Striped structures of stable and unstable sets
of expansive homeomorphisms and a theorem
of K. Kuratowski on independent sets

広島大学 加藤 久男 (Hisao Kato)

1. Introduction.

All spaces under consideration are assumed to be metric. By a compactum, we mean a compact metric space, and by a continuum, a connected nondegenerate compactum. A homeomorphism \(f: X \to X \) of a compactum \(X \) is called \textit{expansive} if there is a constant \(c > 0 \) (called an \textit{expansive constant for} \(f \)) such that if \(x, y \in X \) and \(x \neq y \), then there is an integer \(n = n(x,y) \in \mathbb{Z} \) such that
\[
d(f^n(x), f^n(y)) > c.
\]
This property has frequent applications in topological dynamics, ergodic theory and continuum theory [1,3,7,8].

A homeomorphism \(f: X \to X \) of a compactum \(X \) is \textit{continuum-wise expansive} if there is a constant \(c > 0 \) such that if \(A \) is a nondegenerate subcontinuum of \(X \), then there is an integer \(n = n(A) \in \mathbb{Z} \) such that \(\text{diam } f^n(A) > c \). By definitions, we can easily see that every expansive homeomorphism is continuum-wise expansive, but the converse assertion is not true. There are many important examples of homeomorphisms which are continuum-wise expansive homeomorphisms, but not expansive homeomorphisms.

In this note, we show that if \(f: X \to X \) is an expansive
homeomorphism of a compactum X with $\dim X > 0$, then the decompositions $\{W^S(x) | x \in X\}$ and $\{W^U(x) | x \in X\}$ of X to stable and unstable sets are uncountable respectively, and moreover there is σ ($\sigma = s$ or u) and a positive number $\rho > 0$ such that the σ-striped set $Z(\sigma, \rho)$ of f is not empty. Hence, by using a theorem of K. Kuratowski on independent sets [6], it is proved that almost every Cantor set C of $Z(\sigma, \rho)$ satisfies the property that for each $x \in C$, $W^\sigma(x)$ contains a nondegenerate subcontinuum containing x and if $x, y \in C$ and $x \neq y$, then $W^\sigma(x) \neq W^\sigma(y)$. Also, we show that if $f: G \to G$ is a map of a graph G and the shift map $\hat{f}: (G, f) \to (G, f)$ of f is expansive, then for each $\hat{x} \in (G, f)$, $W^U(\hat{x})$ is equal to the arc-component of (G, f) containing \hat{x}, and $W^S(\hat{x})$ is 0-dimensional.

2. Definitions and preliminaries.

Let $f: X \to X$ be a homeomorphism of a compactum X and let $x \in X$. Then the stable set $W^S(x)$ and the unstable set $W^U(x)$ are defined as follows:

\[
W^S(x) = \{ y \in X | \lim_{n \to \infty} d(f^n(x), f^n(y)) = 0 \},
\]
\[
W^U(x) = \{ y \in X | \lim_{n \to \infty} d(f^{-n}(x), f^{-n}(y)) = 0 \}.
\]

Also, the continuum-wise stable and unstable sets $V^S(x)$, $V^U(x)$ are defined as follows:
$$V^S(x) = \{y \in X| \text{ there is } A \in C(X) \text{ such that } x, y \in A \text{ and } \lim_{n \to \infty} \text{ diam } f^n(A) = 0\},$$

$$V^U(x) = \{y \in X| \text{ there is } A \in C(X) \text{ such that } x, y \in A \text{ and } \lim_{n \to \infty} \text{ diam } f^{-n}(A) = 0\}.$$

Clearly, $W^\sigma(x) \supset V^\sigma(x)$, $\{W^\sigma(x)|x \in X\}$ and $\{V^\sigma(x)|x \in X\}$ are decompositions of X for each $\sigma = s$ and u, i.e.,

$$X = \bigcup \{W^\sigma(x)|x \in X\} \quad \text{(resp. } X = \bigcup \{V^\sigma(x)|x \in X\}),$$

and if $W^\sigma(x) \neq W^\sigma(y)$ (resp. $V^\sigma(x) \neq V^\sigma(y)$), then $W^\sigma(x) \cap W^\sigma(y) = \emptyset$

(resp. $V^\sigma(x) \cap V^\sigma(y) = \emptyset$).

We are interested in the structures of the decompositions

$\{W^\sigma(x)|x \in X\}$ and $\{V^\sigma(x)|x \in X\}$ ($\sigma = s$ and u) of X. Let $f: X \to X$ be a homeomorphism of a compactum X with $\dim X > 0$. Let $\rho > 0$ be a positive number. Consider the family $\Phi(\sigma) = \{Z| Z \text{ is a closed subset of } X \text{ satisfying that (i) for each } x \in Z \text{ there is a subcontinuum } A_x \text{ of } X \text{ such that } \text{diam } A_x \geq \rho, x \in A_x \subset W^\sigma(x), \text{ and (ii) for any neighborhood } U \text{ of } x \text{ in } X, \text{ there is } y \in Z \cap U \text{ such that } W^\sigma(x) \neq W^\sigma(y)\}$. Clearly, $\Phi(\sigma)$ has the maximal element $Z(\sigma, \rho) = \text{Cl}(\bigcup\{Z| Z \in \Phi(\sigma)\})$.

