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On the Hausdorff dimension of the attractor for the

heat convection equation
By Kazuo OEDA (Japan Women's University)
K& —F BATIRE)

§81. Introduction.

In our previous study [3], we considered the heat convection
equation (HC) in a time-dependent domain Q(t) c R2 and showed
the existence of the absorbing set for (HC).

On the other hand, Foias-Manley-Temam [1] showed the
existence of the attractor for the Bénard problem and obtained
the estimates of the Hausdorff and fractal dimensions of the
attractor.

In this paper we consider (HC) in a wider class of fixed
bounded domains of R2 with inhomogeneous boundary conditions and
we estimate the Hausdorff and fractal dimensions of the
attractors for (HC).

§2. Equations and assumptions.

Let Q be a boﬁnded domain in Rz included in an open ball
B = B(0,d). The boundary 9Q consists of N connected components,
namely, 9Q = Fl + e 4 FN, where Fi are smooth (say, of class
C2) and they does not intersect each other.

We consider the following heat convection equation

u, + (u*vV)u = -vp/p + {1 - d(H—TO)}g + vAu ,

1) div u o,

Qt + (u-v)e KAG in Q ,

(2) = B(x) , Olgy = Tx) 2 0,

ulgg
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3 ul,_ =ax> , ul,_=hx) ., x€Q,

where u, p and 6 denote the velocity of the fluid. the pressure
and the temperature, respectively ; g£(x) means the gravitational
vector and v, k, o, B8 are physical constants.
Now we make an assumption on the boundary function 8.
Assumption. B8 is smooth and satisfies the condition

(4) fr B:n ds = 0 (k =1, *++ , N) ,
K

where n is the outer normal vector to Fk.
Then, the next lemma is Kknown

3/2(89), then for any € > 0, there exists

LLemma 1. Let 8 € H
b € H2(Q) such that b = 8 on 8Q, div b = 0 and
(5) | (¢v'mb, v < 8IIVVII2 for any v € H;(Q).

Remark 1. We assume the function T(x) is continuous on 3.

in Q and

u
o]

Then we can have a function 0(x) such that A0

03 = T(x).

Now we make changes of variables : u 0 +b, 6=0+79;

dx®,y*), t = @ /vett, G = /o, 8= ot /oe*

(x,y)

(pvz/dz)p*. where T0 = mgx T(x). Abbreviating asterisks

and p

* and using the same letters u, 0, o, x, v, t, the heat
convection equation (1) ~ (3) are rewritten as follows

U +(uvHu = -vp+Au - (u*V)b - (b:V)u - RO - (b*¥)b + Ab

+ dgg/v2 - R(O - 1/P)
(6)
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k/ 0,+(u-v28 = (1/P)a8 - (08§ - (b8 - (b-ME
(7) u189= o , e|89= 0o ,

(8) uf a-b , O|,_ = h-0

t=0=
where R = agTod3/kv and P = v/k

We introduce the following abstract heat convection

equatioh (AHC) :

(AHC) %% + AUCt) + FUCt) + MUCt) = PO T,

here U = ‘(u,0), AU(H) =t(—Po(Q)(Au). ~(1/P)AB8), FU(t) =

t(Po(Q)(u-V)u, (u'v)9), MU(Ct) = t(Pa(Q)((U'V)b + (b*V)u + RO),

(u*v)8 + (b-V)8), f = t(-(b'V)b + Ab + dag/v2 -R(@ - 1/P),

-(b-¥)0), P(Q) = t(Po(Q), 15) and P_(Q) is the projection L2

— HO(Q).
§3, Results.

To explain our results, we give some preliminaries.

Definition 1. Let U : [0,T] — HO(Q) X L2(Q), T € (0,»),
Then U is called a strong solution of (AHC) on [O,T] if it
satisfies the following properties (i) and (ii).

(i) U € C([O;T] ; HO(Q) X Lz(Q)) and U(t) is absolutely
"continuous on (0,T1].

.. 2 1 2 1
(ii) U(t) € D(A) = (H () n HO(Q)) X (H7() n HO(Q)) for

a.e. t € [0,T] and U satisfies (AHC) for a.e. t € [0,T].

