<table>
<thead>
<tr>
<th>Title</th>
<th>A Remark on Nowhere Dense Closed P-Sets (General Topology, Geometric Topology and Related Problems)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Zhu, Jian-Ping</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1993), 823: 91-100</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1993-03</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/83226</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
A Remark on Nowhere Dense Closed P-Sets

Jian-Ping Zhu 朱建平

Abstract. Using the methods from continua theory of R^*, we prove that NCF implies that ω^* can be covered by an increasing sequence of nowhere dense closed P-sets.

Key words: ω^*, R^*, continuum, P-set and NCF.
Kunen, van Mill and Mills proved in [4] that no compact space of weight 2^ω can be covered by nowhere dense closed P-sets under CH. It was proved in [1] that, in the model obtained by adding ω_1 Cohen reals to a model of MA+\negCH, ω^* can be covered by nowhere dense closed P-sets. It is not difficult to show that the axiom of near coherence of filters, abbreviated as NCF (See [2]), implies that ω^* can be covered by nowhere dense closed P-sets. Our purpose in this note is to strengthen the conclusion as follows:

Theorem 1. NCF implies that ω^* can be covered by an increasing sequence of nowhere dense closed P-sets.

Our way is to use the methods from continua theory of R^* to guarantee an induction construction going smoothly through the limit steps. Actually, we shall prove, (See also Corollary 5.7 in [5]).

Theorem 2. NCF is equivalent to that $\mathbb{B}[0,\omega)-[0,\omega)$ can be covered by a strictly increasing sequence of subcontinua which are nowhere dense P-sets.
It is not difficult to show that if ω^* can be covered by nowhere dense closed \mathbb{P}-sets then so can \mathbb{R}^* (See Corollary 4). But the author don't know whether or not the converse is true.

Let Ω be the collection of all families of infinite discrete non-degenerate closed interval of the half real line $[0,\omega)$. For $\mathcal{J} \in \Omega$, we let $i : \omega \rightarrow \mathcal{J}$ be the bijection such that $i(n) < i(n+1)$ for $n \in \omega$, where $i(n) < i(n+1)$ means that $r < s$ for all $(r, s) \in i(n) \times i(n+1)$. Let $i : \mathcal{U} \rightarrow \omega$ be such that $i(x) = n$ if and only if $x \in i(n)$. Let βi be the Stone-Čech extension of i from $\text{cl}_{\beta \mathbb{R}}(\mathcal{U})$ to $\beta \omega$. For $B \subseteq \omega^*$, we define

$$M(\mathcal{J}, B) = \beta i^{-1}(B)$$

and, if $B = \{u\}$, then $M(\mathcal{J}, \{u\})$ is denoted by $M(\mathcal{J}, u)$. It is well-known that $M(\mathcal{J}, u)$ is a continuum for any $u \in \omega^*$. Moreover, a subcontinuum C of $\beta[0,\omega)-[0,\omega)$ is called a standard continuum if $C = M(\mathcal{J}, u)$ for some $\mathcal{J} \in \Omega$ and $u \in \omega^*$. Note that every proper subcontinuum of $\beta[0,\omega)-[0,\omega)$ is nowhere dense since $\beta[0,\omega)-[0,\omega)$ is an indecomposable continuum.

Recall that a subset B of a space X is called a \mathbb{P}-set
provided that the intersection of countably many neighbourhoods of \(B \) is again a neighbourhood of \(B \). A point \(x \) of \(X \) is called a P-point if the singleton \(\{x\} \) is a P-set.

For an open set \(U \) of a metric space \(X \), we let \(O(U) = \{x \in B\cdot X : \exists F \in X(F \subseteq U)\} \). Then \(\{O(U): U \text{ is open in } X\} \) is a base for \(B\cdot X \). \([\omega]^\omega\) is the set of all infinite subsets of \(\omega \). As usual, \(O(A) \cap \omega^* \) is denoted by \(A^* \) for \(A \in [\omega]^\omega \).

For \(\mathcal{J}, \mathcal{J}' \in \Omega \), we say that \(\mathcal{J}' \) is an expander of \(\mathcal{J} \) if \(i(n) \) is contained in the interior of \(i'(n) \) for all \(n \in \omega \).

Lemma 3. \(B \in \omega^* \) is a nowhere dense closed P-set if and only if \(M(\mathcal{J}, B) \) is a nowhere dense closed P-set of \(\beta([0, \omega) - [0, \omega) \) for \(\mathcal{J} \in \Omega \).

