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Abstract

Integral transforms involving Fox’s H-functions as kernels are studied on the space
L, 2 of functions f such that

ad dt
/ [t f(&))? T <%0 v € R.
0 .

Mapping properties such as the boundedness, the repesentation and the range of these
transforms H are given.

1. Introduction

In this paper we deal with the integral transforms of the form

oo (ap, o)
(1.1) (Hf)(z) = Hpw |zt f(t)dt,
0 (bg, Ba)
where HT? [s (((Z" ’g” )) ] is the Fox H-function. This function of general hypergeometric
a) Pg

type was introduced by Fox [7]. For integers m,n,p,q such that 0 < m <gq,0n<pand
a;,b; € C with C of the field of complex numbers, and o;,3; € Ry = (0,00) (1 £ 1 L p,
1 £ j £ q) it can be written by

(ap, ) (a1,00), -+, (ap, )
(1.2) H’;";I" s = H;ff;? s
(bq, /Bq) (bl, :61): Tty (bq) ﬂq)
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1 y =
= — = s~tdt,

 2n f[ T(a; + ot) f[ T(1— b, — Bjt)

1=n+1 j=m+1

TITG; + B0 [T T = o — aut)

the contour L being specially chosen and an empty product, if it occurs, being taken to be
one. The theory of this function may be found in [2], [23, Chapter 1], [41, Chapter 2] and
[28, §8.3]. We abbreviate the Fox H-function (1.2) to H7."(s) or H(s) when no confusion
can occur.

Most of the known integral transforms can be put into the form (1.1). When oy = -+ =
a, = f1 = -+ = fy = 1 then (1.2) is the Meijer G-function [6, Chapter 5.3] and (1.1) is
reduced to the so-called integral transforms with G-function kernels or G-transforms. Such
transforms include the classical Laplace and Hankel transforms. The Riemann-Liouville
fractional integrals, the even and odd Hilbert transforms, the integral transforms with the
Gauss hypergeometric function, etc. can be reduced to these G-transforms, for whose theory
and historical notices see [34, §§36, 39]. There are other transforms which cannot be reduced
to G-transforms but can put into the transforms H given in (1.1). These are the modified
Laplace and Hankel transforms [39], [31], [34, §§18, 23, 39], the Erdélyi-Kober type fractional
integration operators [20], [5], [39], [34, §18], the transforms with the Gauss hypergeometric
function as kernel [27], [24], [32], [33], [34, §§23, 39], the Bessel-type integral transforms [21],
[30], [16], [17], etc.

The integral transforms (1.1) with Fox’s H-function kernels or transforms H were first
considered by Fox [7] while investigating G- and H-functions as symmetrical Fourier kernels.
This paper such as the omes [15], [35], [8], [9], [38], [12], [3], [22] and [26] was devoted
to finding inversion formulae for the transforms H in the spaces L;(0,00) and L.(0,c0).
Some properties of transforms H such as their Mellin transform, the relation of fractional
integration by parts, compositional formulae, etc. were considered in [10], [11], [40], [36] and
[13]. In [37], [1] and [4] the integral operators of the form (1.1) with Fox’s H-function in
the kernels were represented as the compositions of the Erdélyi-Kober type operators and
integral operators (1.1) with the H-functions of the less order. Factorization properties of
(1.1) in special functional spaces L] were investigated in [42] and the properties of such
operators in McBride spaces F,, and F, , (see [25] and [34, §8]) are studied in [29].

Our paper is devoted to studying the transform H on the weighted spaces £,,,v € R =
(—o0, ), of those Lebesgue measurable complex valued functions f for which

I Sl 2 dt
(1.3) Mo = [ 1 F@OF 5 < .
For f € L, the Mellin transform 9J% of f is defined [31] by

(1.4) () +it)= [ et f(en)r,

forve Randt € R.
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We also write (9JTf)(s) with Re(s) = v for (90Tf)(v+1it). In particular, if f € L,.NnL,,,

where o
Lo ={1: [T¢1 1@ dt < o},
0
then the Mellin transform (9Jtf)(s) is given by the usual expression
(M) = [ fOETdt,  Re(s) = v

The Mellin transform (1.4) has the following properties [31]:

