<table>
<thead>
<tr>
<th>Title</th>
<th>Extension problems for spinors on S^4 (State of art and perspectives of studies on nonlinear integrable systems)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>KORI, Tosiaki</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1993), 822: 62-69</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1993-03</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/83216</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Text version</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Extension problems for spinors on S^4

Tosiaki KORI

S^4 上のスピノールに対する延長問題

君島敏昭 (早大, 理工)

1. The space of spinors on S^3

Here we shall explain the complex analytic point of view of Dirac operator on S^4 and discuss the eigenvalues of Hamiltonian acting on spinors on the equator $\simeq S^3$. These were obtained in [K].

a. Let us consider two copies of complex planes C^2_z and \hat{C}^2_w and a smooth bijection $\nu : C^2_z \setminus \{0\} \to \hat{C}^2_w \setminus \{0\}$ given by $w = \nu(z) = -\frac{\overline{z}}{|z|^2}$. We patch C^2_z and C^2_w by ν to obtain a differentiable manifold $M = C^2 \sqcup \hat{C}^2$, which is homeomorphic to S^4.

We endow M with a riemannian metric defined by

$$g = \begin{cases}
(1 + |z|^2)^{-2} \sum_{i=1}^{2} dz_i \otimes d\overline{z}_i & \text{on } C^2_z \\
(1 + |w|^2)^{-2} \sum_{i=1}^{2} dw_i \otimes d\overline{w}_i & \text{on } \hat{C}^2_w
\end{cases}$$

The Levi-Civita connection on M is given by gauge potentials

$$\Gamma(z) = \frac{|z|^2}{1 + |z|^2} \sigma(z)^{-1} \cdot (d\sigma)_z \quad \text{for } z \in C^2_z$$

$$\hat{\Gamma}(w) = \frac{|w|^2}{1 + |w|^2} \sigma(w)^{-1} \cdot (d\sigma)_w \quad \text{for } w \in \hat{C}^2_w$$
where \(\sigma(z) = |z|^2 (v_z)_z \), \(v_z \) being the differential of \(v \), and \(\sigma(z)^{-1} (d\sigma)_z \) is a one-form valued in \(G = \{ X \in gl(4, \mathbb{C}) : ^t X K + K X = 0 \} \simeq o(4, \mathbb{C}), K = \begin{pmatrix} 0 & I_2 \\ I_2 & 0 \end{pmatrix} \).

On \(M \) there are a unique spin-structure \(Spin(M) \) and the associated spinor bundle \(S = Spin(M) \times \) \(Spin(4) \) \(\Delta \). \(\Delta \) is a basic representation space of \(Spin(4) \) which is the direct sum of two irreducible representations of \(\Delta^+ \) and \(\Delta^- \) each of dimension 2. Let \(S^+ \) and \(S^- \) be the corresponding bundles whose cross sections are spinors of positive (respectively negative) chirality. We shall choose a frame of \(S^\pm \) and denote the spinors in matrix form

\[
\begin{pmatrix} \phi \\ \psi \end{pmatrix} \in \Gamma(S), \quad \phi = \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} \in \Gamma(S^+), \quad \psi = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} \in \Gamma(S^-),
\]

where \(\Gamma \) signifies the sections of a bundle. The inner product of two spinors \(\phi, \varphi \in \Gamma(S^\pm) \) is defined by \(<\phi(z), \varphi(z)> = \phi_1(z) \overline{\varphi}_1(z) + \phi_2(z) \overline{\varphi}_2(z) \).

b The Dirac operator acting on the spinors is defined as the composition \(D = \mu \cdot \nabla \) where \(\nabla \) is the covariant derivative induced by the Levi-Civita connection and \(\mu \) is Clifford multiplication. The Dirac operator switches \(S^+ \) and \(S^- \) and is of the form \(D = \begin{pmatrix} 0 & D^\dagger \\ D & 0 \end{pmatrix} \) where \(D : \Gamma(S^+) \rightarrow \Gamma(S^-) \).