Proof. Assume that \(M(\mathcal{J}, B) \) is a nowhere dense closed P-set of \(\beta([0, \omega) - [0, \omega) \). It is easily seen that \(B \) is nowhere dense closed in \(\omega^* \). Let \(\mathcal{J}' \in \Omega \) be an expander of \(\mathcal{J} \). Then \(M(\mathcal{J}, B) \) is a P-set of \(\text{cl}_{\beta \cdot R}(\mathcal{U}\mathcal{J}') \). Suppose that \(\{A^*_n : n \in \omega\} \) is a family of countably many neighbourhoods of \(B \). Then \(\{i^{-1}(A^*_n) : n \in \omega\} \) is a family of neighbourhoods of \(M(\mathcal{J}, B) \). Therefore, there is a basic open set \(O(U) \) such that \(M(\mathcal{J}, B) \subseteq O(U) \cap R^* \subseteq \beta i^{-1}(A^*_n) \) for all \(n \in \omega \). Note that, for \(u \in \omega^* \), \(M(\mathcal{J}, u) = \wedge \{\text{cl}_{\beta \cdot R}(\mathcal{U}\mathcal{J}) : i^{-1}(\mathcal{J}) \in u\} \). Therefore, for each \(u \in B \), there is \(A_u \in \mathcal{U} \) such that \(\bigcup \{i(n) : n \in A_u\} \subseteq U \). Let \(\mathcal{A} = \{i^{-1}(I) : I \in \mathcal{J} \text{ and } I \subseteq U\} \). Then \(A_u \subseteq \mathcal{A} \) for \(u \in B \). So \(A^* \) is a neighbourhood of \(B \). Since \(O(U) \cap R^* \subseteq \beta i^{-1}(A_n) \),
we have that $A^* \subseteq A_n^*$ for all $n \in \omega$.

Assume that B is a nowhere dense closed P-set of ω^*. Let $O(U)$ be a basic open set of B and $O(U) \cap M(\mathcal{F}, B) \neq \emptyset$. Let $A = \{ n \in \omega : \mathcal{I}(n) \cap U \neq \emptyset \}$. Then $A \in [\omega]^\omega$. Since B is nowhere dense, there is $A \in [\omega]^\omega$ such that $A \subseteq A$ and $A \cap B = \emptyset$. Therefore, $M(\mathcal{F}, A^*) \cap M(\mathcal{F}, B) = \emptyset$. But $O(U) \cap M(\mathcal{F}, A^*) \neq \emptyset$. So $O(U) \cap R^* \subseteq M(\mathcal{F}, B) \neq \emptyset$. It follows that $M(\mathcal{F}, B)$ is nowhere dense. Suppose that $\{ O(U_n) : n \in \omega \}$ is a family of neighbourhoods of $M(\mathcal{F}, B)$. Let $A_n = \{ i(I) : I \in \mathcal{F}$ and $I \subseteq U_n \}$ for $n \in \omega$. As we showed in the last paragraph, A_n^* is a neighbourhood of B for all $n \in \omega$. Since B is a P-set, there is $A \in [\omega]^\omega$ such that $B \subseteq A^*$ and $A^* \subseteq A_n^*$ for all $n \in \omega$. We choose a strictly increasing sequence $\{ m : n \in \omega \}$ of integers so that for each $n \in \omega$, $A \setminus m_n \subseteq A_n$ and $[m_n, m_{n+1}) \cap A \neq \emptyset$, where $[m_n, m_{n+1}) = \{ i \in \omega : m_n \leq i < m_{n+1} \}$. For each $i \in [m_n, m_{n+1}) \cap A$, let J_i be an open interval of R such that $i(1) \subseteq J_i \subseteq U_n$. Let $V = \cup \{ J_n : n \in \omega \}$. Then $M(\mathcal{F}, B) \subseteq M(\mathcal{F}, A^*) \subseteq O(V)$ and $O(V) \subseteq O(U_n)$ for $n \in \omega$. This completes the proof of Lemma 3.

Since we can easily choose $\mathcal{F}, \mathcal{F}' \subseteq \omega$ such that $U(\mathcal{F} \cup \mathcal{F}') = [0, \omega)$ and R^* is the topological sum of $\beta(-\omega, 0) - (-\omega, 0]$ and $\beta(0, \omega) - [0, \omega)$, we have

Corollary 4. If ω^* can be covered by nowhere dense closed P-sets, then so can R^*.
Blass proved in [2] that, under NCF, for any \(u \in \omega^* \) there is a finite-to-one non-decreasing function \(f: \omega \to \omega \) such that \(v = \beta f(u) \) is a P-point. It is easily seen that \(\beta f^{-1}(v) \) is a nowhere dense closed P-set of \(\omega^* \) and \(u \in \beta f^{-1}(v) \). Therefore, NCF implies that \(\omega^* \) can be covered by nowhere dense closed P-sets. Our purpose is to sharpen the conclusion so that \(\omega^* \) can be covered by an increasing sequence of nowhere dense closed P-sets under NCF.