(1.5) - f(z) = =— lim (QJTf)(s) ~*ds, feL,,,

271' R—o00

where the limit is taken in the topology of L, and the integral is understood as

(1.6) /,:;R F(s)ds = z/ F(v +it)dt
for F(v + it) € Li(—R, R);
(1.7) [ 1@(e)de = 5 Jim [ (oR7)(s)(Rg)(1 -~ 5)ds

for fG L v,2 andg € Ll._,,g
If we formally take the Mellin transform of (1. 1) we obtain

(ap, @p)

(1.8) (ONHS)(s) = T,y [
(b, Ba)

S} (9N f)(1-s)

in view of (1.7), where

(1.9) 37

214

[ (ap, ap)

v f] L'(b; + B;s) ﬁ I'(1-a; — o)
(bes ) } )

ﬁ I‘(a; + Ol,'S) fI F(l - b]' - ,8,-3)

1=n+1 J=m+1

is the ratio of the products of gamma functions in the integrand of (1.2) and an empty
product, if it occurs, being taken to be one as in (1.2). When there is no possibility to
confusion, we denote (1.9) simply by 9(’" o (8) or J{(s). For certain ranges of parameters

in J{(s), (1.8) can be used to define the transform H in L, , more precisely. Namely, for
certain A € R\ {0} and A € C, we have

(1.10)  (Hf)(=)

d o0
= hz 1— (X+1)/hd (A+1)/h\/ H;l;;t;l-l-l |:£Bt
0

z

(=X h), (a1,00), -+, (ap, o)
f(t)dt.
(bla :81)’ Ty (bqa ﬂq)’ (—A - 11 h)
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According to [28, (8.3.2.16) with ¥ = 1 and ¢ = —1, and (8.3.2.6)] the formal differentiation
under the integral sign in (1.10) yields (1.1).

The paper is organized as follows. Section 2 is devoted to finding certain asymptotic
estimates as [t| — oo for (o + it) and for its derivative ﬂf'(a + 4t), and an integral
representation and an estimate for H(s). Section 3 deals with studying the boundedness
and the range of H on the space L, .

The results obtained are the extensions of those by Rooney [31] from G-transforms to
transforms H. Some of them were announced in [18].

2. Some properties of functions H' and JC':::

First we define a number of parameters connected with H- and J{(-functions given in
(1.2) and (1.9). Let m,n,p,q be integers such that 0 < m < ¢,0 £ n < p and let
ag, -+, 0p,b1,- -+, by, be complex numbers and a4, - -, ap, B1,- - -, B, be real positive numbers.
We define, see [28, §8.3],

max [—Re(bl),...,_M] if m>0,

(2.1) _ o= A Prn
—00 if m =0,
SN T

(2:2) B = “ %
00 if n=0,

(2.3) w=imgféﬁi&—23m
(2.4) | ¢ =mtn——=,
o 6%ﬁa:“‘ﬁ %,
(2.6) A=) -2 o

27) p=Y b -yat+id
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(2.8) 5:%6,-— 2«1: bj+2n:ai— XP: a.

=1 Ct=m+1 =1 t=n+1
We begin from the estimate of the function J{((s) and its derivative.
Lemma 1. Let o,t € R, then the estimate

*[2—=Im(¢)sign(t)/2

(2.9) |3C" (0 + it)] ~ 67 [ /2R T gRC-12(2)"

=1 =1

holds as |t| — oo uniformly in o for o in any bounded interval in R. Further, as |t| — oo,

210)  {FC0rY (o +it) = FCyn(o +it) [logs + (i B; — i a,») log(it)
g=1 i=n+1

_(iae Z ,3,) log(— zt)+”+M+0(t‘2) :

=1 1=m+1

Proof. According to the Stirling formula [6, 1.18(2)]
(2.11) T(2) ~ V2r27 272 (|2] = o0),
we have for a complex constant £ = c + id and a variable s = o + i,
(2.12) T(k+s) =T(c+ o +i(d+1)) ~ (2n)/2|t|c+o-1 2=/ 2-ndsien(t)]2,
as [t| — oo. Substituting this into (1.9) and using (2.3) - (2.8), we obtain (2.9).
It follows from (1.9) that for s = o + 1t

213) {300} (s) = FHTR(s) Zﬂg (b + Bj8) — 3 cth(1 — a — )

=1

+ ) Bi(l=b;—Bis) ~ Do aip(ai + ais)]
J=m+1 1=n+1

where 9(z) = I'(z)/T'(z). In accordance with [6, 1.18(7)] for ¢ € C we have, as |t| — oo,

-1/2
c+o /+

(2.14) . Y(c+ o i) = log(£it) £ =

o(t™2).
Substituting this into (2.13) we arrive at (2.10).