We gave in [K] the following matrix representation of the Dirac operator.

\[
D = \begin{pmatrix} (1 + |z|^2) \frac{\partial}{\partial z_1} - \frac{3}{2} \overline{z}_1 & -(1 + |z|^2) \frac{\partial}{\partial \overline{z}_2} + \frac{3}{2} z_2 \\ (1 + |z|^2) \frac{\partial}{\partial \overline{z}_1} - \frac{3}{2} z_1 & (1 + |z|^2) \frac{\partial}{\partial z_2} - \frac{3}{2} \overline{z}_1 \end{pmatrix}
\]

\[
D^\dagger = \begin{pmatrix} (1 + |z|^2) \frac{\partial}{\partial \overline{z}_1} - \frac{3}{2} z_1 & (1 + |z|^2) \frac{\partial}{\partial z_2} - \frac{3}{2} z_2 \\ -(1 + |z|^2) \frac{\partial}{\partial z_2} + \frac{3}{2} \overline{z}_2 & (1 + |z|^2) \frac{\partial}{\partial \overline{z}_1} - \frac{3}{2} \overline{z}_1 \end{pmatrix}
\]

We have a decomposition of \(D \) and \(D^\dagger \) to their longitudinal parts and radial parts;

\[
D = \gamma_0 (n - P), \quad D^\dagger = (n + P) \gamma_0.
\]

Here \(\gamma_0 \) signifies Clifford multiplication of the radial vector \(n \). We shall explain \(P \) soon after. First we introduce an orthonormal frame on \(M \), but here we shall write down it only on the local coordinate \(C^2 \subset M \), the formulas
on $\hat{C}^2 \subset M$ are easily obtained by the transition relation. This frame is important not only as it gives a neat expression of Dirac operators on M and on the equator $\simeq S^3$ but also as it is associated to the Lie group structure of $S^3 \simeq SU(2)$ (see c). Let
\[
\nu = \frac{1 + |z|^2}{|z|} \left(z_1 \frac{\partial}{\partial z_1} + z_2 \frac{\partial}{\partial z_2} \right) \quad \epsilon = \frac{1 + |z|^2}{|z|} \left(-\overline{z}_2 \frac{\partial}{\partial z_1} + \overline{z}_1 \frac{\partial}{\partial z_2} \right)
\]
The radial vector field is given by
\[
\mathbf{n} = \frac{1}{2} (\nu + \overline{\nu}).
\]
Put
\[
\theta_0 = \frac{1}{2\sqrt{-1}} (\nu - \overline{\nu}) \quad \theta_1 = \frac{1}{2} (\epsilon + \overline{\epsilon}) \quad \theta_2 = \frac{1}{2\sqrt{-1}} (\epsilon - \overline{\epsilon}).
\]
Then $\sqrt{2}\mathbf{n}$, $\sqrt{2}\theta_0$, $\sqrt{2}\theta_1$, $\sqrt{2}\theta_2$ form an orthonormal frame on M and θ_0, θ_1, θ_2 are tangent to the constant altitude $\{|z| = \text{const}\}$.

$\mathcal{P} : S^+ \to S^+$ is given by $\mathcal{P} = - (\gamma_0 |S^-) \sum_{i=0}^{2} \theta_i \nabla_{\theta_i}$ with γ_0 coming from Clifford multiplication of \mathbf{n}.

The matrix representation of \mathcal{P} is written as
\[
\mathcal{P} = \left(\begin{array}{cc}
-\sqrt{-1}\theta_0 & \overline{\epsilon} \\
-\epsilon & \sqrt{-1}\theta_0
\end{array} \right) + \frac{3}{2} |z| \left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right),
\]

Let $E = \{|z| = 1\}$ be the equator of M; $E \simeq S^3$. E is endowed with the riemannian metric $g|E$. Since $\text{Spin}(3)$ has the spinor representation on Δ^\pm the restrictions on E of bundle S^\pm is the spinor bundle corresponding to the spin structure $\text{Spin}(E)$. γ_0 gives the isomorphism between S^\pm. The Dirac operator on E acting on spinors of positive chirality is given by $-\gamma_0 \mathcal{P} |E$. The restriction \mathcal{P} on E is called Hamiltonian on E.

