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Application of Generalized Fractional Calculus Operators
in the Solution of Certain Dual Integral Equations

Megumi Saigo* [FE# &) (&R A FEFIR)
R.K. Saxenal (v+4 - 3+5%v - v72k%)
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Abstract
A formal solution of certain dual integral equations involving H-functions is derived

by the application of the operators of fractional calculus due to Saigo [14], [15]. It

has been shown that the given dual integral equations can be transformed, by the

application of the operators, into two others with a common kernel and the problem

then reduces to that of solving a single integral equation. Since the common kernel

comes out to be a symmetrical Fourier kernel investigated by Fox [8], the formal solution -
readily follows.

1. Introduction and Preliminaries

Following Fox [7], we define the H-function in the notation of Saxena [20] in the form:

. . [ap, Ap] . (a1,A1), -+, (ap, Ap)
Hpy (z) = Hpy' |z =Hpy |z
(1.1) [bQ’BQ] (bl’Bl)a"'a(bQ:BQ)

1 —s
- __/C'X(s)m dS,

27w

where w = v/~1 and

M N
[1T0; + B;s)[[ T(1 - a; — 4;9)

(1.2) x(s) = —5— = .
II T(1-b;-B)s) Il T(a;+ Ajs)
J=M+1 j=N+1

Here an empty product is to be interpreted as unity and the following simplified assumptions
are made:

*Department of Applied Ma.themé.tics, Fukuoka University, Fukuoka 814-01, Japan
tDepartment of Mathematics and Statistics, Jai Narayan Vyas University, Jodhupur-342001, India



57

(i) P, @, M, N are integers satisfying 0S M <Q, IS NP,
(i1) A’s and B;’s are positive numbers for ¢ =1,.--,Pand j=1,---,Q,
(i) a; (j=1,---,P)and b; (=1, ---,Q) are complex numbers,

(iv) The contour C is a straight line parallel to the imaginary axis in the s-plane with
s = 0 + 7/—1 such that all the poles of I'(b; + B;s) for j = 1,---, M lie to the left
and those of I'(1 — a; — A;s) for j = 1,---, N to the right of it.

A detailed account of the convergence conditions and analytical continuation of the H-
functions is given by Braaksma [1]. Regarding applications of H-function in statistical
distribution and integrals, series expansions of the H-function, the reader is referred to the
monograph by Mathai and Saxena [11].

When A;, = B, =1(i=1,---,P; j =1,---,Q), the H-function reduces to Meijer’s
G-function. The result is

ay,---,ap
(19 Gl (z) = Gl ( ) = 5 [ X(s)a~ds,
bl)"';bQ
where
HI‘(b +s HI‘(l—a,—s)
(14) x(s) = —5— .
H I‘(l—bj—s).H I'(a; + s)
J=M+1 1=N+1

Here an empty product is to be interpreted as unity and a; (j=1,---,P), b, j =1,---,Q)
are complex numbers such that none of the poles of I'(b; + s) (j = 1,---, M) coincide with
any of the poles of I'(1 —a; —s) (j = 1,---, N). The contour C separates these two sets of
poles. General existence conditions are also available from Mathai and Saxena [10].

Fox [7] has shown that the function

[1 — Qm, Am] ) [am - Am’ Am] 1
(1 5) H2m2n(x) = H2m 2n [b B ] [1 b —B.B ] = %/C'Xm,n(s)m dS,

where

T(bi+Bjs) TT_ T(a; — 4;s)
(1.6) Xm,n(8) = H I‘(b + B; — B, 3) H I‘(aj — A; + A;s)

behaves as a symmetrical Fourier kernel.
From (1.5), it follows that the Mellin transform of Hj",, (x) is

(1.7) { 2m2n(m)}() Xm,n(8),
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where 29t is the Mellin transform
m{f(@)}s) = [ fa)a*d.

Dual integral equations occur in many problems of Mathematical Physics especially those
which are connected with mixed boundary conditions.

A well-known example of dual integral equations possessing ordinary Bessel functions
J,(z) and J,(z), as their kernels, is

/0 “40J,(tz)h(t)dt = $(z), (0 <z < 1),
(1.8) _
[ e ateh®dt = ¢(e), (> 1),

where ¢(z) and ¥(z) are given and h(z) is to be determined.

Weber [25] solved the above equations for the case p = u=v =0,0 = 1in connectlon
with the problem of finding the electrostatic field arising from a c1rcula,r disk charged to a
constant potential. Later on several workers developed various methods from time to time
to solve the equations (1.8) notably by Busbridge [2], Erdélyi and Sneddon [6], Noble [12],
Peters [13], Saxena and Kushwaha [22], Virchenko [24] etc.