Now we give an integral representation for the H-function (1.2) suitable for the space L, .

Theorem 1. Let o < vy < . If either of the conditions
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(i) a*>0,

(ii)) a*=0,A #0 and Re(u) + Ay £ 0,
(iii) a*=0,A =0 and Re(u) <0
holds, then for all x € R,

(ap, o) 1 THE
} L [
(bgs By)

(ap, p)

(ba; o)

(2.15) H7 |2

271 R—oo

t] z ™t

y—iR

except for z = 6 in the case (iii) (when H(z) is not defined).

Proof. When a* > 0, then (2.15) follows from the definition of the function H (see [28,
§8.3]). We prove (2.15) for a* = 0 and either A < 0, or A = 0 and z > §. The proof for
a* = 0 and either A > 0, or A = 0 and 0 < z < § is exactly similar. In the case under
consideration, it is followed from [28, §8.3] that

H(z) = — [ &3t(s)ds

2w

where L is a loop starting and ending at co and encircling all of the poles of I'(1—a;—o;s) (i =
1,2,...,n) once in the negative direction, but encircling none of the poles of I'(b; + 8;s) (j =

1,2,...’m).
’...,| (a)]
n

Let
and choose k, v < k < 5. We choose L to be the loop consisting of the line Im(s) = —7 from
oo —i7 to k —i7, the line Re(s) = k from k — i7 to k + 7 and the line Im(s) = 7 from k + i7
to co+147. For R > k —+, let Ly denote the portion of L on which |s — | £ R. Clearly that

-

a1

1 .. —s
(2.16) H(z)= o I%l_{rgo i 7 FH(s)ds.
For such R we denote by A the closed curve composed of the line Re(s) = v from vy — iR to
v + iR, the portion of the circle |s — v| = R clockwise from 7y + iR to the terminal point of
Ly, Ly reversed, and the portion of the circle |s —v| = R clockwise from the initial point of
Lp toy—iR. Let A; and A, be the upper and lower circular parts of A, respectively. Since
a < 7y < B, then according to Cauchy’s theorem we have, for z > 0,

~Fe(s)ds = [ - FH(s)d ~3((s)d ~*3((s)d ~*3((s)d
0—/Am (s)s—L_iRm (s) s——/LR:c (s) s+/Alz (s) s+/A2m (s)ds.
It is followed from (2.16) that to prove (2.15) it is sufficient to show that

(2.17) I%im A 0 H(s)ds=0 (i=1,2).
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T

Now let us prove (2.17) for i = 1. Applying the relation T'(z)T'(1 — 2) = T e

represent J{(s) as

(2.18) FH(s) = Ha(s)FHa(s),

where
fI F(bJ + ﬂjS) . lg[ sin W(bj + ,3]'3)

(2.19) Fy(s) = = , FHy(s) = avtmoe 20 :
H T(a; + o48) H sin 7(a; + a;s)
=1 =1

We estimate first J(;(s). From Stirling’s formula (2.11) we have that, if ( = Re®
(—7/2 £ 8 £ 7/2) and ¢ € C, then uniformly in 6, as R — oo, ’

II\ (C + C) | ~ \/2_7T-8_01m(C)RR cos 9+Re(c)—1/2e—-R[cos 6+6 sin 6+Re(c)] .

Hence, on A;, putting s = v+ (,{ = Re*, we have uniformly in 6§, as R — oo,

191 ﬂfe@j)—l/z

L q P .
|FC1(s)| = |FC(y+¢)| ~ (2m) @26 o exp{ —6 [Im (Z b= a;—) + A }
/ ‘ H a?e(ai)—llz =1 i=1

=1

q 14
. RRe(p,)+('y+Rcos NHA 6Rc059 exp {—RA(COS 6 + 6 sin 9) — Re (Z bJ - Z ai) - ’YA} )
=1 i=1 :

where 6, A and yu are given by (2.5)-(2.7). Since 0 £ 6 £ 7/2 on Ay, then
m
< = .