c Here we shall discuss a little about infinitesimal representations of $SU(2)$ given by the vector fields $\sqrt{-1}\theta_i$, $i = 0,1,2$. First we note the commutation relations same as those of $sl(2)$;
\[
[\sqrt{-1}\theta_0, \epsilon] = -2\epsilon, \quad [\sqrt{-1}\theta_0, \overline{\epsilon}] = 2\overline{\epsilon}, \quad [\epsilon, \overline{\epsilon}] = 4\sqrt{-1}\theta_0.
\]
We now follow the isomorphism $B \simeq S^3 \simeq SU(2)$ and look the point $z \in B$ as $\mathbf{z} = \left(\begin{array}{c}
z_1 \\
z_2 \\
\overline{z}_1
\end{array} \right) \in SU(2)$. We shall then define the right action on E
of $g \in SU(2)$ by $z \cdot g = \text{the first column of } \tilde{z} \cdot g$. Put $R_g f(z) = f(z \cdot g)$ for a continuous function f on E. Then the differentials become $dR(e_k) = -\theta_k$, $k = 0, 1, 2$, where

$$e_0 = \begin{pmatrix} \sqrt{-1} & 0 \\
0 & -\sqrt{-1} \end{pmatrix}, \quad e_1 = \begin{pmatrix} 0 & 1 \\
-1 & 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 & \sqrt{-1} \\
\sqrt{-1} & 0 \end{pmatrix}$$

are the basis of $su(2)$.

A polynomial $P(az_1, bz_2, b\overline{z}_1, a\overline{z}_2) = a^k b^l P(z_1, z_2, \overline{z}_1, \overline{z}_2)$ is called of class (k, l). The set of polynomials of class (k, l) is denoted by $S_{k,l}$. Let \mathcal{H} be the set of harmonic polynomials on C^2 and put $\mathcal{H}_{k,l} = \mathcal{H} \cap S_{k,l}$. We have $S_{k,l} = \mathcal{H}_{k,l} \oplus |z|^2 S_{k-1,l-1}$, hence $\dim \mathcal{H}_{k,l} = k + l + 1$. It follows also that, on E, every polynomial is a sum of harmonic polynomials in $\mathcal{H}_{k,l}$'s. This ensures the fact that our family of eigenspinors of Hamiltonian on E obtained later is a complete system.

Put, for $r \geq 0$ and $0 \leq k, q \leq r$,

$$h_{k,r-k}^q(z) = \epsilon^q(z_1^k z_2^{r-k}).$$

For each pair r and $k \leq r$ the set $\{h_{k,r-k}^q; q = 0, \cdots, r\}$ forms a basis of $\mathcal{H}_{k,r-k}$.

Proposition.

1. $\sqrt{-1} \theta_0 h_{k,r-k}^q = (r - 2q)h_{k,r-k}^q$
2. $\epsilon h_{k,r-k}^q = h_{k,r-k}^{q+1}$
3. $\overline{\epsilon} h_{k,r-k}^q = -4q(r - q + 1)h_{k,r-k}^{q-1}$

Hence the space of harmonic polynomials \mathcal{H} (restricted on B) is decomposed by the right action R of $SU(2)$ into $\mathcal{H} = \sum_r \sum_{k=0}^r \mathcal{H}_{k,r-k}$. Each induced representation $R_{k,r-k} = (R, \mathcal{H}_{k,r-k})$ is an irreducible representation with the highest weight k.

d Put, for $r \leq 0$, $0 \leq k \leq r$, and $0 \leq q \leq r + 1$,

$$\phi_{k,r-k}^q = \begin{pmatrix} q^{2q+1} h_{k,r-k}^{q-1} \\
-2^{q} h_{k,r-k}^q \end{pmatrix}.$$
Then we have from the matrix representation of the Hamiltonian and the Proposition in c;

$$\mathcal{P}\phi_{k,r-k}^{q} = (r + \frac{3}{2})\phi_{k,r-k}^{q}.$$

Thus the positive eigenvalues and eigenfunctions of \mathcal{P} are obtained. In particular the multiplicity of the eigenvalue r is $(r + 1)(r + 2)$.

The investigation of negative eigenspinors is related to the left action of $SU(2)$ on the harmonic polynomials. The left action of a $g \in SU(2)$ on E is defined by $g \cdot z = \text{the first column of } g \cdot \bar{z}$. Let $L_g f(z) = f(g^{-1} \cdot z)$ for a continuous function on E.

