A Remark on Nowhere Dense Closed P-Sets

Jian-Ping Zhu 朱建平

Abstract. Using the methods from continua theory of R^* , we prove that NCF implies that ω^* can be covered by an increasing sequence of nowhere dense closed P-sets.

1980 Math. Subj. Class (1985 Revision): 54D40, 54F20.

Key words: ω^* , R^* , continuum, P-set and NCF.

Kunen, van Mill and Mills proved in [4] that no compact space of weight 2^{ω} can be covered by nowhere dense closed P-sets under CH. It was proved in [1] that, in the model obtained by adding ω_1 Cohen reals to a model of MA+7CH, ω^* can be covered by nowhere dense closed P-sets. It is not difficult to show that the axiom of near coherence of filters, abbreviated as NCF (See [2]), implies that ω^* can be covered by nowhere dense closed P-sets. Our purpose in this note is to strengthen the conclusion as follows:

Theorem 1. NCF implies that ω^* can be covered by an increasing sequence of nowhere dense closed P-sets.

Our way is to use the methods from continua theory of R^* to guarantee an induction construction going smoothly through the limit steps. Acturally, we shall prove, (See also Corollary 5.7 in [5]).

Theorem 2. NCF is equivalent to that $\beta[0,\infty)-[0,\infty)$ can be covered by a strictly increasing sequence of subcontinua which are nowhere dense P-sets.

It is not difficult to show that if ω^* can be covered by nowhere dense closed P-sets then so can R^* (See Corollary 4). But the author don't know whether or not the converse is true.

we refer to [2] for the background on NCF and [5] for continua theory of $\ensuremath{R^*}$.

Let Ω be the collection of all families of infinite discrete non-degenerate closed interval of the half real line $[0,\infty)$. For $\mathscr{I}\in\Omega$, we let $i:\omega\longrightarrow\mathscr{I}$ be the bijection such that i(n)< i(n+1) for $n\in\omega$, where i(n)< i(n+1) means that r< s for all $(r,s)\in i(n)\times i(n+1)$. Let $i:\cup\mathscr{I}\longrightarrow\omega$ be such that i(x)=n if and only if $x\in i(n)$. Let β i be the Stone-Čech extension of i from $\mathrm{cl}_{\beta R}(\cup\mathscr{I})$ to $\beta\omega$. For $\mathrm{BC}\omega^*$, we define

$$M(\mathcal{I}, B) = \beta i^{-1}(B)$$

and, if B={u}, than $M(\mathcal{F}, \{u\})$ is denoted by $M(\mathcal{F}, u)$. It is well-known that $M(\mathcal{F}, u)$ is a continuum for any $u \in \omega^*$. Moreover, a subcontinuum C of $\beta[0,\infty)-[0,\infty)$ is called a standard continuum if $C=M(\mathcal{F}, u)$ for some $\mathcal{F} \in \Omega$ and $u \in \omega^*$. Note that every proper subcontinuum of $\beta[0,\infty)-[0,\infty)$ is nowhere dense since $\beta[0,\infty)-[0,\infty)$ is an indecomposable continuum.

Recall that a subset B of a space X is called a P-set

provided that the intersection of countably many neighbourhoods of B is again a neighbourhood of B. A point x of X is called a P-point if the singleton $\{x\}$ is a P-set.

For an open set U of a metric space X, we let $O(U) = \{x \in \beta X : \beta \in (F \subset U)\}$. Then $\{O(U) : U \text{ is open in } X\}$ is a base for $\beta \in (G \cup U)$ is the set of all infinite subsets of ω . As usual, $O(A) \cap \omega^*$ is denoted by A^* for $A \in [\omega]^{\omega}$.

For $\mathscr{I}, \mathscr{I}' \in \Omega$, we say that \mathscr{I}' is an expander of \mathscr{I} if $\iota(n)$ is contained in the interior of $\iota'(n)$ for all $n \in \omega$.

Lamma 3. B= ω^* is a nowhere dense closed P-set if and only if $M(\mathcal{F},B)$ is a nowhere dense closed P-set of $\beta[0,\infty)-[0,\infty)$ for $\mathcal{F}\in\Omega$.