(2.20) |3, (s)] £ A RRe(w)+(1+Rcos6)A sRcosé e—RA(cos9+Gsin9),

1=1 1=1

exp {—9 {Im (z b - z) +a

Im(f;b,._ia,.)m

1=1 =1

Hence there is a constant A; such that

if s € A; and R is sufficiently large.
Now we estimate J(5(s). If s € A;, s = v+ Re® = v+ £ + in, then by invoking the
estimate

(2.21) sinhy < |sin(z + iy)| £ coshy
we have

|sinw(b; + B;s)| S coshw(Im(b;) + B;n) < Bje"BfRSi“B, B; = ¢ Hm(b;)] (j=m+1,---,9).
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Letting A; pass through the point £ + i7, we have
 |sin7(a; + a4s)| 2 sinhw(Im(a;) + ain) >0 (i=1,2,--- ,n)
by virtue of the left inequality of (2.21) and n 2 7 > —Im(a;)/o; (1 =1,2,---,n). Since

d . . )
g;e—ﬂ'agﬂ Slnh ’ll'(IIIl(a,) + atn) - /n'a‘.e—“ll'(zasﬂ'f'lm(at)) > 0’

then for n 2 7 we have
e~ sinh 7(Im(a;) + oun) 2 C;, C; = e~ *sinh 7(Im(a;) + oi7) (1= 1,2,---,n)

and therefore . v
| sin7w(a; + o;8)| 2 Ciefra;Rsxno (i=1,2,---,n).

Substituting these estimates into J(;(s) and taking into account the relations

q n m P A
=0 p-Fa-Fa- L -t
j=m+1 i=1 i=1 i=n+1
we obtain

q
I B
(2.22) |FCa(s)| € Age™FAn02 g, = grin=a ,=,:+1. '

[1¢:
=1

Since A £ 0 and 0 < 8 < n/2, then RA(§ — «/ 2) sinf = 0. Therefore it is followed from
(2.18)-(2.22) that for s € A; and for sufficiently large R, say R > R, with A = A, A,, we
have

(223) |J'C(S)I < ARRe(p)+(‘7+Rcos0)A §Rcost e—RA[cosO+(9—7r/2)sin9]

é ARRe(p)+(‘y+RcosO)A 6Rcos€ e—RAcosO.

Let us consider the case A < 0. We assumed Re(u) + YA £ 0 in the hypothesis (ii) of the
theorem. Hence, if z > 0 and R > max[Ry, K] with K = e(z/6)/2, we have

/A .'E_-’j{(s)ds é Azx™Y RRe(il»)+‘7A+l /Oﬂ'/z RARcosO e—-RAcosO (%)—RCOSG o

= Az~ RR.e(y)+7A+1 /le GAR (logR—logK)cos9d6
o ,

— Ag~7 RRe(w)+ya+1 / /2 ¢AR (log R—log K)sin6 14

0

é Az~ RR.e(p)+7A+1 /1!'/2 eZAR (log R—log K)@['rrdg
0

1— eAR(log R-log K)

2A(log R — log K) -

= Ang~Y RRe(r)+vA+1 0
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as R — oo, and thus (2.15) is proved when A < 0.
When A = 0 and z > §, we assumed Re(u) < 0 in the hypotheSIS (iii) of the theorem.
Therefore if R > Ry, then we have from (2.23) that

f2
é Ar=" RRe(p)+l // (m/é)—ﬂcosﬁdg
0

/A: 7 F(s)ds

= Az~ RRe(p)+1 /"/2 e—RcosOlog(z‘/&)dg

0

/2

= Az~" RRe(p)-{-l/ e—RsinOlog(:p/rS)dg

0

< Az~ RRe(M)+1 /r/2 e—ZRﬂlog(zlé)/rde

0

—Rlog(z/é
= 1Az~ REe®) l:_f_____._s_(_i_)_ -0
2log(z/6)

as R — oo. The proof of (2.17) for ¢ = 1 is completed. The proof for the case 1 = 2 is
similar. Thus the theorem is proved.