We regard \(\omega^* \) as a subspace of \(\beta(0,\omega) \setminus (0,\omega) \). The following lemma is an easy observation.

Lemma 5. If \(u \in \omega^* \) is a P-point, then \(M(\mathcal{B},u) \cap \omega^* \) is a nowhere dense closed P-set of \(\omega^* \) for \(\mathcal{B} \in \Omega \).

Proof. Let \(X = \omega \cap (\cup \mathcal{B}) \) and \(Y = \{ i^{-1}(I) : I \cap \omega \neq \emptyset \} \). If \(Y \notin u \), then, \(M(\mathcal{B},u) \cap \omega^* = \emptyset \). So we assume that \(Y \in u \). We define a finite to one function \(f: X \to Y \) from \(X \) onto \(Y \) by \(f(n) = m \) if and only if \(n \in i(m) \). Then \(M(\mathcal{B},u) \cap \omega^* = \beta f^{-1}(u) \). Since \(\beta f^{-1}(u) \) is a nowhere dense closed P-set in \(\omega^* \), \(M(\mathcal{B},u) \cap \omega^* \) is a nowhere dense closed P-set in \(\omega^* \).

By Lemma 3 and 5, our Theorem 1 and 2 follows easily from the following theorem.
Theorem 2'. NCF is equivalent to that there is a family
\{(\mathcal{Y}_\alpha, u_\alpha) : \alpha < \lambda\} such that

1. \mathcal{Y}_\alpha \in \mathcal{O} and \, u_\alpha \in \omega^* is a P-point for all \, \alpha < \lambda;

2. M(\mathcal{Y}_\alpha, u_\alpha) \subseteq M(\mathcal{Y}_\beta, u_\beta) for all \, \alpha < \beta < \lambda;

3. \beta[0, \omega) \setminus \{0, \omega\} = \bigcup \{M(\mathcal{Y}_\alpha, u_\alpha) : \alpha < \lambda\}.

Theorem 2' will be proved along the line of the proof of Corollary 5.7 in [5]. We first recall some properties of NCF and standard continua. We refer to [2] and [5] for details.

A subset \(C \) of a continuum \(K \) is a composant if, for some point \(p \in C \), \(C \) is the set of all points \(x \) such that there is a proper subcontinuum of \(K \) containing both \(p \) and \(x \). It is well-known that NCF is equivalent to that \(\beta[0, \omega) \setminus \{0, \omega\} \) is a composant of itself (See [3]). Therefore, our conditions in Theorem 2' implies NCF.

Recall that there is a natural partial order \(<_{\mathcal{Y}, u} \) on \(M(\mathcal{Y}, u) \) for \(\mathcal{Y} \in \mathcal{O} \) and \(u \in \omega^* \), defined as follows: For any \(x, y \in M(\mathcal{Y}, u) \),

\[x <_{\mathcal{Y}, u} y \text{ if there are } F \in x \text{ and } H \in y \text{ such that } \{\iota^{-1}(I) : I \in \mathcal{Y} \text{ and } F \cap I \in H \cap I\} \in u, \]

For \(x \in M(\mathcal{Y}, u) \), we let
\[[x]_u^\vartheta = \{ y \in M(\vartheta, u) : y \text{ is } \leq u \text{-incomparable with } x \text{ or } y = x \}. \]

\[[x]_u^\vartheta \] is called a layer of \(M(\vartheta, u) \). It is well-known that layers are indecomposable subcontinua of \(M(\vartheta, u) \) and every indecomposable subcontinuum of \(M(\vartheta, u) \) is contained in a layer.

Lemma 6 (Corollary 2.11 in [5]). *Let \(C \) and \(D \) be subcontinua of \(R^* \). If one of them is indecomposable, then \(C \cap D = \emptyset \).*

A point \(u \in \omega^* \) is a Q-point if every finite-to-one function from \(\omega \) to \(\omega \) is one-to-one on a set in \(u \). By Proposition 5.1 in [5], it is equivalent to require the functions in the definition of Q-points to be non-decreasing. Blass proved in [2] that NCF implies that there is no Q-points.

