Striped structures of stable and unstable sets of expansive homeomorphisms and a theorem of K. Kuratowski on independent sets

広島大学 加藤久男 (Hisao Kato)

1. Introduction.

All spaces under consideration are assumed to be metric. By a compactum, we mean a compact metric space, and by a continuum, a connected nondegenerate compactum. A homeomorphism $f\colon X\to X$ of a compactum X is called expansive if there is a constant c>0 (called an expansive constant for f) such that if $x, y\in X$ and $x\neq y$, then there is an integer $n=n(x,y)\in Z$ such that

$$d(f^{n}(x), f^{n}(y)) > c.$$

This property has frequent applications in topological dynamics, ergodic theory and continuum theory [1,3,7,8]. A homeomorphism $f\colon X\to X$ of a compactum X is continuum-wise expansive if there is a constant c>0 such that if A is a nondegenerate subcontinuum of X, then there is an integer $n=n(A)\in Z$ such that diam $f^n(A)>c$. By definitions, we can easily see that every expansive homeomorphism is continuum-wise expansive, but the converse assertion is not true. There are many important examples of homeomorphisms which are continuum-wise expansive homeomorphisms, but not expansive homeomorphisms.

In this note, we show that if $f: X \to X$ is an expansive

homeomorphism of a compactum X with dim X > 0, then the decompositions $\{W^S(x) | x \in X\}$ and $\{W^U(x) | x \in X\}$ of X to stable and unstable sets are uncountable respectively, and moreover there is σ (σ = s or u) and a positive number ρ > 0 such that the σ -striped set $Z(\sigma,\rho)$ of f is not empty. Hence, by using a theorem of K. Kuratowski on independent sets [6], it is proved that almost every Cantor set C of $Z(\sigma,\rho)$ satisfies the property that for each $x \in C$, $W^{\sigma}(x)$ contains a nondegenerate subcontinuum containing x and if x, $y \in C$ and $x \neq y$, then $W^{\sigma}(x) \neq W^{\sigma}(y)$. Also, we show that if $f : G \to G$ is a map of a graph G and the shift map $f : (G,f) \to (G,f)$ of f is expansive, then for each $\widetilde{x} \in (G,f)$, $W^U(\widetilde{x})$ is equal to the arc-component of (G,f) containing \widetilde{x} , and $W^S(\widetilde{x})$ is 0-dimensional.

2. Definitions and preliminaries.

Let $f: X \to X$ be a homeomorphism of a compactum X and let $x \in X$. Then the stable set $W^S(x)$ and the unstable set $W^U(x)$ are defined as follows:

$$\begin{split} & W^{S}(x) = \{ y \in X | \lim_{n \to \infty} d(f^{n}(x), f^{n}(y)) = 0 \}, \\ & W^{U}(x) = \{ y \in X | \lim_{n \to \infty} d(f^{-n}(x), f^{-n}(y)) = 0 \}. \end{split}$$

Also, the continuum-wise stable and unstable sets $V^{\mathbf{S}}(\mathbf{x})$, $V^{\mathbf{U}}(\mathbf{x})$ are defined as follows:

 $V^{S}(x) = \{y \in X \mid \text{ there is } A \in C(X) \text{ such that } x, y \in A$ and $\lim_{n \to \infty} \text{diam } f^{n}(A) = 0\},$

 $V^{\rm U}(x) = \{y \in X \mid \text{ there is } A \in C(X) \text{ such that } x, \ y \in A \text{ and}$ $\lim_{n \to \infty} \text{ diam } f^{-n}(A) = 0\}.$

Clearly, $W^{\sigma}(x) \supset V^{\sigma}(x)$, $\{W^{\sigma}(x) | x \in X\}$ and $\{V^{\sigma}(x) | x \in X\}$ are decompositions of X for each σ = s and u, i.e., $X = \bigcup \{W^{\sigma}(x) | x \in X\} \text{ (resp. } X = \bigcup \{V^{\sigma}(x) | x \in X\}), \text{ and if } W^{\sigma}(x) \neq W^{\sigma}(y) \text{ (resp. } V^{\sigma}(x) \neq V^{\sigma}(y)), \text{ then } W^{\sigma}(x) \cap W^{\sigma}(y) = \emptyset$ (resp. $V^{\sigma}(x) \cap V^{\sigma}(y) = \emptyset$).