Theorem 2. Suppose that o <y < f and that either of the conditions a* > 0 or a* =0
and Ay + Re(u) < —1 holds. Then for z > 0, except for z = § when a* = 0 and A = 0, the

relation
(ap’ ) ' 1 YHioo — (ap, ap)
- — g’c !
2,7rz »,q
(bqi qu) y—too (bq, ﬁQ)

(apa atp)

(bg, Ba)

is valid, where A, is a positive constant depending only on 4.
Proof. If a* > 0, or ¢* = 0 and Ay + Re(u) < —1, then we obtain from (2.9) that
FH(y + it) € Li(—o00,00). So (2.24) follows from (2.15). The estimate (2.25) can be seen

from the proof of Theorem 1.

(2.24) g

Pq

t} ™t dt

holds and the estimate

Hmﬂ

P9

(2.25) < A,z

Remark. foy = =o,=f=---=f,=1 (Meijér’s G-function), then
(2.26) a*=2"6=1, A=q—-p

and therefore Lemmas 3.1, 3.2 and 3.3 in [31] follow from Lemma 1, Theorems 1 and 2,
respectively.
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3. L,, theory of the transform H

For two Banach spaces X and Y, we use the notation [X, Y] to denote the collection of
bounded linear operators from X to Y. To obtain L, , theory of the transform H, we use
the following statement on the integral transform H of the form

(3.1) (Hf)(z) = ha'~O+D/R -dézco‘""l)/h /oo k(mi)f(t)dt,
dz 0
where the kernel k € £1_,,, A € C and h € R\{0}.

Lemma 2. (a) Ifke Li_,,, v#1—(Re(X)+1)/h, and

N w(?)
(3.2) (ONk)1—v+idt) = T (-vta)h almost everywhere,

where w € Lo (—00,00), then the transform H of the form (3.1) is in [L, 5, £1_,2]. More-
over, if f € L, 5, then

(3.3) (OMNHSf)(1— v +it) = w@)(ONSf)(v —it) almost everywhere.

(b) Conversely, given w € Lg(—o0,0), v € R and h € R,, there is a transform
H € [L,2,L1-,2] so that (3.3) holds for f € L,,. Moreover, if v # 1 — (Re(}) + 1)/h,
then Hf is representable in the form (3.1) with the kernel k given by (3.2).

(c) Under the hypotheses of (a) or (b) with w # 0 almost everywhere, H is a one-to-one
transform from L, > into L,_, 5, and if in addition 1/w € Lo (—00,0), then H transforms
L,,onto Ly, For feL,, and g € L, >, the relation

(3.4) 7 1@ #He)@)dz = [ 9(a)(HS)(@)do
is valid. |

The proof of this lemma is based on the relation (1.7) and the properties of Mellin trans-
form (1.4), and is carried out similarly to the proof of Lemma 4.1 in [31] by taking

tO+D/R o<t <a,
ga(t) =
0 if t > a,

0 if0<t<a,
ha(t)=

tO+D/R 5 ¢ > g
instead of (4,4a) and (4.6a) in [31] and k(v — 1) + 1 instead of p.

and

We apply Lemma 2 to obtain L, ; theory of the transform (1.1).
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Definition. For the function J{(s) given in (1.9) we call the exceptional set of J( the
set of real numbers v such that & < 1—v < 8 and J{(s) has a zero on the line Re(s) = 1—v.

Theorem 3. We suppose that
(a) a<l-v<p
and that either of conditions
(b) a* > 0,
(c) a*=0, A(1-v)+Re(p) L0

holds, then we have the following results:

(i) Thereis a one-to-one transform H € [L, 5, £1-,,] so that (1.8) holds for Re(s) = 1—v
and f € L,5. Ifa* =0, A(1 —v) + Re(p) = 0 and v is not in the exceptional set of I,
then the operator H transforms L, , onto L;_, .

(i) If f € £,, and Re(\) > (1 —v)h — 1, then Hf is given by (1.10), namely

(3.5) (Hf)(z) = hxl—()\+1)/hdiz()\+l)/h

Z
% ) (_)‘a h);(alaal):"'i(amap)
‘ Hylf |t
0 (blaﬂl);"'>(bqaﬂq)’(—)‘ - lih’)

IffeL,, and Re(A) < (1 —v)h —1, then Hf is given by

} F(t)dt.