A systematic analysis is developed by Fox [8] to derive the solution of dual integral equa-
tions of a general character than (1.8) associated with H-functions of order n by the appli-
cation of Erdélyi-Kober operators [3] [9]. His results are further generalized by Saxena [20]
[21] by considering the dual integral equations involving general H-functions which are more
general character than the H-functions discussed by Fox [8].

The object of this paper is to develop a formal solution of certain dual integral equations
associated with H-functions by the application of generalized fractional calculus operators
introduced by Saigo [14] [15].

2. Generalized Fractional Calculus Operators

In order to provide an elegant generalization of Riemann-Liouville and Erdélyi-Kober
operators of fractional calculus, Saigo [14] [15] introduced a generalization of operators of
fractional calculus and derived in a series of papers [14] [15] [16] [17] [18] [19] their various
properties and applications (cf. also [23]).

We give here a slight modification of such operators. Let o, 8,1 be complex numbers and
r>0. The Saigo operators are recogmzed as the case r = 1 of the following I &Bn and JBn

IOOT

pg=r(a+8)

Q1) =5 [ @ =ty (ot f-mas1 - 5) vt sy
for Re(a) > 0, and

ar
2.2 0»13.111 —_ a+.n,ﬂ—n,q-n
( ) IO,J:,r d(:z:')" IO,a:,r f
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for 0 < Re(a)+n<1(n=1,2,3,---), where 2 Fi(a, b; ¢; -) is Gauss’s hypergeometric function.

(2'3) J.Taw 3T

_ r e r __ rya—1y—r(a+fB) ( . e e _i) r—1
r(a)/, (t" = z7)* ‘2F1 a+p,—ma1— ) e f(t)ds

for Re(a) > 0, and

2.4 by JEBN f = (=) ——— ;;ﬂ,ﬂ—n.nf
( ) T ( d( )n T
for0<Re(oz)+n<1(n—123 ).
The operators I(‘)’r’, 7 and J&&7 involve as their special cases § = —a the fractional calculus
operators of Riemann-Liouville and Weyl operators:
(2.5) IgEnf = RS, f,
(26) J:,’o%:,' .1: 00; rf

In a similar manner to the case r = 1, we can obtain the following identities and inverses:

(2.7) 1307 f = f(a),
(2:8) 700 f = f(a),
(2.9) | [Io,ﬂ,n] = I
(2.10) [ J:ﬁ,’z] = JIAe,

For the operators I&%" and J2:Em | there hold valid various interesting results discussed in

0,z;r

the series [14] [15] [16] [17] [18] [19] in parallel.
In what follows, when r = 1 we shall omit the index 1 in the operators.

3. Dual Integral Equations

The dual integral equations to be solved are

/0 " Hy(zv)f(v)dv = $(z), (0<<1)
(3.1) 3
| Ea@)f@)dy = 4(z), (> 1),

where ¢(z) and ¥(z) are given and f(z) is to be determined, and the functions H;(z) and
H,(z) occuring in (3.1) possess the following definitions:
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(3.2) Hy(z)=H "mn-:—-;ik2n+2k($)
[1 - am,Am] s [1 - Ukka] ) [1 - Y%~ 5’: — Mk — Ok, Tk]) [am - Am; Am]

n,m+2k z
2m+2k,2n+2k

[b,” Bn] 5 [1 - bn - Bn; Bn] ) [1 - 6’: — Ok, Tk] ) [1 — Tk — Ok, Tk]

= Zrlzd—/;xm’n,k(s)x"ds
and
(3.3) Hy(z) = Hg;fé?2n+2l(z)
(1= am, Am], [0m — Amy Am], [1 =X+ 00— 51, &), [1 = XM+ G — 51, €] }

[bn’B‘n])[l_ )‘1 —Kl)gl])[1+91+<l —’cl)é'l])[l —bn - B'n)Bn]

_ gn+2lm
2m+212n+20 | %

/ Xmmi(8)z ™ ds,

27rw
where
_ - I‘(b.’ + B,‘S) . F(ai - A,'S)
Xmnk(8) = I_I T'(b; + B; — B;s) E T(a; — A; + A;s)
(3.4)
D) LCRDLCER SRR
L (6 +0i — 78)T(m; + 0i — 7is)

and

- _TT_T(i+Bis)  TT_ Tla— Ais)

Xm,n,l(s) = I-Il F(b. + B; — B‘s) 1_1 I‘(a; - A+ A.‘S)

- (3.5)