We are interested in the structures of the decompositions $\{W^{\sigma}(x) | x \in X\}$ and $\{V^{\sigma}(x) | x \in X\}$ (σ = s and u) of X. Let $f: X \to X$ be a homeomorphism of a compactum X with dim X > 0. Let $\rho > 0$ be a positive number. Consider the family $\Phi(\sigma) = \{Z \mid Z \text{ is a closed subset of X satisfying that (i) for each } x \in Z \text{ there is a subcontinuum } A_X \text{ of X such that diam } A_X \ge \rho, x \in A_X \subset W^{\sigma}(x), \text{ and (ii) for any neighborhood U of x in X, there is } y \in Z \cap U \text{ such that } W^{\sigma}(x) \neq W^{\sigma}(y)\}. \text{ Clearly, } \Phi(\sigma) \text{ has the maximal element } Z(\sigma,\rho) \ (= \text{Cl}(\cup \{Z \mid Z \in \Phi(\sigma)\})).$ The set $Z(\sigma,\rho)$ is said to be a σ -striped set of f. Note that if $0 < \rho_1 < \rho_2$, then $Z(\sigma,\rho_1) \supset Z(\sigma,\rho_2)$. Also, note that if $Z(\sigma,\rho) \neq \emptyset$ for some $\rho > 0$, then X contains an uncountable collection of mutually disjoint, nondegenerate subcontinua of X each of which is contained in a different element of $\{W^{\sigma}(x) | x \in X\}$.

Let $f: X \to X$ be a map of a compactum X with metric d. Consider the following inverse limit space:

$$(X,f) = \{(x_i)_{i=0}^{\infty} | x_i \in X, f(x_{i+1}) = x_i \text{ for each } i \ge 0\}.$$

Define a metric d for (G,f) by

$$\widetilde{d}(\widetilde{x},\widetilde{y}) = \sum_{i=0}^{\infty} d(x_i,y_i)/2^i \text{ for } \widetilde{x} = (x_i)_{i=0}^{\infty},$$

$$\widetilde{y} = (y_i)_{i=0}^{\infty} \in (X,f).$$

The space (X,f) is called the *inverse limit of the map* f. Define a map \hat{f} : $(X,f) \rightarrow (X,f)$ by

$$f(x_0, x_1, ...,) = (f(x_0), x_0, x_1, ...,), \text{ for } (x_i)_{i=0}^{\infty} \in (X, f).$$

Then the map f is a homeomorphism and it is called the shift map of f.

(2.1) Example. Let S^1 be the unit circle and let $f\colon S^1\to S^1$ be the natural covering map with degree 2. Consider the inverse limit (S^1,f) of f and the shift map $f\colon (S^1,f)\to (S^1,f)$. The continuum (S^1,f) is well-known as the 2-adic solenoid and f is an expansive homeomorphism. In this case, for each $\widetilde{x}\in (S^1,f)$, $W^1(\widetilde{x})=V^1(\widetilde{x})$ is the arc-component of (S^1,f) containing \widetilde{x} . Also, $V^S(\widetilde{x})=\{\widetilde{x}\}\subsetneq W^S(\widetilde{x})$ for each $\widetilde{x}\in (S^1,f)$. Then the decomposition $\{W^\sigma(\widetilde{x})\mid \widetilde{x}\in (S^1,f)\}$ ($\sigma=s$ and u) is uncountable.

Note that dim $W^S(\widetilde{x}) = 0$, because $W^S(\widetilde{x})$ is an F_{σ} -set and $W^S(\widetilde{x})$ does not contain a nondegenerate subcontinuum. Note that the continuum (S^1,f) itself is a u-striped set $Z(\sigma,\rho)$ of \widetilde{f} for some $\rho > 0$, but $Z(s,\rho) = \emptyset$ for each $\rho > 0$.