(3.6) (Hf)(z) = —hml—(Hl)/hdim(AH)/h

T
o " (alaal)ﬁ"' ) (aP’ap)>(—)‘)h)
: Ho 0 et
0 L (_>‘_ lyh);(blaﬁl)a"')(bq;ﬂq)

Further, if f € £, and g € L, 2, then the relation (3.4) holds for H.

(iii) Moreover, H is independent of v in the sense that if v; and v, satisfy (a), and
(b) or (c), and if the transforms H,; and H; are given by (1.8), then H,f = H,f for
f € Lul,Z N LV2,2'

Proof. Let w(t) = 3((1 — v +it). By virtue of (1.9), (2.1), (2.2) and the condition (a)
the function J{(s) is analytic in the strip & < Re(s) < 8. In accordance with (2.9) and the
condition (b) or (¢), w(t) = O(1) as |t| — oo. Therefore w € L, (—00,00), and hence we
obtain from Lemma 2 (b) that there is a transform H € [L,2, £, 2] such that

(ORHSF)(1 — v +it) = F(1 — v + it)(MSf)(v — it)

} F(2)dt.

for f € L,,. This means that the equality (1.8) holds for Re(s) = 1 — v. Since JH(s) is
analytic in the strip & < Re(s) < f§ and has isolated zeros, then w(t) # 0 almost everywhere.
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Thus we obtain from Lemma 2 (c) that H € [L, 5, L1, ] is a one-to-one transform. If a* =
0, A(1—v)+ Re(u) =0 and v is not in the exceptional set of I, then 1/w € L (—00,00),
and again from Lemma 2 (c) we obtain that H transforms L, ; onto £;_, 5. This comletes
the proof of the first assertion (i) of the theorem.

Let us prove (3.5). Let f € £,, and Re(A) > (1 —v)h — 1. To show that in this case Hf
is given by (3.5), it is sufficient to calculate the kernel k in the transform (3 1) for such .
From (3.2) we have the equality

1
Atl—(1—v+it)h

(ORE)(1 — v +4t) = FH(1 — v +it)

or, for Re(s) =1—v
1

A+1—hs
Then from (1.5) we obtain the expression for the kernel k, namely

(9Mk)(s) = F((s)

1 1-vHR
(37) k‘(.’L‘) Z_MI%}-{I:O \—v—iR z (S'Cf)(b') )\+1 dS,

where the limit is taken in the topology of L, .
According to (1.9) we have

38 20 gy LU= (N —h)

At1—hs T = (=A—1) - hs)
—— (_A)h)f(al:al),"':(apa O‘p)
_:}Cp+1,q+1 sl .

(b1,ﬂ1), Ty (bq’ :Bq)’ ("')‘ - 1) h)
m,n+1

We denote by a1, £y, a}, Ay, py that in (2.1), (2.2), (2.3), (2.7), (2.8) for this FC )\, 1;. Then
a; = o, f; = min[B, (1 + Re(}))/h],a; = a*, A1 = A, p1 = p— 1. Thus, it follows that
a; <1—v < ffrom Re(A) > (1 —v)h -1, and either of the following conditions hold:

aj > 0,

a; =0, Ay #0and Aj(1—v)+ Re(u1) =A(1—v)+Re(p) —1 £ -1,

or

a;}j =0, Ay =0and Re(py) =Re(p) —1 < - 1.

Therefore, applying Theorem 2 for 2 > 0, except possibly for z = § we obtain that the
equality

(_A) h)7 (ala 051), Ty (ap) ap)

(bl, ﬁl)) T (bqa :Bq)) ("’A -1, h)

1 1—v+:R
=5 dim [ OO s

(3.9) H?ﬂz{n [x
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holds almost everywhere.
Tt follows from (3.7) and (3.9) that the kernel k is given by

(—A:h))(alial)a"')(a'map) }

k(z) = H?-ﬂ‘,tﬁn [’E
(bl,ﬁl)) Tty (bq’ ﬁq)’ (_)‘ -1, h)

Hence (3.5) is proved.
The relation (3.6) can be proved similarly to (3.5), if we use the equality

f}f S hs _ A _
o105 = 50 Nty
m+1,n [ (al’al)’.“’(alvap)’(_)\, h) }
==F 1100 s
(=X = 1,h), (b1, B1), -, (bg, Ba)

instead of (3.8).