We introduce the following vector fields on $M - \{0, \hat{0}\}$, that have the following local expressions on $C^2 - \{0\}$:

$$\mu = \frac{1 + |z|^2}{|z|} (z_2 \frac{\partial}{\partial z_2} + \overline{z}_1 \frac{\partial}{\partial \overline{z}_1}), \quad \delta = \frac{1 + |z|^2}{|z|} (\overline{z}_2 \frac{\partial}{\partial \overline{z}_2} - z_1 \frac{\partial}{\partial z_1}).$$

$$\tau_0 = \frac{1}{2\sqrt{-1}} (\mu - \overline{\mu}), \quad \tau_1 = \frac{1}{2} (\delta + \overline{\delta}), \quad \tau_2 = \frac{1}{2\sqrt{-1}} (\delta - \overline{\delta}).$$

We have $dL(e_i) = -\tau_i |E|; \quad i = 0, 1, 2$.

Let

$$\hat{h}_{q}^{r-k,k}(z) = \delta^q (\overline{z}_1^k z_2^{r-k}).$$

$\{\hat{h}_{q}^{l,k}; q = 0, \cdots, r\}$ give a basis of $\hat{\mathcal{H}}^{l,k}$: the space of harmonic polynomials that satisfy the condition $P(az_1, az_2, b\overline{z}_1, b\overline{z}_2) = a^l b^k P(z_1, z_2, \overline{z}_1, \overline{z}_2)$. Put, for $r \geq 0, 0 \leq k \leq r$, and $0 \leq q \leq r+1$,

$$\pi_{q}^{r-k,k}(z; k) = \begin{pmatrix} 2^{-q} \hat{h}_{q}^{r-k+1,k} \\ 2^{-q} \hat{h}_{q}^{r-k,k+1} \end{pmatrix}.$$

By an easy calculus we have

$$\mathcal{P}\pi_{q}^{r-k,k} = -(r + \frac{3}{2})\pi_{q}^{r-k,k}.$$

Thus we have
The eigenvalues of \mathcal{P} are $\pm \left(\frac{3}{2} + r\right)$; $r = 0, 1, 2, \ldots$ with multiplicity $(r + 1)(r + 2)$, in particular, there is no zero mode spinor of \mathcal{P} and the spectrum are symmetric relative to 0.

Here we note corresponding subjects on the other coordinate neighborhood \hat{C}_w^2. The transition function to describe the bundle $Spin(M)$ is $-t(\gamma_0) = -\overline{\gamma_0}$ and a spinor on M is a pair of $\varphi(z) \in \Gamma(C^2_z \times \Delta)$ and $\hat{\varphi}(w) \in \Gamma(\hat{C}^2 \times \Delta)$ that are patched by $\hat{\varphi}(v(z)) = -(\gamma_0 \varphi)(z))$. The matrix representations of the Dirac operator on $\hat{C}^2 \subset M$ has the same form as those in (1-5) but the first and the second are changed since a section on \hat{C}^2 of the bundle S^+ (resp. S^-) is valued in \triangle^- (resp. \triangle^+). This is "CPT"-theorem. The counterpart of \mathcal{P} is defined as $\mathcal{P} = (\gamma_0|S^+\underline{)}\sum \theta_1 \nabla_{\theta\underline{:}}$ acting on $\hat{\varphi} \in \Gamma(\hat{C}^2_w \times \Delta^-)$. For $a \varphi \in \Gamma(C^2_z \times \Delta^+)$, we have $D\varphi \wedge = D\varphi$ and $\mathcal{P}\varphi = \mathcal{P}\varphi \wedge$.

2 Extension of spinors from the equator

Let H be the space of square integrable spinors of positive chirality on E. Let H_{\pm} be the closed subspace of H spanned by the eigenvectors ϕ_λ corresponding to the positive (resp. negative) eigenvalues λ of \mathcal{P}.