. ﬂ T(1— XN — ki +&S)TA+60; + G — ki + &is) .
FID(1= X+ 6 — i+ &8)T(1 = N+ G — mi + &is)
Here, we assume that the following conditions are satisfied:
(i) mSn-1;
(i) a (i=1,---,m), b (i =1,---,n), %, &, M, 05 (5 = 1,5 k); X, 05, G, 55 (5 =

1,---,1) are all complex numbers and 4; (: = 1,---,m), B; (i = 1,---,n), 7; (J
-, k), & (7 =1,---,1) are all positive numbers;

(iii) Let s = 0+ 7v—1, where ¢ and 7 are real, then the contour C along which the integrals
are taken is a straight line parallel to the imaginary axis in the complex s-plane whose
equation is 0 = 0y, where 0y is a constant;



61

(iv) All the poles of functions X k() and Xm»i(s) are simple. The common contour C
is such that all the poles of I'(b; + B;is) for i = 1,---,n, I'(1 — A\; — k; + §;s) and
D146 + ¢ —kj+&s) for j =1,---,1 lie to the left and those of I'(a; — A;s) for
i=1,---,m, I'(o; — 7;8) and T(y; + 6; + n; + 0; — 7;8) for j = 1,--- |k to the right of

C;
(v) €=2( B.'——ZA;) > 0;
1=1 =1
, 1 1

(vi) g0 < 3~ ;ZRe (v;) for (3.2);

j=1
!

(vil) oo < :,12-— % Re(};) for (3.3).

s=1

4. The Reduction of (3.1) to Equations with a Common Kernel

In this section we will transform the dual integral equations (3.1) into others with the
same kernel by the application of the Mellin transform and the generalized fractional calculus
operators introduced in Section 2.

From (3.2) and (3.3), we know that

(4.1) D {Hy(2)}(s) = Xmni(s),  D{Hz(2)}(5) = Xm,na(s)-

On writing 9t{f(v)}(s) = F(s) and applying the Parseval formula (see e.g. [5, Vol.1,
p.308])

(4.2) sm{ [ <p1(mv)<p2(v)dv} (s) = B (s)5(1 — s)

for 2t{p;(z)}(s) = ®;(s) (7 = 1,2) to (3.1) we find that

Ev%/cxm,n,k(s)w"l’ (1=s)ds = ¢(z), (0<z<1)
(4.3)

1 /C Tmmi(s)z—* F(1 = 8)ds = 9(z), (z > 1).

27w

Now, we shall require the well known integral in [5, Vol.2, p.399]:

F(e)T(dIl(c+d—a—1)
T(c+d—a)l(c+d—1b)

1
(4.4) / 2711 - 2)¥ Y, Fy (a, b; c; 2)dz =
0 ;

for Re(c) > 0, Re(d) > 0, Re(c+d—a —b) > 0.
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Replacing = by ¢ in the first equation in (4.3), multiplying by

-1 et
: tc56t+cun—l (zcg tck)‘Yl: 2F1 ('Yk + 6’” — 1k Vi 1 — ___) ,

Tck

where ¢, = (7:)”! and integrating through the integral sign with respect to ¢ from 0 to
z (0 < z < 1), we find that

> mn k(SN TEF(1 = s)terdrteran=l (g _ g -1
0 27w cX "

Ck

t )ds dt
TCk

Y 2 (’yk + 6k, —M; Vi3 1 —

) éde

T
= /0 tck6k+ckok—1 (mck — tck)‘Yk"l 2F1 (’Yk + 5k, —k; Yk}

or in term of the fractional integral (2.1)

/ X,k (5)F (1 —3)/ gerfetera=al (gor _ gerym=l

2Tw

<oy (’)’k + Ok, —k; Vi )dt ds

I‘('Yk) ck(‘1k+6g) Vi 6k Mk Ck(6k+¢"k"1)
- e #(z).
Evaluating the inner integral on the left, say A, by means of (4.4), we find that

gttotor=1)=¢ T \T(6 + 04 — T8)T (M + ok — Ta8)
o (o — 78)T (W + 6k + mx + o — Tks)’

(4.5) A=

where ¢, = (7)™, Re(v) > 0, Re(6k + o — 78) > 0, Re(nx + 0 — 7x8) > 0, we can curtail
the number of £ in the kernel x,, » x(s) such as

0,z;ck

(46) -2—1-—-/ Xm,n,k—l(s)x—sF(l —_ s)ds = x—ck("k-l)I‘Y& Sk mk Ck(5k+¢’k’1)¢(m)
TWw JC

for0< z < 1.
Let us introduce for convenience’s sake the first operator of fractional integration 3 which
is a slight variant of the operator (2.1) in the form