The set $Z(\sigma, \rho)$ is said to be a σ-striped set of f. Note that if $0 < \rho_1 < \rho_2$, then $Z(\sigma, \rho_1) \supset Z(\sigma, \rho_2)$. Also, note that if $Z(\sigma, \rho) \neq \emptyset$ for some $\rho > 0$, then X contains an uncountable collection of mutually disjoint, nondegenerate subcontinua of X each of which is contained in a different element of $\{W^\sigma(x)|x \in X\}$.
Let \(f: X \to X \) be a map of a compactum \(X \) with metric \(d \).

Consider the following inverse limit space:

\[
\{(x_1)_1^\infty | x_1 \in X, f(x_{i+1}) = x_i \text{ for each } i \geq 0\},
\]

Define a metric \(\tilde{d} \) for \((G,f) \) by

\[
\tilde{d}(\tilde{x},\tilde{y}) = \Sigma_{i=0}^\infty d(x_i,y_i)/2^i \text{ for } \tilde{x} = (x_i)_{i=0}^\infty,
\]

\[
\tilde{y} = (y_i)_{i=0}^\infty \in (X,f).
\]

The space \((X,f) \) is called the inverse limit of the map \(f \).

Define a map \(\tilde{f}: (X,f) \to (X,f) \) by

\[
\tilde{f}(x_0,x_1,...) = (f(x_0),x_0,x_1,...), \text{ for } (x_i)_{i=0}^\infty \in (X,f).
\]

Then the map \(\tilde{f} \) is a homeomorphism and it is called the shift map of \(f \).

(2.1) Example. Let \(S^1 \) be the unit circle and let \(f: S^1 \to S^1 \) be the natural covering map with degree 2.

Consider the inverse limit \((S^1,f) \) of \(f \) and the shift map \(\tilde{f}: (S^1,f) \to (S^1,f) \). The continuum \((S^1,f) \) is well-known as the 2-adic solenoid and \(\tilde{f} \) is an expansive homeomorphism.

In this case, for each \(\tilde{x} \in (S^1,f) \), \(W^u(\tilde{x}) = V^u(\tilde{x}) \) is the arc-component of \((S^1,f) \) containing \(\tilde{x} \). Also,

\[
V^s(\tilde{x}) = \{\tilde{x}\} \cap \bigcup_{\tilde{x}} W^s(\tilde{x}) \text{ for each } \tilde{x} \in (S^1,f).
\]

Then the decomposition \(\{W^s(\tilde{x}) | \tilde{x} \in (S^1,f)\} (\sigma = s \text{ and } u) \) is uncountable.
Note that \(\dim W^S(\tilde{x}) = 0 \), because \(W^S(\tilde{x}) \) is an \(F_\sigma \)-set and \(W^S(\tilde{x}) \) does not contain a nondegenerate subcontinuum. Note that the continuum \((S^1, f)\) itself is a u-striped set \(Z(\sigma, \rho) \) of \(\tilde{x} \) for some \(\rho > 0 \), but \(Z(s, \rho) = \emptyset \) for each \(\rho > 0 \).

(2.2) Example. There is an expansive homeomorphism \(f: X \to X \) such that \(\text{Int}_X W^S(x) \neq \emptyset \) for some \(x \in X \). Let \(G \) be the one point union of the unit interval \(I \) and a circle \(S^1 \), i.e., \((G, \ast) = (I, 1) \vee (S^1, \ast) \). Define a map \(g: G \to G \) such that \(g|S^1: S^1 \to S^1 \) is the natural covering map with degree 2 and \(g(0) = 0 \), \(g(1) = \ast \) and \(g(I) = G \). We can choose \(g: G \to G \) so that \(\tilde{g}: X = (G, g) \to X = (G, g) \) is expansive. Then \(W^U(\emptyset) \) is a dense open set of \(X \), where \(\emptyset = (0, 0, \ldots) \). Hence \(X \) itself is not a u-striped set of \(\tilde{g} \).

A subset \(E \) of a space \(X \) is called to be an \(F_\sigma \)-set in \(X \) if \(E \) is a union of countable closed subsets \(F_n \) of \(X \), i.e., \(E = \bigcup_{n=1}^{\infty} F_n \). A subset \(E \) of \(X \) is called to be an \(F_{\sigma\delta} \)-set in \(X \) if \(E \) is an intersection of countable \(F_\sigma \)-sets \(E_n \), i.e., \(E = \bigcap_{n=1}^{\infty} E_n \).