Proof. Assume that $M(\mathcal{F},B)$ is a nowhere dense closed P-set of $\beta[0,\infty)-[0,\infty)$. It is easily seen that B is nowhere dense closed in ω^* . Let $\mathscr{F}'\in\Omega$ be an expander of \mathscr{F} . Then $M(\mathscr{F},B)$ is a P-set of $\mathrm{cl}_{\beta R}(\cup\mathscr{F}')$. Suppose that $\{A_n^*:n\in\omega\}$ is a family of countably many neighbourhoods of B. Then $\{\beta\,\dot{\mathfrak{i}}\,^{\prime}\,^{-1}(A^*):n\in\omega\}$ is a family of neighbourhoods of $M(\mathscr{F},B)$. Therefore, there is a basic open set O(U) such that $M(\mathscr{F},B)\subset O(U)\cap R^*\subset\beta\,\dot{\mathfrak{i}}\,^{\prime}\,^{-1}(A_n^*)$ for all $n\in\omega$. Note that, for $u\in\omega^*$, $M(\mathscr{F},u)=\bigcap\{\mathrm{cl}_{\beta R}(\cup\mathscr{F}):\dot{\iota}^{-1}(\mathscr{F})\in u\}$. Therefore, for each $u\in B$, there is $A_u\in U$ such that $\bigcup\{\dot{\iota}(n):n\in A_u\}\subset U$. Let $A=\{\dot{\iota}^{-1}(I):I\in\mathscr{F} \text{ and }I\subset U\}$. Then $A_u\subset A$ for $u\in B$. So A^* is a neighbourhood of B. Since $O(U)\cap R^*\subset\beta\,\dot{\mathfrak{i}}\,^{\prime}\,^{-1}(A_n)$,

we have that $A^* \subset A_n^*$ for all $n \in \omega$.

Assume that B is a nowhere dense closed P-set of ω^* . Let O(U) be a basic open set of βR and $O(U) \cap M(\mathcal{I}, B) \neq \emptyset$. Let A= $\{n\in\omega:\iota(n)\cap U\neq\emptyset\}$. Then $A\in[\omega]^{\omega}$. Since B is nowhere dense, there is $A_1 \in [\omega]^{\omega}$ such that $A_1 \subset A$ and $A_1^* \cap B = \emptyset$. Therefore, $M(\mathcal{I}, A_1^*) \cap B$ $M(\mathcal{I}, B) = \emptyset$. But $O(U) \cap M(\mathcal{I}, A_1^*) \neq \emptyset$. So $O(U) \cap R^* \setminus M(\mathcal{I}, B) \neq \emptyset$. It follows that $M(\mathcal{I}, B)$ is nowhere dense. Suppose that $\{O(U_n) : n \in \omega\}$ is a family of neighbourhoods of $M(\mathcal{I}, B)$. Let $A_n = \{i(I) : I \in \mathcal{I} \text{ and } I \subset U_n\}$ $n \in \omega$. As we showed in the last paragraph, A_n^* is a neighbourhood of B for all $n \in \omega$. Since B is a P-set, there is $A {\in} \left[\omega\right]^{\omega} \quad \text{such that} \quad B {\subset} A^{\bigstar} \quad \text{and} \quad A^{\bigstar} {\subset} A_{n} \quad \text{for all} \quad n {\in} \omega \,. \ \ \text{We choose a}$ strictly increasing sequence $\{m_n^{}:n\in\omega\}$ of integers so that for each $n \in \omega$ $A \setminus m_n \subset A_n$ and $[m_n, m_{n+1}) \cap A \neq \emptyset$, where $[m_n, m_{n+1}]$ = $\{i \in \omega : m_n \le i < m_{n+1}\}$. For each $i \in [m_n, m_{n+1}) \cap A$, let J_i be an open interval of R such that $\iota(i)\subset J_i\subset U_n$. Let $V=\bigcup\{J_n:n\in A\setminus m_0\}$. Then $\texttt{M}(\mathcal{I},\texttt{B}) \subset \texttt{M}(\mathcal{I},\texttt{A}^{\bigstar}) \subset \texttt{O}(\texttt{V}) \quad \text{ and } \quad \texttt{O}(\texttt{V}) \subset \texttt{O}(\texttt{U}_{\texttt{n}}) \quad \text{ for } \texttt{n} \in \omega \,. \quad \texttt{This completes}$ the proof of Lemma 3.

Since we can easily choose $\mathcal{I}, \mathcal{I}' \in \Omega$ such that $\cup (\mathcal{I} \cup \mathcal{I}') = [0, \infty)$ and R^* is the topological sum of $\beta(-\infty, 0] - (-\infty, 0]$ and $\beta[0, \infty) - [0, \infty)$, we have

Corollary 4. If ω^* can be covered by nowhere dense closed P-sets, then so can R^* .

Blass proved in [2] that, under NCF, for any $u \in \omega^*$ there is a finite-to-one non-decreasing function $f:\omega \to \omega$ such that $v = \beta f(u)$ is a P-point. It is easily seen that $\beta f^{-1}(v)$ is a nowhere dense closed P-set of ω^* and $u \in \beta f^{-1}(v)$. Therefore, NCF implies that ω^* can be covered by nowhere dense closed P-sets. Our purpose is to sharpen the conclusion so that ω^* can be covered by an increasing sequence of nowhere dense closed P-sets under NCF.