Definition 2. If a strong sojution U of (AHC) satisfies
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(9 Uy =U_ = ‘ca-b, h-B)  in H @ x LZ@
then it is called a strong solution of the initial value problem
for (AHC).
Here we put H = H_ () x L2(Q) and V = HL(Q) x Hl ().
Then we have the following existence theorem ([41).
Theorem 0. Suppose the assumptions hold. Then for anu UO € H

there exists a unique strong solution U with UC0) = U0 such that
U € CCLO,T1 ; H) n L?(0,T : V) and dU/dt € L?(8.T ; H) where &

is an arbitrary number in (0,T). In particular, if U0 € V, then

ue€ Ccro,T1 ; V) n L2(O,T ; D(A)) and dU/dt € L2(O,T y ).

Put S(t) : UO — U(t), U(t) being a solution, then we have
Theorem 1. There exists a V-bounded absofbing set}& in V for
(AHC) in the following sense : For every bounded set &SC v,
there exists t = t(B) > 0 such that S(t)B c A for all t > t®).
Furthermore, for any bounded setR” c H we can take t(B") > 0

satisfying S()B” c & for all t > t(BM.

Next we state the definition of an attractor.

Definition 3. Let (S(t)}t>O be a semigroup of continuous

operators in a Hilbert space H. Then a functional invariant set
for S(t) is a set X ¢ H such that S§(t)X = X for any t > 0.

Definition 4. Let X be a functional invariant set for S(t).
Then X is said to be an attractor in H if it possesses a
neighbourhood (Jof X in H such that for any % GO' dist(S(t)wn.
X) — 0 as t — o,

Then we have
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Theorem 2. Let)& be the absorbing set obtained in Theorem 1.

. _ —H . ‘ .
Putting X = sgo tgs S(tb& , then X is an attractor for (AHC).

Here we introduce the Hausdorff dimension of X.
Definition 5. lLet E be a metric space and X be a subset of

E. The number uH(X,d) € [0,»] defined by
ny(X,d) = é$w uH(X,d.e) = §YB uH(X.d.S)
is the d-dimensional Hausdorff measure of X, where

uy(X,d,e) = inf zr?
and the infimum is for all covering of X by a family (Bi) of
balls of E of radii ri'g €.

Definition 6. Let E be a metric space and X be a subset of

E. The number d (X) € [0,o] is called the Hausdorff dimension of

H
X if it satisfies
o , d> dH(X)
uH(X,d) =

+®

, d < dH(X) ,

where uH(X,d) is‘the d-dimensional Hausdorff measure of X.

Now we will give our main theorem.

Theorem 3. Let X be the attractor in Theorem 2. Then the
Hausdorff dimension dH(X) is finite and the following estimate
holds

(10) dH(X) $1 0+ 2(?2/}'1 + J?a/vl) .

where v, = cz(xl+xi)/2(1+P). Y2=(2/P+|R|/2), y,;=(cl+4)||vbl|2

. )
+aco (bl - 176l 3+ 3R /PrangnZ/v®H% 101 . IRI=allgl T d®/kv.
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"g"i="gi"2m +|Ig2||2oo ; 11 and A; are the smallest eigenvalues of
L L

the Stokes operator and -A with the homogeneous Dirichlet

condition, respectively.

Remark 2. The following estimate is known ([4],pl118)

The function b given in Lemma 1 (satisfying (5)) also satisfies

an estimate of the form

(11) bl < Il 1 < Ce exp(4/e) 1Bl 1/2 ,

L2y uly ° /2 caq)

where C depends on the domain @ and physical constants.

Remark 3. We will denote the fractral dimension of X by

dF(X). Then we can obtain the estimate

dF(X) £ 2+ 4(?2/71 + J?S/Yl)

§4. Some lemmas.
To prove the theorems, we prepare some lemmas.

Lemma 2. Let X be a subset of a Hilbert space H and

(S(t)}t>0 be a semigroup in H. Suppose that S(t)X = X for any t

> 0, S(t) is differentiable on X with the differential L(t,u)

and ﬁgR“L(to,u)HL(H) < +o for some t0 > 0. Denote the Lyapunov

exponents for X by nj(jgl). If for some n g 1, “1 + s 4+ “n+1 <

0, them u_ . < 0, (u + === + un)/lun+1| < 1 and the Hausdorff

dimension dH(X) is bounded as
(u}+"'+u )

n
[

(12) d (X) ¢ n + T < n+l

H n+l

The next elementary lemma is also useful ([4], p303).

Lemma 3. We assume that the sequence {“j)j>1 satisfies the
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following inequalities

(13) My + oo 4 “j < —aje + 8 for any j 2 1.

where o, 8, 8.> 0. Let m € N be defined by

1/86

(14) m=- 1< (28/a) m

A

Then u1+°~'+'um < 0 and (py+---+ uj)+/|u1+---+ uml <1

for j =1, <,m.
To state the next lemma, we prepare a framework as follows.