We use a theorem of K. Kuratowski on independent sets [6]. A subset \(F \) of \(X \) is said to be independent in \(R \subset X^n \), if for every system \(x_1, x_2, \ldots, x_n \) of different points of \(F \) the point \((x_1, x_2, \ldots, x_n) \in F^n \) never belongs to \(R \). In [6], K. Kuratowski proved the following theorem.
(2.3) Theorem ([6, Main theorem and Corollary 3]).
If \(X \) is a complete space and and \(R \subset X^n \) is an \(F_\sigma \)-set of the first category, then the set \(J(R) \) of all compact subsets \(F \) of \(X \) independent in \(R \) is a dense \(G_\delta \)-set in \(2^X \) of all compact subsets of \(X \). Moreover, if \(X \) has no isolated points, then almost every Cantor set of \(X \) is independent in \(R \).

For the proof of the main theorem of this note, we need the following.

(2.4) Proposition. Let \(f: X \to X \) be a homeomorphism of a compactum \(X \). Then \(W^\sigma(x) \) is an \(F_{\sigma_\delta} \)-set in \(X \) \((\sigma = s,u)\).

(2.5) Proposition. Let \(f: X \to X \) be an expansive homeomorphism of a compactum \(X \). Then \(W^\sigma(x) \) is an \(F_\sigma \)-set in \(X \) \((\sigma = s,u)\).

(2.6) Proposition. Let \(f: X \to X \) be a continuum-wise expansive homeomorphism of a compactum \(X \). Then \(V^\sigma(x) \) is an \(F_\sigma \)-set in \(X \) \((\sigma = s,u)\).

In this section, we study striped structures of stable and unstable sets of expansive homeomorphisms and continuum-wise expansive homeomorphisms. The main result of this section is the following theorem.
(3.1) Theorem. Let $f: X \to X$ be an expansive homeomorphism of a compactum X with $\dim X > 0$. Then the decomposition $\{W^\sigma(x) | x \in X\}$ ($\sigma = s$ and u) of X is uncountable. Moreover, there exists σ ($\sigma = s$ or u) and a positive number $\rho > 0$ such that the σ-striped set $Z(\sigma, \rho)$ is not empty. In particular, almost every Cantor set C of $Z(\sigma, \rho)$ satisfies the property that for any $x \in C$, there exists a nondegenerate subcontinuum A_x of X such that $x \in A_x \subset W^\sigma(x)$, and if $x, y \in C$ and $x \neq y$, then $W^\sigma(x) \neq W^\sigma(y)$.

To prove (3.1), we need the following facts. The next lemma is obvious.

(3.2) Lemma. Let $f: X \to X$ be a map of a compactum X and let $N \geq 1$ be a natural number. Suppose that there is $\gamma > 0$ such that $d(f_1^{1N}(x), f_1^{1N}(y)) \geq \gamma$ for each $i = 0, 1, 2, \ldots$. Then there is a positive number $\eta > 0$ such that $d(f_1^1(x), f_1^1(y)) > \eta$ for each $i = 0, 1, 2, \ldots$.

(3.3) Lemma ([4, (2.3)]). Let $f: X \to X$ be a continuum-wise expansive homeomorphism of a compactum X with an expansive constant $c > 0$ and let $0 < \varepsilon < c/2$. Then there is $\delta > 0$ such that if A is any nondegenerate subcontinuum of X such that $\text{diam} A \leq \delta$ and $\text{diam} f^m(A) \geq \varepsilon$ for some integer $m \in \mathbb{Z}$, then one of the following conditions holds:
(a) If \(m \geq 0 \), then \(\text{diam } f^n(A) \geq \varepsilon \) for each \(n \geq m \).

More precisely, there is a subcontinuum \(B \) of \(A \) such that \(\text{diam } f^j(B) \leq \varepsilon \) for \(0 \leq j \leq n \) and \(\text{diam } f^n(B) = \varepsilon \).

(b) If \(m < 0 \), then \(\text{diam } f^{-n}(A) \geq \varepsilon \) for each \(n \geq -m \).

More precisely, there is a subcontinuum \(B \) of \(A \) such that \(\text{diam } f^{-j}(B) \leq \varepsilon \) for \(0 \leq j \leq n \) and \(\text{diam } f^{-n}(B) = \varepsilon \).

(3.4) Lemma ([4,(2.4)]). Let \(f, c, \varepsilon, \delta \) be as in (3.3). Then for any \(\gamma > 0 \), there is \(N > 0 \) such that if \(A \in C(X) \) and \(\text{diam } A \geq \gamma \), then \(\text{diam } f^n(A) \geq \delta \) for each \(n \geq N \) or \(\text{diam } f^{-n}(A) \geq \delta \) for each \(n \geq N \).