Put $c(r, q, k) = \left(\frac{q!k!(r-k)!}{(r+1-q)!}\right)^{-\frac{1}{2}}$. Then a complete orthonormal system of eigenspinors of \mathcal{P} is given by

$$\{c(r, q, k)\phi_{k,r-k}^q, c(r, q, k)\pi_{r-k,k}^q; r \geq 0, 0 \leq k \leq r, 0 \leq q \leq r+1\}.$$

Take an eigenspinor φ_λ and extend it by $\Phi_\lambda(z) = r_\lambda(|z|)\varphi_\lambda(\frac{z}{|z|})$ to C^2, where $r_\lambda(t) = t^{\lambda - \frac{3}{2}}(1 + t^2)^{\frac{3}{2}}$. Then $\Phi_\lambda(z)$ is a zero-mode spinor of D on C^2. This is proved by the following calculus:

$$D\Phi_\lambda(z) = \gamma_0(n - \mathcal{P})(\Phi_\lambda(z))$$

$$= \gamma_0 \left((1 + |z|^2)r_\lambda'(|z|) - (\lambda - \frac{3}{2}) \frac{1 + |z|^2}{|z|}r_\lambda(|z|) - 3|z|r_\lambda(|z|) \right) \varphi_\lambda(z)$$

But $r_\lambda(t)$ satisfies the equation

$$(1 + t^2)r_\lambda'(t) - (\lambda - \frac{3}{2}) \frac{1 + t^2}{t}r_\lambda(t) - 3tr_\lambda(t) = 0.$$

Therefore $D\Phi_\lambda = 0$.

Let $\mathcal{N}(U)$ (resp. $\mathcal{N}^\dagger(U)$) be the space of zero-mode spinors of Dirac operator D (resp. D^\dagger) on U that have L^2-boundary values.
Theorem 2 [K]. Let $R = \{ z \in C^2; \, |z| < 1 \}$ and $\hat{R} = \{ w \in \hat{C}^2; \, |w| < 1 \}$.

1. H_+ is isomorphic to $\mathcal{N}(R)$,
2. H_- is isomorphic to $\mathcal{N}(\hat{R})$,
3. Every spinor in H is equal to the difference of the restrictions of zero mode spinors on R and on \hat{R}.

Proof: Let $\varphi \in H_+$ and expand it in $\varphi = \sum_{\lambda>0} a_\lambda \phi_\lambda$. The spinor on R; $\Phi(z) = \sum_{\lambda>0} a_\lambda \Phi_\lambda(z)$ is well defined. In fact, consider the finite sum; $\Phi_m = \sum_{\lambda=m+\frac{3}{2}}^{n} a_\lambda \Phi_\lambda$. Then $\langle \Phi_m^n, \Phi_m \rangle (z)$ is subharmonic on R and is dominated by some constant multiple of its L^2-norm on E, hence converges there to 0 compact uniformly as m, n tend to infinity. If we note the fact that each component of Φ is harmonic we see that it has L^2-boundary value. Conversely let $\Phi \in \mathcal{N}(R)$ and let φ be its restriction to E. We can show that the eigenfunction expansion of φ by $\{\phi_\lambda\}$ can not contain the term with $\lambda < 0$ and $\varphi \in H_+$. As for (2) consider the function $r_{-\mu}(t) = t^{\mu - \frac{3}{2}}(1 + t^2)^{\frac{3}{2}}$, $t \geq 0$, where $-\mu = -r - \frac{3}{2}$, $r = 0, 1, \cdots$ and do the same argument as in (1).

Relations in e transform the result to that on \hat{R}.

b Let H^* be the space of square integrable spinors of negative chirality on E. γ_0 switches H and H^*: $(\gamma_0|S^+)H = H^*$, $(\gamma_0|S^-)H^* = H$. We shall define $H^*_+ = (\gamma_0|S^+)H_+$ and $H^*_- = (\gamma_0|S^+)H_-^*$.

Let $\psi^* \in H^*_-$ and suppose that $\psi = (\gamma_0|S^-)\psi^*$ is an eigenspinor belonging to a negative eigenvalue $\lambda = -(r + \frac{3}{2})$. Let $\Psi(z) = s_\lambda(|z|)\psi(\frac{z}{|z|})$, where $s_\lambda(t) = (\lambda - \frac{3}{2})(\frac{1 + t^2}{1 + t^2})^\frac{3}{2}$. Then as before we can verify that $\Psi(z)$ extend ψ to C^2, $\Psi(0) = 0$ and $D^\uparrow \psi^* = (\mathbf{n} + \mathcal{P})\gamma_0 \psi^* = (\mathbf{n} + \mathcal{P})\psi = 0$.

Thus in the same manner as in Theorem 2 we have the following;

Theorem 3.