We regard ω^* as a subspace of $\beta[0,\infty)$ - $[0,\infty)$. The following lemma is an easy observation.

Lemma 5. If $u \in \omega^*$ is a P-point, then $M(\mathcal{I}, u) \cap \omega^*$ is a nowhere dense closed P-set of ω^* for $\mathcal{I} \in \Omega$.

Proof. Let $X=\omega\cap(\cup \mathcal{F})$ and $Y=\{i^{-1}(I):I\cap\omega\neq\emptyset\}$. If $Y\notin u$, then, $M(\mathcal{F},u)\cap\omega^*=\emptyset$. So we assume that $Y\in u$. We define a finite to one function $f:X\longrightarrow Y$ from X onto Y by f(n)=m if and only if $n\in i(m)$. Then $M(\mathcal{F},u)\cap\omega^*=\beta f^{-1}(u)$. Since $\beta f^{-1}(u)$ is a nowhere dense closed P-set in X^* , $M(\mathcal{F},u)\cap\omega^*$ is a nowhere dense closed P-set in ω^* .

By Lemma 3 and 5, our Theorem 1 and 2 follows easily from the following theorem.

Theorem 2'. NCF is equivalent to that there is a family $\{({\it f}_{\alpha},u_{\alpha})\!:\!\alpha\!<\!\lambda\}\quad \text{such that}$

- (1) $f_{\alpha} \in \Omega$ and $u_{\alpha} \in \omega^*$ is a P-point for all $\alpha < \lambda$;
- (2) $M(\mathcal{I}_{\alpha}, \mathbf{u}_{\alpha}) \subset M(\mathcal{I}_{\beta}, \mathbf{u}_{\beta})$ for all $\alpha < \beta < \lambda$;
- $(3) \quad \beta \left[\left[\left. 0 \right., \infty \right) \left[\left. 0 \right., \infty \right) \right] = \bigcup \left\{ \mathsf{M} \left(\mathcal{I}_{\alpha} \right., \mathbf{u}_{\alpha} \right) : \alpha < \lambda \right\}.$

Theorem 2' will be proved along the line of the proof of Corollary 5.7 in [5]. We first recall some properties of NCF and standard continua. We refer to [2] and [5] for details.

A subset C of a continuum K is a composant if, for some point $p \in C$, C is the set of all points x such that there is a proper subcontinuum of K containing both p and x. It is well-known that NCF is equivalent to that $\beta[0,\infty)-[0,\infty)$ is a composant of itself (See [3]). Therefore, our conditions in Theorem 2' implies NCF.

Recall that there is a natural partial order $<_u^{\mathcal{F}}$ on $M(\mathcal{F},u)$ for $\mathcal{F} \in \Omega$ and $u \in \omega^*$, defined as follows: For any $x, y \in M(\mathcal{F}, u)$,

 $x<_u^{f}y$ if there are $F\in x$ and $H\in y$ such that $\{i^{-1}(I): I\in f \text{ and } F\cap I< H\cap I\}\in u$,

For $x \in M(\mathcal{I}, u)$, we let

 $[x]_{u}^{\mathscr{I}} = \{y \in M(\mathscr{I}, u) : y \text{ is } <_{u}^{\mathscr{I}} - \text{incomparable with } x \text{ or } y = x\}.$

 $[x]_u^{\mathscr{I}}$ is called a layer of $M(\mathscr{I},u)$. It is well-known that layers are indecomposable subcontinua of $M(\mathscr{I},u)$ and every indecomposable subcontinuum of $M(\mathscr{I},u)$ is contained in a layer.

Lemma 6 (Corollary 2.11 in [5]). Let C and D be subcontinua of R^* . If one of them is indecomposable, then $C\subset D$, $D\subset C$ or $C\cap D=\emptyset$.

A point $u \in \omega^*$ is a Q-point if every finite-to-one function from ω to ω is one-to-one on a set in u. By Proposition 5.1 in [5], it is equivalent to require the functions in the definition of Q-points to be non-decreasing. Blass proved in [2] that NCF implies that there is no Q-points.

Lemma 7. Under NCF, for every proper subcontinuum C of $\beta[0,\infty)-[0,\infty)$, there is a standard continuum M(f,u) and a layer T of M(f,u) such that $C\subset T$ and M(f,u) is a nowhere dense P-set of $\beta[0,\infty)-[0,\infty)$.