Let (S(t)}t>0 be a semigroup in a Hilbert sapce H generated

by a nonlinear evolution equation

(15) %% = F(u(t)) for t > 0, u(0) =u €H

We assume (15) has a linearized equation

du

(16) at

= AF(S(t)uo)U(t) ,» UCO) = & ,

and moreover we assume (16) is well-posed for any u, and &€ € H.
Finaily we assume S(t) is differentiable in H with the
differential L(t,uo) defined by
a7 L(t;uo)ﬁ = Uty for any € € H ,
where U(t) is a solution of (16).

Under these assumptions, we have ([41) :

Lemma 4. If X is a functional invariant.set of S(t) and “j
(j 2 1) are Lyapunov exponents for X, then

(18) my + o+ + < a

where qm is defined by

(19) q_ = ljim, syp qm(t)'
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- 1t . :
= lim,syp ( supy gup, 3/ T (Ap(w-Q (t))dT)
T ES!
j =
and Qm(t,u0,€1,~-~,im) is the projector from H onto the space
spanned by Ul(t), e, Um(t) ; Ui(t) being solutions of (16)

with U, (0) = E,
1 1

We use later the known facts as below.
Lemma 5. Let {Aj} and (Ag} be eigenvalues of the Stokes

operator and -A with the homogeneous Dirichlet condition on Q,

respectively. If Q c R2, then

(20) Aj ~ ¢cx;j as j — o (by Metivier),

1

b d

1j as j — o« (by Courant-Hilbert).

(21) 13 ~ CcA

Lemma 6. ([4].) Let A be a linear positive self-adjoint
operator in a Hilbert space H. Suppose A_1 is compact. Let (Aj}
-be eigenvalues of A. Then, for any family of elements wl. sy,

wm of V = D(Al{z) which is orthonormal in H,

‘m
(22) jZfA¢j~¢j) 2 Xy 4 e ow Al
If, furthermore, x; ~ ci;i%(@>0) as j — =, c depending on A,

then

m .+l

(23) 2, (AQ;,0) 2 2y + -+ + 2, > e ym

with another constant ¢~ depending A and o.

85. Proofs of the results.

We will only give the proof of Theorem 3 which is the main
theorem of our work. First, we introduce the linearized equation

of (AHC). Let ¢ =-t(u,6) be a solution.of (AHC) with @(0) = wo
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= t(uO,GO). For ¢ = t(U,Q) € (H2(Q) N H;(Q)) X (H2(Q) N H;(Q)).

we define an operator

PG(Q)(AU - ((u+b) VYU - (U+-V)(u+b) - RO}

(24)  Ag(@)® = | _
(1/PYAB - ((u+b)-V)8 - (U:¥)(6+8)

Then the linearized equation (LAHC) of (AHC) is given by

dd _ ' ot
(LAHC) o3 = AZ(@)®  ,0(0) = "(&,n)

Remark 4. (LAHC) is well-posed for any t(E.n) € H = HO(Q)
X LZ(Q). On the ofher hand, we can show S(t) is defferentiable
in H and its differential L(t,wo) is written for every t(E.n) €
Hoas L(t,o )t e,m = "Wct),8(t)) where “(U(),8(t)) is a |
solution of (LAHC) with t(U(O),G(O)) = t(E,n). Therefore, we can
apply Lemma 4 to (AHC). Moreover, we see that fof some t0 > 0,

5UEX"L(to‘wo)“<+w where X is the attractor in Theorem 2. whence
o .

Lemma 2 is applicable to (AHC). We omit these verification.
Now, let X be the attractor for (AHC), we define a. by

(25) gq_ = 1lim _sup  sup sup
m { - ® »&ug)ex t(Ei,ni)GH

1,0t '

u EfoTr(AF(w(t)) Q (t)dt),
t
I (ﬁi.ni)ugl

(4]

where ¢ = t(u,ﬂ) is a solution of (AHC) with @(0) = ﬁ(u0,90> and

. t t Lt
QmH is spanned by (Ul’gl)’ , (um,em) :

solutions of (LAHC) with t(Ui(O),Bi(O)) = t(Ei,ni). Then we

(U..8.) are
i*oi

present the following lemma by which we can prove Theorem 3.