1. H^*_- is isomorphic to $\{ \phi \in \mathcal{N}^\uparrow(R); \phi(0) = 0 \}$,
2. H^*_+ is isomorphic to $\{ \psi \in \mathcal{N}^\uparrow(\hat{R}); \psi(\hat{0}) = 0 \}$,
3. Every spinor in H^* is equal to the difference of the restrictions of zero mode spinors on R and on \hat{R}.

c From the definition $\langle \phi, \psi \rangle = 0$ for all $\phi \in H$ and $\psi \in H^*$.

Let ϕ and ψ be spinors on $R = \{|z| \leq 1 \}$, Stokes' theorem stats;

$$\int_R \frac{1}{(1 + |z|^2)^4} (\langle D\phi, \psi \rangle + \langle \phi, D^\uparrow \psi \rangle) dV = \frac{1}{8} \int_E \langle \phi, \gamma_0 \psi \rangle d\sigma.$$
Theorems 2, 3 and Stokes’ theorem yield immediately that
\[\int_E \langle \phi, \gamma_0 \psi \rangle d\sigma = 0 \quad \text{for} \ \phi \in H_+, \ \psi \in H_-^*. \]

Similarly
\[\int_E \langle \phi, \gamma_0 \psi \rangle d\sigma = 0 \quad \text{for} \ \phi \in H_-, \ \psi \in H_+^*. \]

The coupling between \(H_{\pm}^* \) and \(H_{\mp} \) does not vanish and is important to construct the geometric model of conformal field theory on \(S^4 \) which will be treated in the next paper.

Actually eigenspinors \(\phi_{\lambda}; \lambda > 0 \) are extended to \(\mathcal{N}(C^2) \) and those for \(\lambda < 0 \) are extended to \(\mathcal{N}(\hat{C}^2) \). We list here a table of expansion formula for \(\phi_{\lambda}, \phi_{\lambda}^* = \gamma_0 \phi_{\lambda} \) for \(\lambda > 0 \) and \(\pi_{\lambda}, \pi_{\lambda}^* = \gamma_0 \pi_{\lambda} \) for \(\lambda < 0 \).

1. \(\Phi_{\lambda}(z) = |z|^{-\frac{3}{2}} \left(\frac{1+|z|^2}{2} \right)^{\frac{3}{2}} \phi_{\lambda}(\frac{z}{|z|}) \in \mathcal{N}(C^2), \ \lambda > 0 \) and \(\Phi_{\lambda}(z) = \phi_{\lambda}(z) \) for \(|z| = 1 \).

2. \(\overline{\Phi_{\lambda}^*}(w) = |w|^{\lambda+\frac{3}{2}} \left(\frac{2}{1+|w|^2} \right)^{\frac{3}{2}} \overline{\phi_{\lambda}^*}(\frac{w}{|w|}) \in \mathcal{N}_0^\dagger(\hat{C}^2), \ \lambda > 0 \) and \(\overline{\Phi_{\lambda}^*}(-\overline{z}) = -\gamma_0 \phi_{\lambda}^*(z) \) for \(|z| = 1 \).

3. \(\hat{\Pi}_{\lambda}(w) = |w|^{-\lambda-\frac{3}{2}} \left(\frac{1+|w|^2}{2} \right)^{\frac{3}{2}} \pi_{\lambda}(\frac{w}{|w|}) \in \mathcal{N}(\hat{C}^2), \ \lambda < 0 \) and \(\hat{\Pi}_{\lambda}(-\overline{z}) = -\gamma_0 \pi_{\lambda}(z) \) for \(|z| = 1 \).

4. \(\Pi_{\lambda}^*(z) = |z|^{-\lambda+\frac{3}{2}} \left(\frac{2}{1+|z|^2} \right)^{\frac{3}{2}} \pi_{\lambda}^*(\frac{z}{|z|}) \in \mathcal{N}_0^\dagger(C^2), \ \lambda < 0 \) and \(\Pi_{\lambda}^*(z) = \pi_{\lambda}^*(z) \) for \(|z| = 1 \).

References

[K] Kori, T., Dirac operators on \(S^4 \) and on \(S^3 \). Infinite dimensional Grassmanian on \(S^3 \).

University of Waseda, Shinjuku-ku, Tokyo