Proof. Since every proper subcontinuum of $\beta[0,\infty)-[0,\infty)$ is contained in a standard subcontinuum, we assume that $C\subset M(\mathscr{I}_1,u_1)$ for some $\mathscr{I}_1\in\Omega$ and $u\in\omega^*$. Since NCF implies that there is no

Q-points, there is a finite-to-one non-decreasing function $f:\omega\to\omega$ which witnesses that u_1 is not a Q-point. We define $\mathscr{I}_2=\{I_n:n\in\omega\}$ as follows: I_n is the convex hull of the set $\bigcup\{\iota_1(m):m\in f^{-1}(n)\}$. Let $u_2=f(u_1)$. Then, $M(\mathscr{I}_1,u_1)\subset M(\mathscr{I}_2,u_2)$. Moreover, for any $x,y\in M(\mathscr{I}_1,u_1)$, x and y are $<_{u_2}^{\mathscr{I}_2}$ -incomparable or x=y. Therefore, $M(\mathscr{I}_1,u_1)$ is contained in a layer T' of $M(\mathscr{I}_2,u_2)$. By NCF, there is a finite-to-one non-decreasing function $g:\omega\to\omega$ such that $u=g(u_2)$ is a P-point. By the same method as above, we can find $\mathscr{I}\in\Omega$ such that $M(\mathscr{I}_2,u_2)\subset M(\mathscr{I},u)$. Since T' is an indecomposable subcontinuum of $M(\mathscr{I},u)$, there is a layer T of $M(\mathscr{I},u)$ such that $C\subset T'\subset T$. By Lemma 3, $M(\mathscr{I},u)$ is a nowhere dense P-set of $\mathscr{I}[0,\infty)-[0,\infty)$.

- (a) u_{α} is a P-point for all $\alpha \ge 0$;
- (b) $M(\mathcal{I}_{\alpha}, u_{\alpha}) \subset T_{\beta}$ for $\alpha < \beta$.

Our induction process will stop at some λ if $\beta[0,\infty)-[0,\infty)=\bigcup\{M(\mathcal{I}_{\alpha},u_{\alpha}):\alpha<\lambda\}$. Suppose that we have defined \mathcal{I}_{β} , u_{β} and T_{β} for all $\beta<\alpha$ satisfying (a) and (b). If $\alpha=0$ or $\gamma+1$, then, by Lemma 7, we can easily define \mathcal{I}_{α} , u_{α} and T_{α} satisfying (a) and (b). Assume that $\alpha\neq 0$ is a limit and $\beta[0,\infty)-[0,\infty)$ is not covered by $\{M(\mathcal{I}_{\beta},u_{\beta}):\beta<\alpha\}$. Note that by (b) $\bigcup\{M(\mathcal{I}_{\beta},u_{\beta}):\beta<\alpha\}=0$

 $\bigcup \{T_{\beta} : \beta < \alpha\} \quad \text{since} \quad \alpha \quad \text{is a limit. Take} \quad x,y \in \beta[0,\infty) - [0,\infty) \quad \text{such that} \quad x \in T_0 \quad \text{and} \quad y \notin T_{\beta} \quad \text{for all} \quad \beta < \alpha. \text{ By NCF, there is a proper subcontinuum } C \quad \text{of} \quad \beta[0,\infty) - [0,\infty) \quad \text{containing both} \quad x \quad \text{and} \quad y.$ By Lemma 6, $T_{\beta} \subset C \quad \text{for all} \quad \beta < \alpha. \text{ By Lemma 7, there is} \quad \mathcal{F}_{\alpha} \in \Omega,$ $u_{\alpha} \in \omega^* \quad \text{and a layer} \quad T_{\alpha} \quad \text{of} \quad M(\mathcal{F}_{\alpha}, u_{\alpha}) \quad \text{such that} \quad C \subset T_{\alpha} \quad \text{and} \quad u_{\alpha}$ is a P-point. This completes our inductive construction. Since $\{M(\mathcal{F}_{\alpha}, u_{\alpha}) : \alpha \geq 0\} \quad \text{is a strictly increasing sequence, our induction process can not go over } |R^*| \quad \text{steps. This completes the proof of Theorem 2'.}$

References

- [1] B. Balcar, R. Frankiewicz and C. Mills, More on nowhere dense closed P-sets, Bull. L'Acad. Pol. Sci. 28 (1980) 295-299.
- [2] A. Blass, Near coherence of filters I, Notre Dame J. Formal Logic, 27(1986), 579-591.
- [3] ——, Near coherence of filters II, Trans. Amer. Math. Soc. 300(1987), 557-581,
- [4] K. Kunen, J. van Mill and C. F. Mills, On nowhere dense closed P-sets, Proc. Amer. Math. Soc. 78(1980),119-123.
- [5] J. P. Zhu, Continua in R*, Top. Appl. to appear.