(4.7) 3[v,6,m,0;¢ f(z) = eI s ds+o-1) ¢ (z)

for Re(y) > 0, which can be determined as far as the operator Iy’ ,f "7 exists on a certain class
of functions. When Re(v) < 0, the operator J can be also considered by noting the formula
(2.2). In particular, by virtue of (2.7)

(4.8) 3[0,0,n,0;¢] f(z) = f(z).
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Let us set
(4.9) 3;f(z) =3[, 65,mi, 055651 f(z) (G=1,2,---,k)

for the parameters appearing in (3.2). Then it can be easily seen that the R.H.S. of (4.6) is
equal to 3;4(z) with 0 <z < 1. On transforming the first equation of (4.3) step by step by
the application of the operator 3; (j = k,k—1,---,2, 1), successively, it is observed that

(4.10) / Xomm(8)s ™ F(1 — 8)ds = 3133 Zxd(z) (0 <z < 1)

2w

Further, in the second equation of (4.3) replace z by ¢, multiply by

dy
)=l (g _ gdnhly py (/\1 + 6, =G5 A1 - :T,)

and then integrate through the integral sign with respect to ¢ from z to co with z > 1, we
find that |

/ Xmmn I(S)F 1 — s) [/ t"dl(el—np)—s—l (td' d')lg—l

27w
zh
2 (Az + 0, =G ;1 — tT') dt} ds

zh

_ /oo $—h(Or—rp)—s—1 (td; _ md;) -1 JF, ()\I + 6, =G A 1 — E)w(t)dt
Evaluating the inner integral on the left by means of the formula (4.4), we have
8
00 . d
(4.11) / D e (LD LU 24 (A, + 60, -Gy M5 1 — %) dt

g —frtri=1)=s I‘()\I)I‘(l - N+6 -k + f{S)I‘(l - N+ G—ri+ fls)

d P(1-N—rm+&s)L(1+ 6+ G — ki + §&s)
where fl (d[) -1 Re(/\l) > 0 Re(l - )\1 + 91 — Ky + f,s) > 0 Re(l - )\1 + CI — K + EIS) > 0.
Thus we find that

1
(412) % /(; im,n,l—l(s)F(l - s):c_’ds
dlmdl(el—AI—N{'Pl)

I'(A)

0 — . a4
/ = d(Br=r)=1 (td’ - wd'))“ ' oFy ()\1 + 6, =Gy A1 — :T,) P(t)dt,

for z > 1.
Let us introduce the second operator of fractional integration &; which is also a slight

variant of the operator (2.3) in the form

(4.13) R f(2) = &[N, 05, G, k53 dj] f(z) = g9A40mi¥D) 2000 5di Q=D £ ()
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for j =1,2,---,1. To this operator a similar comment is valid to that following the formula
(4.7) and
(4.14) £[0,0,¢, x;d] f(z) = f(2).

It is evident that the R.H.S. of (4.12) is &(z) with z > 1. The successive application of
the operators &; for j =1,/ — 1,1 —2,.--,2,1 to the second equation of (4.3) transforms it
into the desired form

(4.15) 3o / Xoan(8)z=* F(1— 8)ds = &1 8- &P(z), (z> 1)

I we write

3132 d(z), (0<z<1)
(4.16) g(z) = {

Fafy - Af(z), (2> 1),
(4.10) and (4.15) can be put into a compact form

1

4.17
( ) 27rw

5 [ Xma(s)a™* F(1 = 8)ds = g(2),

or in view of (1.7)

(4.18) | | —I—/C { b 2,,(1))} (s)F(1—s)z™°ds = g(z).

27w

Applying the formula (4.2) to the left-hand side of (4.18), we see that it can be expressed
by an integral involving the product of H3,", (z) and f(v). The result is

(4.19) | B3 (20} f(0)dv = g(a),

- where the kernel H3", (z) is given by (1.5).
Since Hj,'s,(z) is a symmetrical Fourier kernel, we, therefore, obtain the formal solution
as

f@) = [ g() H3im(zv)dv
(4.20)

= [ 313 3O E3m(z0)do + [ Sy - R(o) B (0)c,
where 3’s and &’s are defined by (4.9) and (4.13).

Note. Since our method is formal, it does not give any condition of the validity of the
solution.



5. Special Cases

(i) For B =0, we obtain the results due to Saxena [20].