Lemma 7. Under NCF, for every proper subcontinuum \(C \) of \(\beta(0, \omega) - [0, \omega) \), there is a standard continuum \(M(\vartheta, u) \) and a layer \(T \) of \(M(\vartheta, u) \) such that \(C \subseteq T \) and \(M(\vartheta, u) \) is a nowhere dense P-set of \(\beta(0, \omega) - [0, \omega) \).

Proof. Since every proper subcontinuum of \(\beta(0, \omega) - [0, \omega) \) is contained in a standard subcontinuum, we assume that \(C \subseteq M(\vartheta_1, u_1) \) for some \(\vartheta_1 \in \Omega \) and \(u \in \omega^* \). Since NCF implies that there is no
Q-points, there is a finite-to-one non-decreasing function \(f: \omega \to \omega \) which witnesses that \(u_1 \) is not a Q-point. We define \(\mathcal{G}_2 = \{ I_n : n \in \omega \} \) as follows: \(I_n \) is the convex hull of the set \(\bigcup \{ i_1(m) : m \in f^{-1}(n) \} \). Let \(u_2 = f(u_1) \). Then, \(M(\mathcal{G}_1, u_1) \subset M(\mathcal{G}_2, u_2) \). Moreover, for any \(x, y \in M(\mathcal{G}_1, u_1) \), \(x \) and \(y \) are \(\prec \mathcal{G}_2 \)-incomparable or \(x = y \). Therefore, \(M(\mathcal{G}_1, u_1) \) is contained in a layer \(T' \) of \(M(\mathcal{G}_2, u_2) \). By NCF, there is a finite-to-one non-decreasing function \(g: \omega \to \omega \) such that \(u = g(u_2) \) is a P-point. By the same method as above, we can find \(\mathcal{F} \in \Omega \) such that \(M(\mathcal{G}_2, u_2) \subset M(\mathcal{F}, u) \).

Since \(T' \) is an indecomposable subcontinuum of \(M(\mathcal{F}, u) \), there is a layer \(T \) of \(M(\mathcal{F}, u) \) such that \(C \subset T' \subset T \). By Lemma 3, \(M(\mathcal{F}, u) \) is a nowhere dense P-set of \(\beta[0, \omega) - [0, \omega) \).

Now we are in a position to complete the proof of Theorem 2'. We assume NCF. We define, inductively, \(\mathcal{G}_\beta \in \Omega \), \(u_\beta \in \omega^* \) and a layer \(T_\alpha \) of \(M(\mathcal{G}_\alpha, u_\alpha) \) for \(\alpha \geq 0 \) satisfying that

(a) \(u_\alpha \) is a P-point for all \(\alpha > 0 \);

(b) \(M(\mathcal{G}_\alpha, u_\alpha) \subset T_\beta \) for \(\alpha < \beta \).

Our induction process will stop at some \(\lambda \) if \(\beta[0, \omega) - [0, \omega) = \bigcup \{ M(\mathcal{G}_\alpha, u_\alpha) : \alpha < \lambda \} \). Suppose that we have defined \(\mathcal{G}_\beta \), \(u_\beta \) and \(T_\beta \) for all \(\beta < \alpha \) satisfying (a) and (b). If \(\alpha = 0 \) or \(\gamma + 1 \), then, by Lemma 7, we can easily define \(\mathcal{G}_\alpha \), \(u_\alpha \) and \(T_\alpha \) satisfying (a) and (b). Assume that \(\alpha \neq 0 \) is a limit and \(\beta[0, \omega) - [0, \omega) \) is not covered by \(\{ M(\mathcal{G}_\beta, u_\beta) : \beta < \alpha \} \). Note that by (b) \(\bigcup \{ M(\mathcal{G}_\beta, u_\beta) : \beta < \alpha \} = \)
\(\bigvee \{ T_\beta : \beta < \alpha \} \) since \(\alpha \) is a limit. Take \(x, y \in T_0 \) and \(y \in T_\beta \) for all \(\beta < \alpha \). By NCF, there is a proper subcontinuum \(C \) of \(\beta(0, \infty) - (0, \infty) \), containing both \(x \) and \(y \). By Lemma 6, \(T_\beta \subseteq C \) for all \(\beta < \alpha \). By Lemma 7, there is \(s_\alpha \in \Omega \), \(u_\alpha \in \omega^* \) and a layer \(T_\alpha \) of \(M(s_\alpha, u_\alpha) \) such that \(C \subseteq T_\alpha \) and \(u_\alpha \) is a P-point. This completes our inductive construction. Since \(\{ M(s_\alpha, u_\alpha) : \alpha \geq 0 \} \) is a strictly increasing sequence, our induction process can not go over \(|R^*| \) steps. This completes the proof of Theorem 2'.

References