For the case of continuum-wise expansive homeomorphism, we have

(3.5) Theorem. Let \(f : X \to X \) be a continuum-wise expansive homeomorphism of a compactum \(X \) with \(\dim X > 0 \). Then the decompositions \(\{V^\sigma(x) | x \in X \} \) (\(\sigma = s \) and \(u \)) are uncountable. Moreover, there is \(\sigma (\sigma = s \) or \(u \)) and a positive number \(\rho > 0 \) such that there is a nonempty closed set \(Z' \) of \(X \) satisfying that (i) for each \(x \in Z' \) there is a subcontinuum \(A_x \) of \(X \) satisfying that \(\text{diam } A_x \geq \rho \), \(x \in A_x \subset V^\sigma(x) \), (ii) for any neighborhood \(U \) of \(x \) in \(X \), there is \(y \in Z' \cap U \) such that \(V^\sigma(x) \neq V^\sigma(y) \). In particular, almost every Cantor set \(C \) of \(Z(\sigma) \) satisfies the property that for any \(x \in C \), there is a nondegenerate subcontinuum \(A_x \) of \(X \) with \(x \in A_x \subset V^\sigma(x) \), and if \(x, y \in C \) and \(x \neq y \), then
$V^\sigma(x) \neq V^\sigma(y)$.

(3.6) Theorem. Let X be a locally connected continuum (= Peano continuum). If $f: X \to X$ is an expansive homeomorphism (resp. a continuum-wise expansive homeomorphism) of X, then there is an uncountable subset Z of X such that $\text{Cl}(Z) = X$, and (1) for each $x \in Z$ and $\sigma = s$ and u, there is a nondegenerate subcontinuum $A_x \in V^\sigma$ with $x \in A_x$ and $\text{diam } A_x \geq \delta$ for some $\delta > 0$, (2) if $x, y \in Z$ and $x \neq y$, then $W^\sigma(x) \neq W^\sigma(y)$ (resp. $V^\sigma(x) \neq V^\sigma(y)$) for each $\sigma = s$ and u.

To prove (3.6), we need the following.

(3.7) Lemma ([5,(1.6)]). Let $f: X \to X$ be a continuum-wise expansive homeomorphism of a Peano continuum X. Then there is $\delta > 0$ such that for each $x \in X$, there are two subcontinua A_x and B_x such that $x \in A_x \cap B_x$, $A_x \in V^S$, $B_x \in V^U$, $\text{diam } A_x = \delta$ and $\text{diam } B_x = \delta$. In particular, $\text{Int}_X(W^\sigma(x)) = \emptyset$ for each $x \in X$ and $\sigma = s, u$.

For the case of inverse limits of graphs, we have the following theorem.

(3.8) Theorem. Let $f: G \to G$ be a map of a graph G (= finite connected 1-dimensional polyhedron). Suppose that the shift map $T: (G,f) \to (G,f)$ is expansive. Then for each $\tilde{x} \in (G,f)$, (a) $W^U(\tilde{x})$ is equal to the arc-component $A(\tilde{x})$ of $\pi_1(G,f)$
containing \bar{x}, and (b) $W^S(\bar{x})$ is 0-dimensional.

To prove (3.8), we need the following notations.
Let A be a closed subset of a compactum X. A map $f: X \to X$ is called positively expansive on A if there is a positive number $c > 0$ such that if $x, y \in A$ and $x \neq y$, then there is a natural number $n \geq 0$ such that $d(f^n(x), f^n(y)) > c$. If a map $f: X \to X$ is positively expansive on the total space X, we say f is positively expansive. Let \mathcal{A} be a finite closed covering of X. A map $f: X \to X$ is positively pseudo-expansive with respect to \mathcal{A} if the following conditions hold:

(P_1) f is positively expansive on A for each $A \in \mathcal{A}$.
(P_2) For each $A, B \in \mathcal{A}$ with $A \cap B \neq \emptyset$, one of the following two conditions holds: $(*)$ f is positively expansive on $A \cup B$. $(**)$ If f is not positively expansive on $A \cup B$, then there is a natural number $k \geq 1$ such that for any $A', A'' \in \mathcal{A}$ with $A' \cap A'' \neq \emptyset$, $f^k(A' \cup A'') \cap (A - B) = \emptyset$ or $f^k(A' \cup A'') \cap (B - A) = \emptyset$.

(3.9) Theorem. Let G be a graph and let $f: G \to G$ be an onto map. Then the shift map $\bar{f}: (G,f) \to (G,f)$ is expansive if and only if f is positively pseudo-expansive map with respect to \mathcal{A}, where $\mathcal{A} = \{e| e$ is an edge of some simplicial complex K with $|K| = G\}$.
References