(2.2) Example. There is an expansive homeomorphism $f: X \to X$ such that $\operatorname{Int}_X W^{\sigma}(x) \neq \emptyset$ for some $x \in X$. Let G be the one point union of the unit interval I and a circle S^1 , i.e., $(G,*) = (I,1) \vee (S^1,*)$. Define a map $g: G \to G$ such that $g|S^1: S^1 \to S^1$ is the natural covering map with degree 2 and g(0)=0, g(1)=* and g(I)=G. We can choose $g: G \to G$ so that $\widetilde{g}: X=(G,g) \to X=(G,g)$ is expansive. Then $W^{U}(\widetilde{0})$ is a dense open set of X, where $\widetilde{0}=(0,0,\ldots)$. Hence X itself is not a u-striped set of \widetilde{g} .

A subset E of a space X is called to be an F_{σ} -set in X if E is a union of countable closed subsets F_n of X, i.e., $E = \bigcup_{n=1}^{\infty} F_n$. A subset E of X is called to be an $F_{\sigma\delta}$ -set in X if E is an intersection of countable F_{σ} -sets E_n , i.e., $E = \bigcap_{n=1}^{\infty} E_n$.

We use a theorem of K. Kuratowski on independent sets [6]. A subset F of X is said to be *independent in* $R \subset X^n$, if for every system x_1, x_2, \ldots, x_n of different points of F the point $(x_1, x_2, \ldots, x_n) \in F^n$ never belongs to R. In [6], K. Kuratowski proved the following theorem.

(2.3) Theorem ([6, Main theorem and Corollary 3]). If X is a complete space and and R \subset Xⁿ is an F_{σ}-set of the first category, then the set J(R) of all compact subsets F of X independent in R is a dense G_{δ}-set in 2^X of all compact subsets of X. Moreover, if X has no isolated points, then almost every Cantor set of X is independent in R.

For the proof of the main theorem of this note, we need the following.

- (2.4) Proposition. Let $f: X \to X$ be a homeomorphism of a compactum X. Then $W^{\sigma}(x)$ is an $F_{\sigma\delta}$ -set in X (σ = s,u).
- (2.5) Proposition. Let $f: X \to X$ be an expansive homeomorphism of a compactum X. Then $W^{\sigma}(x)$ is an F_{σ} -set in X ($\sigma = s, u$).
- (2.6) Proposition. Let $f\colon X\to X$ be a continuum-wise expansive homeomorphism of a compactum X. Then $V^\sigma(x)$ is an F_σ -set in X (σ = s,u).

3. Striped structures of stable and unstable sets.

In this section, we study striped structures of stable and unstable sets of expansive homeomorphisms and continuum-wise expansive homeomorphisms. The main result of this section is the following theorem.

(3.1) Theorem. Let $f\colon X\to X$ be an expansive homeomorphism of a compactum X with $\dim X>0$. Then the decomposition $\{W^\sigma(x)\,|\, x\in X\}$ ($\sigma=s$ and u) of X is uncountable. Moreover, there exists σ ($\sigma=s$ or u) and a positive number $\rho>0$ such that the $\sigma\text{-striped}$ set $Z(\sigma,\rho)$ is not empty. In particular, almost every Cantor set C of $Z(\sigma,\rho)$ satisfies the property that for any $x\in C$, there exists a nondegenerate subcontinuum A_X of X such that $X\in A_X\subset W^\sigma(X)$, and if X, $Y\in C$ and $X\neq Y$, then $W^\sigma(X)\neq W^\sigma(Y)$.

To prove (3.1), we need the following facts. The next lemma is obvious.