If f e L,;and g € L,, then the relation (3.4) is valid according to Lemma 2 (c). The
assertion (ii) is proved.

Lastly, let us prove (iii). If f € Ly, 2NL,, 2 and Re(}) > max[(1—w)h—1,(1-v2)h— 1],
then both of transforms H;f and H,f (corresponding to v; and v;, respectively) are given
by (3.5). The right hand side of (3.5) is independent of v and hence

(H1f)(z) = (H2f)(2)

1-(A+1)/h d A+1)/h = mn+1 (_A’ h)’ (al’al)’ Ty (am ap)
=he ! %w( / Hopiig4 (ot
0

(bla /Bl)’ Tty (banq); (_A - 13 h)

f(t)dt,

which completes the proof of the theorem.

Corollary 1. Let o < 8 and one of the following conditions holds

(b) a* >0,

(e) a*=0,A>0anda<—&A(—u—)—,
(f) a*=o,A<oandﬁ>—BfA(L),
(8) a*=0, A=0 and Re(u) £ 0.

Then the transform H can be defined on L, , with1 - <v<1-—a.

Proof. Ifa < 1—v < f,or 1— 8 < v < 1—a, then by Theorem 3 either of the conditions
a* > 0or a* =0, A(1 —v) + Re(u) £ 0 must be satisfied in order that the transform H
can be defined on L, ,. Hence the corollary is clear in the former case and in the latter
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one with A = 0. We consider the latter case when A # 0. If A > 0 then the inequality
A(1 — v) + Re(p) £ 0 is equivalent to v = 1+ Re(u)/A, and this is compatible with the
condition v < 1—a only if @« < —Re(p)/A. Similarly, if A < 0, then A(1—v)+Re(u) £ 0is
equivalent to ¥ £ 14+ Re(u)/A, and this is compatible with 1— 8 < v only if 8 > —Re(u)/A.
This completes the proof. '

Theorem 4. Let « < 1— v < f and either of the the following conditions holds
(b) a* > 0,
(d) a*=0, A(1 —v)+ Re(u) < —1.
Then for z > 0 (Hf)(z) is given by (1.1) for f € L, 2, namely,
(a1,01), -+, (ap, )

(bly )61); R (bqyﬂq)

ot

(3.11) (Hf)(:c):/ Hyr

} f(t)dt.

Proof. It follows from [28, §8.3] that if Re(X) > (1 — v)h — 1, then H7i+,; in (3.5)
is continuously differentiable on (0,00). Therefore we can differentiate under the integral
sign in (3.5). Applying the relations [28, (8.3.1.16)] and [28, (8.3.1.6)], we arrive at (3.11)
provided that the integral in (3.11) exists.

The existence of this integral is proved on the basis of (2.25) similarly to those in [31] for
the G-transform. Indeed, we choose v, and v, so that < vy < 1 — v < 7, < 8. According
to (2.25) there are constants A; and A, such that for almost all ¢ > 0, the inequalities

|Hpiha ()] S A7, (i=1,2).

hold. Therefore, using the Schwartz ineguality, we have

JARL RV OTE:

- Uz (v )1 as - ® 2(1—p—m3)=1 12
A / N T a2 AR
0 ¥

1/z .

<

=Czr"! < oo,

where
C = {201 —v — )™ + Ai[2(v — v + DI} I£1L 2

and the theorem is proved.

In conclusion of this paper we indicate the conditions for the transform H (3.11) to be
defined on some L, , space.

Corollary 2. Let a < 8 and one of the following conditions holds
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4

a* >0,
Ri
a* =0, A>0anda<—ﬂ+—1,
A
R
a*=0, A<0andﬂ>—%,

a*=0, A=0 and Re(ps) < —1.

Then the transform H can be defined (3.11) on £, with1— f<v < 1—a.
Proof. The proof of this statement is similar to those of Corollary 1.
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