left\{ \frac{(1 - \beta)p + \beta k}{p - \alpha_0} \right\}^2 \quad (k \geq n + p)\]

or

\[(5.20) \quad \alpha \leq p - \frac{2(p - \alpha_0)^2}{(1 - \beta)p + \beta k} \quad (k \geq n + p).\]

Since the function

\[(5.21) \quad \phi(k) = p - \frac{2(p - \alpha_0)^2}{(1 - \beta)p + \beta k} \quad (k \geq n + p).\]

is increasing on k, we have

\[(5.22) \quad \alpha \leq \phi(n + p) = p - \frac{2(p - \alpha_0)^2}{p + \beta n}.\]

References

Teruo YAGUCHI
Department of Mathematics
College of Humanities and Sciences
Nihon University
Sakurajousui, Setagaya, Tokyo 156
Japan

Ohsang KWON
Department of Mathematics
Kyungsung University
Pusan 608–736
Korea

Nak Eun CHO
Department of Applied Mathematics
National Fisheries University of Pusan
Pusan 608–737
Korea

Rikuo YAMAKAWA
Department of Mathematics
Shibaura Institute of Technology
Fukasaku, Oomiya, Saitama, 330
Japan