- (3.2) Lemma. Let $f: X \to X$ be a map of a compactum X and let $N \ge 1$ be a natural number. Suppose that there is $\gamma > 0$ such that $d(f^{iN}(x), f^{iN}(y)) \ge \gamma$ for each i = 0, 1, 2, ... Then there is a positive number $\eta > 0$ such that $d(f^i(x), f^i(y)) \ge \eta$ for each i = 0, 1, 2, ...
- (3.3) Lemma ([4,(2.3)]). Let $f: X \to X$ be a continuum-wise expansive homeomorphism of a compactum X with an expansive constant c > 0 and let $0 < \epsilon < c/2$. Then there is $\delta > 0$ such that if A is any nondegenerate subcontinuum of X such that diam $A \le \delta$ and diam $f^m(A) \ge \epsilon$ for some integer $m \in Z$, then one of the following conditions holds:

- (a) If $m \ge 0$, then diam $f^n(A) \ge \delta$ for each $n \ge m$. More precisely, there is a subcontinuum B of A such that diam $f^j(B) \le \epsilon$ for $0 \le j \le n$ and diam $f^n(B) = \delta$.
- (b) If m < 0, then diam $f^{-n}(A) \ge \delta$ for each $n \ge -m$. More precisely, there is a subcontinuum B of A such that diam $f^{-j}(B) \le \epsilon$ for $0 \le j \le n$ and diam $f^{-n}(B) = \delta$.
- (3.4) Lemma ([4,(2.4)]). Let f, c, ϵ , δ be as in (3.3). Then for any $\gamma > 0$, there is N > 0 such that if $A \in C(X)$ and diam $A \geq \gamma$, then diam $f^n(A) \geq \delta$ for each $n \geq N$ or diam $f^{-n}(A) \geq \delta$ for each $n \geq N$.

For the case of continuum-wise expansive homeomorphism, we have

 $(3.5) \ \, \text{Theorem. Let } f\colon X \to X \ \, \text{be a continuum-wise}$ expansive homeomorphism of a compactum X with \$\dim X > 0\$. Then the decompositions \$\$\{V^{\sigma}(x) | x \in X\}\$\$ (\$\sigma = s\$ and u\$) are uncountable. Moreover, there is \$\sigma\$ (\$\sigma = s\$ or u\$) and a positive number \$\rho > 0\$ such that there is a nonempty closed set Z' of X satisfying that (i) for each \$x \in Z'\$ there is a subcontinuum \$A_X\$ of X satisfying that \$diam \$A_X\$ \$\geq \rho\$, \$\$\$\$\$\$\$x \in A_X \subset V^{\sigma}(x)\$, (ii) for any neighborhood U of \$x\$ in \$X\$, there is \$y \in Z' \cap U\$ such that \$V^{\sigma}(x) \neq V^{\sigma}(y)\$. In particular, almost every Cantor set C of \$Z(\sigma)\$ satisfies the property that for any \$x \in C\$, there is a nondegenerate subcontinuum \$A_X\$ of \$X\$ with \$x \in A_X \subset V^{\sigma}(x)\$, and if \$x\$, \$y \in C\$ and \$x \neq y\$, then \$A_X\$ of \$X\$ with \$x \in A_X \subset V^{\sigma}(x)\$, and if \$x\$, \$y \in C\$ and \$x \neq y\$, then \$A_X\$ of \$X\$ with \$x \in A_X \subset V^{\sigma}(x)\$, and if \$x\$, \$y \in C\$ and \$x \neq y\$, then \$A_X\$ of \$X\$ with \$x \in A_X \subset V^{\sigma}(x)\$, and if \$x\$, \$y \in C\$ and \$x \neq y\$, then \$X\$ is \$X \in X\$. }

 $V^{\sigma}(x) \neq V^{\sigma}(y)$.

 $(3.6) \ \, \text{Theorem. Let X be a locally connected continuum} \\ (= \textit{Peano continuum}). \ \, \textit{If } f \colon X \to X \ \textit{is an expansive homeomorphism} \\ (\textit{resp. a continuum-wise expansive homeomorphism}) \ \textit{of } X, \\ \textit{then there is an uncountable subset Z of X such that $C1(Z)$} \\ = X, \ \textit{and } (1) \ \textit{for each } x \in Z \ \textit{and } \sigma = s \ \textit{and } u, \ \textit{there is a} \\ \textit{nondegenerate subcontinuum } A_X \in V^\sigma \ \textit{with } x \in A_X \ \textit{and} \\ \textit{diam } A_X \geq \delta \ \textit{for some } \delta > 0, \ (2) \ \textit{if } x, \ y \in Z \ \textit{and } x \neq y, \ \textit{then} \\ W^\sigma(x) \neq W^\sigma(y) \ (\textit{resp. } V^\sigma(x) \neq V^\sigma(y)) \ \textit{for each } \sigma = s \ \textit{and } u. \\ \end{aligned}$

To prove (3.6), we need the following.