(ii) If we set

Mm=6=0m=101=0a, A==} 0,=-1, (4=0,k=0, =1 & =1
and use the identities in [4, p.216, 217], then the equations (3.2) and (3.3) are given by

Hy(z) = Gy (:z: b;:b ) = Ju (2V7),
(5.1)

Bole) = 635 (2| o 2, ) = VAR (AR (VA

We see that the formal solution of the dual integral equations

L7 9 (2v0) 1) = 4(a) ©0<z<1)
(5.2) _

V7 [ 5 (Va0) Y, (Vav) f()dv = (z), (e > 1)
is given by

63 fE@)= s (2/70) (v)do
+% /1 ” \/5(% [ / "t - v)-llw(t)dt} T2 (2v/20) dv

in view of (4.8), (4.13), (2.3) and (2.4). If we assume
(5.4) P(z) € C°[1,00), 9(z) = O (2*), (z — oo) with o < —3/4,

then the solution f(t) can be written in the form

! 1 [ -1/2
6.5 f) = [ (2VF0) po)do — = (2V5) [ (¢ = 1))

\/_ {f a1 (2v/20) + (1~ 2b) 5 \/_Jz,, (2v/zv) } / (t — v)"24p(t)dtdw,
by the integration by parts and by virtue of the formulas

d v 7
75 & (@)} = 2" (2)
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and

J(z)=0 (:1:'1/2) , (z — ).

(iii) Setting
m=0,n=1k=1=2, =05, B =1,
71':—%—0’ Y2 =6 61=%+C’ 52"_‘—'6, 771:0: 772:1) d1=%a 02=1a 7'1=T2=1)
’\1‘:—'l A2=03 91=_1’ 92’:0’ C1=0a C2=11 ’G1=K2=03 61':62:,1
and using the identities [4, p.218):

1
20

(5.6) G (m

) = Vdose (V) T (V)

b,—b,c, —c
and the second formula of (5.1), we find that the formal solution of the dual integral equations

V7 [ due (Va0) e (V30) fl0)do = 6(2), (0<2< 1)
(5.7)

~V7 [ 3 (VED) % (Va0) f(0)dv = 9(s), (> 1)

is given by
68) @)= [ T (2V50) VIRV Rikup(o)do
+71_; /1 " Ja (2vzv) VoW, M2 (v)dv.

(iv) Next if we set
m=0,n=1k=11=1 b=b B =1,

71':_%! (51_—‘_—1, n1=0) 01=a+2’ lel’

)\1=—1 91=—1, <1=0, Ii21=0, £1=1

2

and use the second identity of (5.1) and

20 P(~26)0(~a — b b
)”b (=2)T(=a~ )IFZ( _z),
b; ‘

(5.9) Gy |z .
b,—b,a (3 -b) ~2b,—a —
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we now find that the formal solution of

[ ToD(a=) , (=, b _
Tty le( s )f(v)dv—sé(w),
(5.10) (0<z<1)

V7[R (Ve % (VR S = 96, (> 1)

is given by

f(z) = /0 Lt B0 ) I, (2v/zv) dv
(5.11) ,

+/ VoI U210y =3124 () I, (2\/:1311) dv.

1 bl

(v) Finally if we set
m=0,n=1k=2,1=2 b=0b, Bi=1,
n=-5-¢ n=c¢ h=53+c¢h=—cm=0,m=l, =3, o=, n=n=1,
A1=""%""C, )\2=C, 91—“—'%‘*‘6, €2=—'C, C1=0, C2=1, H1=f€2=0, €1 =€2=1

and use the identity (5.6), we find that the formal solution of

(VE [ Jure (Vo0) Dot (VEO) f)0 = (), (0 <z <)

o o]
3,0
/o Gy (mv

(5.12) ‘ 242¢,1—2¢

) f(v)dv = 9(z), (z>1)

b,%-{—c,l-—-c,—b

\

is given by

1
f(z) = / \/;)'16:3/2—6,1/2+c,001+c I&,v-c,ov_c $(v)Jas (2 ’——mv) o
0
(5.13)
+/; U2+2<:J:,2°lc{2—c,1/2+c,00—36—5/2J3:;c,1,uc—1,l/)(,u)]zb (2\[1;5) dv.
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6. Concluding Remarks

It is interesting to observe that the method of Saigo operators of fractional integration
described in this article can be applied fairly easily in deriving the solution of integral equa-
tions involving H-functions and their various generalizations. This will form the subject
matter of a future communication.

Acknowledgement. The third author expresses his gratitude to the Council of Scien-
tific and Industrial Research (India) for awarding a Senior Research Fellowship to enable
him to do the present investigations. ‘
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