Lemma 7. Consider (AHC) equation. Then we have

NN

Y Y
2 1 2
moo+ Y,m + ¥Yg < m o+ 27]

(26) qm g -Yl b 2 + YS .

where Yi are defined in Theorem 3.
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Remark 5. If Lemma 7 is proved, then from (18) of Lemma 4,
we get an inequality like a type of (13) of Lemma 3, from which
we can find m such that Ry ot o < 0 and, using Lemma 2,
we conclude that (10) of Theorem 3 holds.

Proof of Lemma 7.

We recall that X is the attractor for (AHC), qm is defined
by (25) and Qm is the projector. To estimate a.. let Wj(s) =
t(wj(s),ej(s)) be an orthonormal basis of H, Wj € V and

4 A 4 span QmH. Now we calculate

1 m

(27) T (Ap(@)Q) = & g, ¥

n
|mg

{(Aw.,w.)—(((u+b)-V)w.;w.)-((w.'V)(u+b).w.)-(RG.,w.))
J J J J J J J

+
Lt
g

{(IAG 8- ((Cu+b) - ¥I0,,8 )-((w,-¥)(8+8),0.))).
1 P J 37 3 J
Here we notice

2
28) B lcw, o murb)y,wol < SR Jw. %) Ivu+b) ldx
( i 1 v, P ¢ g v 17 1v¢ |

Holl -1 (u+b)ll (where p(x)

A

2
jg.‘lle(x)l )

c, Avul®+ivpi?y + 2 B avw®

[[PaN

here we used "0"2 < Cljzlllele2 , C, depending on Q.

1
R|
29 & Tme vl < Hm
. 2 2 _ .
since “wjﬂ + “Gj“ = 1 (normalized).
(30) .2 1w, m0+8),8.)] = .2 1w, -m0.,0+8))]
iZ1 j Jj iZ1 i j
1 2 2
$E & mwnenen ¢ 55 Eaven® + &,

where we employed t(wj.() )y €V, Hwi" 1 together with [8(-,t)|

§

A
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< 1/P for 8 € x and

Using (

(31) |

28), (29),

12

VUw., + P-1
J

19l

ve .
i

12> asp7!

(30) and noticing

2
("ij"

and with the aid of Lemma 5 and Lemma 6,

(32) T _(Ag(¢)°Q)
2 2. .2 lRl 2
< - osrrre 2, 7w 154198 15y + 5+ 5hmec lvul 2+llvbl
C
2 .. 2 2 IRI 2,

< 2(1+P)(11+11)m + (P+ )m+L (hwull +HVb"
where C2 depends on Q.

Next, we estimate IIVu(t)ll2 To do this, recall that t
is a solution of (AHC), then we get

1 d 2 2
(33) 5 FpluCtHI® + dvuctHl

= -((u*VY)b,u) - ((b*¥)b,u) -(Ab,u) (RO, u)

+ d3v'2(g,u) - RO,W + P L(R.W
- - 9 92
¢ axghvul®e2cd (nun-nonn®3lrIpT +a%v 2 ngn % Il +20000°

where we used lL.emma 1 with € =

Th

(34)
<
He

(35) qm

HA

nce,

us we obtain

4“Vb“2

lip,gup %f;HVu(t)szt

. 4Cé(HbH°HVbH3+(3|R|P—

finally we have

1/8.

1+d

= lip,gup %ngr(AF(w)on)dt

—c.2 Viepy7!

2

(x +A;)m2+(2P_]

1

+|R|-2

v gl

£ 1/P (maximal principle)-.

N uveju2> ,

then we have

210l

1)m



f11

(21

(31

(4]
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(C +IvblZeacs (bl -1vbi P+ 3 lrIP T ea®v 200 H2 101 .

+

il

'Ylm + Y2m + 73

Recalling Remark 4 and 5, we have proved Theorem 3.

References.

Foias, C., Manley, O., and.R. Temam, Attractors for the
Bénard problem : Existence and physical bounds on their
fractal dimension, Nonlinear Anal.T.M.A., 11, 939-967(1987).
Oeda, K., Weak and strong solutions of the heat convection
equations in regions with moving boundaries, J.Fac.Sci.Univ.
Tokyo, Sect. IA, 36, 491-536(1989).
Oeda, K., On absorbing sets for evolution equations in fluid
mechanics, RIMS Kokyuroku NO.745, 144-156(1991).

Temam, R., Infinite-dimensional dynamical systems in

mechanics and physics, Springer-Verlag, 1988.