 $(3.7) \ \, \text{Lemma } ([5,(1.6)]). \ \, \textit{Let } f \colon X \to X \text{ be a}$ continuum-wise expansive homeomorphism of a Peano continuum X. $Then \ \, \text{there is } \delta > 0 \ \, \text{such that for each } x \in X, \ \, \text{there are two}$ $subcontinua \ \, A_X \ \, \text{and } B_X \ \, \text{such that } x \in A_X \cap B_X, \ \, A_X \in V^S,$ $B_X \in V^U, \ \, \text{diam } A_X = \delta \ \, \text{and diam } B_X = \delta. \ \, \text{In particular,}$ $Int_X(W^\sigma(x)) = \phi \ \, \text{for each } x \in X \ \, \text{and } \sigma = s, u.$

For the case of inverse limits of graphs, we have the following theorem.

(3.8) Theorem. Let $f: G \to G$ be a map of a graph G (= finite connected 1-dimensional polyhedron). Suppose that the shift map $f: (G,f) \to (G,f)$ is expansive. Then for each $\widetilde{x} \in (G,f)$, (a) $W^{U}(\widetilde{x})$ is equal to the arc-component $A(\widetilde{x})$ of X=(G,f)

containing \tilde{x} , and (b) $W^{S}(\tilde{x})$ is 0-dimensional.

To prove (3.8), we need the following notations. Let A be a closed subset of a compactum X. A map $f: X \to X$ is called *positively expansive* on A if there is a positive number c > 0 such that if $x, y \in A$ and $x \neq y$, then there is a natural number $n \geq 0$ such that $d(f^n(x), f^n(y)) > c$. If a map $f: X \to X$ is positively expansive on the total space X, we say f is positively expansive. Let A be a finite closed covering of X. A map $f: X \to X$ is positively pseudo-expansive with respect to A if the following conditions hold:

- (P_1) f is positively expansive on A for each A $\in A$.
- (P_2) For each A, B \in A with A \cap B \neq \emptyset , one of the following two conditions holds: (*) f is positively expansive on A \cup B. (**) If f is not positively expansive on A \cup B, then there is a natural number $k \geq 1$ such that for any A', A" \in A with A' \cap A" \neq \emptyset , $f^k(A'\cup A'')\cap(A-B) = \emptyset$ or $f^k(A'\cup A'')\cap(B-A) = \emptyset$.
- (3.9) Theorem. Let G be a graph and let $f: G \to G$ be an onto map. Then the shift map $f: (G,f) \to (G,f)$ is expansive if and only if f is positively pseudo-expansive map with respect to A, where $A = \{e \mid e \text{ is an edge of some simplicial complex K with } |K| = G\}.$

References

- [1] N. Aoki, *Topological dynamics*, in: Topics in general topology (eds. K. Morita and J. Nagata), Elsevier Science Publishers B. V. (1989), 625-740.
- [2] R. Devaney, An Introduction to Chaotic Dynamical Systems, second edition, Addison-Wesley, 13046.
- [3] W. Gottschalk, Minimal sets; an introduction to topological dynamics, Bull. Amer. Math. Soc. 64 (1958), 336-351.
- [4] H. Kato, Continuum-wise expansive homeomorphisms, Canad.

 J. Math. to appear.
- [5] _____, Concerning continuum-wise fully expansive homeomorphisms of continua, Topology and its appl. to appear.
- [6] K. Kuratowski, Applications of Baire-category method to the problem of independent sets, Fund. Math. 81 (1974), 65-72.
- [7] R. Mañé, Expansive homeomorphisms and topological dimension, Trans. Amer. Math. Soc. 252 (1979), 313-319.
- [8] P. Walter, An introduction to ergodic theory, Graduate Texts in Math. 79, Springer.